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Abstract—The design of vector quantizers for diversity-based communi-
cation over two or more channels of possibly differing capacities and failure
probabilities, is considered. The crucial dependence of current design tech-
niques on initialization, especially of index assignment, is well recognized.
Instead, we propose to pursue a deterministic annealing approach which is
independent of initialization, does not assume any prior knowledge of the
source density, and avoids many poor local minima of the cost surface. The
approach consists of iterative optimization of a random encoder at gradu-
ally decreasing levels of randomness as measured by the Shannon entropy.
At the limit of zero entropy, a hard multiple description (MD) quantizer is
obtained. This process is directly analogous to annealing processes in sta-
tistical physics. Via an alternative derivation, we show that it may also be
interpreted as approximating the minimum rate sums among points on the
convex hull of the MD achievable rate-distortion region of El Gamal and
Cover, subject to constraints on the sizes of the reproduction alphabets. To
illustrate the potential of our approach, we present simulation results that
show substantial performance gains over existing design techniques.

Index Terms—Deterministic annealing, multiple descriptions, quantiza-
tion, source coding, vector quantization.

I. INTRODUCTION

We consider the design of multiple description vector quantizers
(MDVQs) for use in a diversity-based communication system (here-
after referred to as a diversity system). A diversity system provides
several channels for communication between the transmitter and the
receiver. The MDVQ encoder encodes a fixed-length block of source
samples into individual indexes for transmission over each of the chan-
nels, subject to separate rate constraints. Each of these channels may
fail independently, and the decoder reconstruction is based on infor-
mation received from the subset of channels that are in working order.
Applications of multiple description source codes are currently being
pursued in speech and video coding over packet-switched networks and
fading multipath channels [18], [19], [21]. MDVQs designed for asym-
metric channels are strongly motivated by packet-switched networks
with priority classes. Finally, scalable quantizer design may be viewed
as a special case of MDVQ design.

For simplicity, we will restrict the discussion to diversity systems
with two channels. The two channels may have differing capacities and
failure probabilities. (We call the special case when the two channels
allow the same rates and have identical failure probabilities the case of
balanced descriptions). When both the channels function reliably, the
distortion achieved with the joint description is the “central” distortion;
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when one of the channels fails, the distortion achieved with the received
single-side description is the corresponding “side” distortion.

The study of practical multiple description systems was inaugurated
by Vaishampayan in [18]. Considering the design of balanced mul-
tiple description scalar quantizers (MDSQs), he derived an iterative
design algorithm (closely related to Lloyd’s algorithm for quantizer de-
sign [13]) that minimizes a weighted sum of the expected central and
side distortions. (Here, the weights may be determined by the channel
failure probabilities, while the codebook sizes may be fixed by the
channel capacities.) This algorithm is guaranteed to find a locally op-
timal solution. In [7], an extension of this algorithm was proposed
for the design of unstructured MDVQs for arbitrary weights and rate
constraints. This extension continues to guarantee the local optimality
promised by the original algorithm.

The occurrence of poor local minima on the cost surface, and the
consequent sensitivity of Lloyd’s locally optimal quantizer design al-
gorithm to initialization, is widely recognized. While one approach to
overcoming this problem has concentrated on clever heuristic initial-
izations, an alternate approach has considered the development of al-
gorithms which do not require initialization. See [8] for a summary of
both these approaches. In the case of multiple description (MD) quan-
tizers, the problem of poor local minima is exacerbated by the pres-
ence of a more complicated cost function. Vaishampayan already rec-
ognized this problem in [18]; an important contribution of that paper
was the proposal of asymptotically good initializations for balanced
MDSQ design for the Gaussian source. But such initializations have
not been forthcoming for the design of unstructured MDVQs for arbi-
trary source distributions with arbitrary distortion and rate constraints.

Pursuing the alternate approach, in this correspondence, we pro-
pose an unstructured-MDVQ design algorithm which does not require
initialization. This algorithm is an extension of the deterministic an-
nealing (DA) approach to single-description quantizer design, intro-
duced in [16], which avoids many poor local minima via an annealing
procedure. Our algorithm may be especially useful in training-based
design of unstructured nonbalanced MD quantizers, where the search
for good initializations is hindered by the lack of knowledge of the ge-
ometry of the source distribution, as well as the continuum of possible
rate and distortion constraints.

Certain chemical systems can be driven to their low energy states by
annealing, which is a gradual reduction of temperature, spending a long
time in the vicinity of phase transition points. Analogously, we ran-
domize the encoding rule of the multiple description system and seek
to minimize the expected distortion cost subject to a specified level of
randomness measured by the Shannon entropy. This problem can be
formulated as the minimization of a Lagrangian functional that is anal-
ogous to the Helmholtz free energy of chemical systems. The degree
of randomness is parameterized by the “temperature” of the configura-
tion. We start at a high degree of randomness, where we, in fact, max-
imize the entropy. Here, the globally minimum configuration requires
that all code vectors be coincident at the centroid of the source distri-
bution; no initialization of codebook or index assignment is necessary.
We then track the minimum at successively lower levels of entropy, by
recalculating the optimum locations of the reproduction points and the
encoding probabilities at each stage. Coincident codevectors split at
certain critical temperatures (which can be calculated), thus increasing
the effective codebook sizes. This phenomenon is analogous to the
phase transitions of statistical physics. At the limit of zero randomness,
the algorithm directly minimizes the expected distortion cost, and a de-
terministic encoder is obtained.

The DA approach may also be interpreted within the rate-distor-
tion framework. Thus, we consider calculation of the minimum rate
sums at different sections (parameterized by the corresponding distor-
tion triples) of the convex hull of an MD achievable rate-distortion re-

gion (attributed to El Gamal and Cover in [22]). We cast this problem
as the unconstrained minimization of a Lagrangian functional over cer-
tain probability densities and output maps, and show that this functional
is identical to the free energy used in the DA algorithm for MDVQ
design. Further, we prove that in several cases (including the impor-
tant one of squared error distortion and compactly supported source
alphabet) the supports of the output maps minimizing the above func-
tional are discrete and finite. We then show that the DA algorithm for
MDVQ design simulates the calculation of the above functional, sub-
ject to constraints on the maximum sizes allowed for the ranges of the
optimum output maps. We also interpret the phase transitions of the
DA algorithm within the context of the calculation of the minimum rate
sums. Note that a similar DA-based approach was previously proposed
in [17] for the calculation of the rate-distortion function of a (contin-
uous) source.

While our focus here is on MD systems based on unstructured quan-
tizers, several other approaches to the construction of MD systems have
been studied in the literature. The design algorithm of Diggaviet al. in
[5] for lattice MDVQs with arbitrary rate and distortion constraints,
and its asymptotic analysis therein, represents an important contribu-
tion to the problem of structured-MDVQ design. MD systems based
on overcomplete expansions were considered in [2], [4], and [9], while
methods based on optimizing transforms and predictors were presented
in [10], [14], and [20]. For results on the characterization of the MD
achievable region (in the Shannon-theoretic sense) see [6], [22], and
[15].

We formulate the problem of MDVQ design and establish notation
in the next section. In Section III, we describe the DA approach to this
problem. Necessary conditions for optimality are then used to derive
an iterative MDVQ design algorithm. We conclude the section by de-
scribing the “mass-constrained” form of our algorithm, which is our
preferred implementation. In Section IV, we rederive the algorithm by
considering calculation of the convex hull of an MD achievable re-
gion. In Section V, we present simulation results and comparisons with
existing approaches. Phase transition analysis, including derivation of
critical temperatures at which the size of the reproduction set increases,
is considered in the Appendix.

II. THE MDVQ PROBLEM AND DESIGN CONSIDERATIONS

We are interested in encoding a real-valued source represented by
a stationary and ergodic random processX distributed asp(�). Let a
single-letter distortion measured be given. Consider a diversity system
with two channels capable of transmission of information at ratesR1

andR2 bits per source sample (bpss), respectively. Each channel may
or may not be in working order, and its condition is not known at the
encoder. The encoder sends a different description over each channel,
and the decoder forms the best estimate of the source output from the
descriptions received via the channels that were functioning reliably.
An MDVQ maps ann-dimensional source vectorx to then-dimen-
sional reproduction vectorŝx0, x̂1, andx̂2, which take values in the
codebooksX̂ 0 = fx̂0jk; (j; k) 2 J �Kg, X̂ 1 = fx̂1j ; j 2 Jg, and
X̂ 2 = fx̂2k; k 2 Kg, respectively. Here,J = f1; 2; . . . ; 2nR g and
K = f1; 2; . . . ; 2nR g.

The MDVQ encoder is the mappinge: Rn 7! J �K. Given source
vectorx, it selects an index paire(x) = (j; k). Each index is sent
over its respective channel. The MDVQ decoderl = (l0; l1; l2) is,
in fact, a bank of three switched decoders each performing a lookup
operation: the central decoderl0: J�K 7! Rn takes in a double index
(j; k) and produces the code vectorl0(j; k) = x̂0jk. The side decoders
l1: J 7! Rn andl2: K 7! Rn take in the single indexesi andj to
produce the code vectorsl1(i) = x̂1i andl2(j) = x̂2j , respectively.
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For given values ofR1,R2, D1, andD2 we wish to find an MDVQ
which minimizes theexpected distortion cost

D(e; l) = Efd(X; X̂0)g+ �1Efd(X; X̂
1)g+ �2Efd(X; X̂

2)g

(1)

over e and l. The specific choice of�1 and�2 in a practical system
is determined by the weights we wish to assign to the side distortions
relative to the central distortion, which could depend on the channel
failure probabilities.

In the subsequent discussions, we will often use the concise notation

D(x; y0; y1; y2) = d(x; y0) + �1d(x; y1) + �2d(x; y2) (2)

to denote the weighted distortion cost ofx relative to the triple com-
posed of the central codevectory0 and the side codevectorsy1 andy2.
This will enable us to tidy up several long equations.

Note that the expected distortion cost depends on the code vector
locations. Further, it also depends on the indexes assigned to codevec-
tors, since they determine which pair of side vectors are mapped to each
central code vector. Locally optimal multiple description quantizer de-
sign algorithms [18], [7] must be initialized with codebooks and index
assignment. The choice of initial index assignment constrains the algo-
rithm to a part of the cost surface, so that “good” initial index assign-
ment is crucial to the performance of the algorithm. But good heuristics
for choosing the initial index assignment are elusive, since they depend
on the particular rate and distortion constraints, and some knowledge
of the source distribution. Strategies for initial index assignment are
discussed in detail in [18], where good heuristics are presented for the
special case of balanced descriptions and scalar quantizer. Moreover,
it was shown that heuristic index assignment is asymptotically optimal
(in the sense of high resolution) for the particular case of memoryless
Gaussian source and balanced MDSQs. However, these heuristics do
not seem to generalize to the case of unstructured, unbalanced MDVQs.
It may here be noted that the corresponding index assignment problem
for unbalancedlatticeMDVQ design was recently resolved in [5].

III. D ERIVATION OF THE DA ALGORITHM

A formal derivation of DA can be based on principles of informa-
tion theory, by considering optimization of a random encoder subject
to constraints on its degree of randomness. An alternate, but equiva-
lent, derivation appeals to Jaynes’ principle of maximum entropy for
statistical inference [11]. We shall use the former approach here.

A. Encoding Probabilities and Reproduction Points

Let us begin by assuming that the three codebooks,X̂ 0 = fx̂0jkg,
X̂ 1 = fx̂1jg, andX̂ 2 = fx̂2kg are given. We use a random encoding
rule, and assign input source vectorx to the index pair(j; k) with
probability q(j; kjx). The central decoder and the two side decoders
output x̂0jk, x̂1j , andx̂2k when presented with indexes(j; k). We can
rewrite the expected distortion cost of (1) for a random encoder as

D = dx p(x)
j; k

q(j; kjx)D(x; x̂0j; k; x̂
1
j ; x̂

2
k) (3)

where we drop the arguments ofD for notational simplicity.

We seek the distributionq(j; kjx) which minimizesD subject to
a specified level of randomness, which is measured by the Shannon
entropy

H(J; K; X) = � dx p(x)
j; k

q(j; kjx) log p(x)q(j; kjx): (4)

The corresponding Lagrangian to minimize is

F = D � TH: (5)

The Lagrangian functionalF is analogous to the Helmholtz free energy
of a physical system whereD is the energy,H is the entropy, and the
Lagrangian multiplierT is the temperature. MinimizingF corresponds
to seeking isothermal equilibrium of the system.

Now note thatH(J; K; X) = H(J; KjX)+H(X),and the source
entropyH(X) is independent of the encoding rule. We may therefore
drop the constantH(X) from the Lagrangian definition. Minimizing
F with respect to the encoding probabilitiesq(j; kjx) yields

q(j; kjx) =
exp � 1

T
D(x; x̂0jk; x̂

1
j ; x̂

2
k)

j; k

exp � 1
T

D(x; x̂0jk; x̂
1
j ; x̂

2
k)

: (6)

The corresponding minimum ofF is obtained by plugging (6) into (5)

F
� = min

q(j; kjx)
F

=�T dx p(x) log
j; k

exp �
D(x; x̂0jk; x̂

1
j ; x̂

2
k)

T
: (7)

We now find the optimal sets of reproduction vectorsX̂ 0, X̂ 1, andX̂ 2

which minimizeF � for this random encoder. These vectors satisfy the
following necessary conditions:

@

@x̂0jk
F

� =
@

@x̂1j
F

� =
@

@x̂2k
F

� = 0: (8)

Substituting forF � from (7), we have, for all̂x0jk 2 X̂ 0, x̂1j 2 X̂ 1,
andx̂2k 2 X̂ 2

dx p(xjj; k)
@

@x̂0jk
d(x; x̂0jk) = dx p(xjj)

@

@x̂1j
d(x; x̂1j )

= dx p(xjk)
@

@x̂2k
d(x; x̂2k) = 0:

(9)

Here,p(xjj; k), p(xjj), andp(xjk) denote the posterior probabilities
calculated using Bayes’ rule.

For the squared error distortion cased(x; y) = kx� yk2, the above
equations reduce to the centroid rules

x̂
0
jk = dx p(xjj; k)x

x̂
1
j = dx p(xjj)x

x̂
2
k = dx p(xjk)x: (10)
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Note that the encoding probabilities of (6) and the centroid rules of
(10) are just random relatives, respectively, of the encoding and de-
coding rules for optimal MD quantizer design for squared error distor-
tion ([18], (9), and (18)–(20)).

Our algorithm consists of minimizingF � with respect to the code
vectors starting at a high temperature and tracking the minimum while
decreasing the temperature.1

The central iteration itself is composed of the following two steps:

1) fix the codebooks and use (6) to compute the encoding probabil-
ities;

2) fix the encoding probabilities and optimize the codebooks ac-
cording to (9).

Clearly, this procedure is monotone nonincreasing inF �. Note that the
algorithm reduces to the known locally optimal MDVQ design algo-
rithm of [18] at the limit of zero temperature.

At very high temperatures, the global minimum configuration con-
sists of all the (central and side) code vectors coincident at the centroid
of the source distribution. As the temperature is reduced from the ini-
tial high value, the set of coincident code vectors bifurcates into subsets
for the first time at some lower temperature. We call this bifurcation the
first phase transition, and the corresponding temperature the first crit-
ical temperature, in analogy with the phase transitions seen during the
annealing of physical systems. As the temperature is lowered further,
these subsets again bifurcate, and each such bifurcation is a subsequent
phase transition with its corresponding critical temperature. We analyze
conditions for phase transitions and derive the critical temperatures in
the Appendix. A study of this phenomenon of phase transitions pro-
vides insight into the annealing process. Further, since the phase tran-
sitions are the critical points of the process, knowledge of the critical
temperatures allows us to accelerate the annealing between phase tran-
sitions.

B. Mass-Constrained DA (MCDA)

The observation of the phenomenon of phase transitions enables us
to recast our algorithm in a more efficient form. Since all the (central
and side) code vectors are coincident at high temperatures, they can
be viewed as belonging to a single cluster, and this entire cluster can
effectively be represented by a single index pair without affecting the
expected distortion cost. When the codebooks bifurcate at the critical
temperatures, the effective number of clusters increases. Each of these
clusters should be represented by a different index pair. We use this
observation to derive the “mass-constrained” implementation of our
algorithm.

Let us assume an unlimited supply of code vectors and index pairs.
The fraction of code vectors of the first side codebookX̂ 1 which are
coincident at some point can be assigned a common first index for
transmission over one of the channels. Let this common index bej;
the corresponding fraction of code vectors is labeledr(j) (the cluster
“prior” or “mass”), and the point where the code vectors are coincident
is x̂1j . Similarly, we assign a common indexk to the masss(k) of code
vectors of the second side codebook coincident atx̂2k. Consequently, a
fractionr(j)s(k) of all index pairs are assigned the index pair(j; k),
and the central reproduction corresponding to this index pair isx̂0jk.
We can recast the expression for the encoding probabilityq(j; kjx) in
(6) as

q(j; kjx) =
r(j)s(k)exp � 1

T
D(x; x̂0jk; x̂

1

j ; x̂
2

k)

j; k

r(j)s(k)exp � 1

T
D(x; x̂0jk; x̂

1

j ; x̂
2

k)
: (11)

1The performance of the algorithm is insensitive to the choice of the cooling
schedule. In our simulations we use the schedule ( 1).

The corresponding minimum of the free energy over encoding proba-
bilities is (cf. (7))

F
�=�T dx p(x) log

j; k

r(j)s(k)exp �
D(x; x̂0jk; x̂

1

j ; x̂
2

k)

T
:

(12)

F � is to be minimized under the obvious constraints on the masses:

j
r(j) = 1 and

k
s(k) = 1. This yields the following update

rules:

r(j) = dx p(x)
k

q(j; kjx)

s(k) = dx px

j

q(j; kjx): (13)

In other words, the distribution of masses on the indexes is identical
to the probability distribution induced on the indexes via the encoding
rule.

Minimizing F � with respect to the central and side reproduction
points gives the update formulas

dx p(xjj; k)
@

@x̂0jk
d(x; x̂0jk) = dx p(xjj)

@

@x̂1j
d(x; x̂1j )

= dx p(xjk)
@

@x̂2k
d(x; x̂2k) = 0

(14)

with the encoding probabilities of (11) used to calculate the posterior
probabilities.

MCDA increases the effective number of index pairs only when it
is needed, i.e., at a phase transition. Thus, it is computationally more
efficient than the earlier “unconstrained” approach. At the limit of low
temperatures, the two approaches converge to the same descent process
for the expected distortion cost, since their encoding probabilities are
identical at the limit (they assign each data point to a single index pair
(j; k) with probability 1. In the next section, we will provide an al-
ternate interpretation of MCDA. Note that we use MCDA for all our
simulations.

IV. DA AND AN MD ACHIEVABLE REGION

In this section, we make the following additional assumptions:X

is an independent and identically distributed (i.i.d.) random variable
distributed over the alphabetX � Rn, and the reproduction alphabet
is the same as the source alphabet.

In [22], the following sufficient conditions for an MD achievable
rate-distortion region are attributed to El Gamal and Cover.2

The quintuple(R1; R2; D0; D1; D2) is achievable if there exist
random variablesJ andK (defined on the spacesJ andK, respec-
tively) jointly distributed withX such that

R1 � I(X; J); R2 � I(X; K);

and R1 +R2 � I(X; J; K) + I(J; K) (15)

and deterministic functionŝx0(J; K), x̂1(J), andx̂2(K) such that

E[d(X; x̂
1(J))] � D1; E[d(X; x̂

2(K))] � D2;

and E[d(X; x̂
0(J; K))] � D0: (16)

2Note that these sufficient conditions are in general not tight, as shown in
[22]. But Ozarow showed in [15] that they are tight for the important special
case of the Gaussian source and squared-error distortion. Tight characterization
of the MD achievable region is not known for any other interesting example.
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Denote byS the convex hull of the region characterized by (15) and
(16). Define

Rsum(D0; D1; D2) = inf
J;K: 9x̂ ; x̂ ; x̂ satisfying (16)

I(X; J; K)

+ I(J; K): (17)

(Note that we do not impose the side rate constraintsR1 � I(X; J)
andR2 � I(Y ; K).)

In the following lemma, we will show thatRsum(D0; D1; D2)
is the minimum rate sum of the section ofS at the distortion triple
(D0; D1; D2).

Lemma 1: For fixed (D0; D1; D2), there exists a quintuple
(R1; R2; D0; D1; D2) on S with R1 + R2 not less than, but
arbitrarily close to,Rsum(D0; D1; D2).

Proof: It is clear from the definition ofRsum(D0; D1; D2) that,
for quintuples(R1; R2; D0; D1; D2) onS

R1 +R2 � Rsum(D0; D1; D2):

Now pick (J; K) in (17) such thatI(X; J; K) + I(J; K) is suffi-
ciently close toRsum(D0; D1; D2). We then have

I(X; J; K) + I(J; K)� I(X; J)� I(X; K)

= I(X; KjJ) + I(J; K)� I(X; K)

= I(X; KjJ) +H(KjX)�H(KjJ)

= H(KjX)�H(KjJ; X) = I(K; J jX) � 0

by the nonnegativity of mutual information. This shows that the rate
pair (R1; R2) with R1 = I(X;J) andR2 = I(X;J;K)+I(J;K)�
I(X;J) is on the section ofS at (D0;D1; D2), and we are done.

The determination ofRsum(D0; D1; D2) in (17) may be recast as
an unconstrained minimization via a Lagrangian formulation. The cor-
responding Lagrangian functional is

F = inf
q;x̂ ;x̂ ;x̂

dx p(x) dj dk q(j; kjx)

log
q(j; kjx)

q(j)q(k)
+

1

T
fd(x; x̂0jk)+�1d(x; x̂

1
j )+�2d(x; x̂

2
k)g :

(18)

Here,q(j; kjx)p(x) denotes the joint distribution ofJ ,K, andX, and
q(j) andq(k) are the corresponding marginal distributions.T , �1, and
�2 are (nonnegative) Lagrangian multipliers. We now convert (18) into
a three-way minimization, in the spirit of the double minimization of
the Blahut–Arimoto algorithm [3], [1].

Lemma 2:

F = inf
x̂ ;x̂ ;x̂ ;r;s;q

dx p(x) dj dk q(j; kjx)

log
q(j; kjx)

r(j)s(k)
+

1

T
D(x; x̂0jk; x̂

1
j ; x̂

2
k) (19)

wherer ands are probability measures overJ andK, respectively,
andD(�; �; �; �) was defined in (2).

Proof: Denote the argument of the infimum above byF (q; r; s).
For fixedq, F (q; r; s) is minimized by

rq(j) = dx p(x) dk q(j; kjx)

and

sq(k) = dx p(x) dj q(j; kjx) (20)

while for fixed r ands, F (q; r; s) is minimized by

qrs(j; kjx) =
r(j)s(k)exp � 1

T
D(x; x̂0jk; x̂

1
j ; x̂

2
k)

dj r(j) dk s(k) exp � 1
T
D(x; x̂0jk; x̂

1
j ; x̂

2
k)

:

(21)

These facts follow from the easily verifiable identities

F (q; r; s) =F (q; r; sq) +D(rqkr)

=F (q; rq; sq) +D(rqkr) +D(sqks)

F (q; r; s) =F (qrs; r; s) + dx p(x)D(qkqrs):

The result now follows, since the divergenceD(:k:) is non- negative.
For fixedr ands, substitutingq = qrs in (19), we are left with

F = inf
r;s;x̂ ;x̂ ;x̂

� dx p(x)

� log dj r(j) dk s(k) exp �
1

T
D(x; x̂0jk; x̂

1
j ; x̂

2
k) :

(22)

Consider now the necessary conditions for optimality of the maps
x̂0, x̂1, andx̂2. These are derived via a standard procedure from the
calculus of variations: we require

@

@�
F (x̂i + ��i)j�=0 = 0; i = 0; 1; 2 (23)

for all admissible3 perturbation functions�0(j; k), �1(j), and�2(k).
After some manipulations, we obtain

dx p(x)qrs(j; kjx)
@

@x̂0
d(x; x̂0(j; k)) = 0 (24)

dx p(x)qrs(jjx)
@

@x̂1
d(x; x̂1(j))

= dx p(x)qrs(kjx)
@

@x̂2
d(x; x̂2(k)) = 0 (25)

r(j)—ands(k)—almost everywhere. Here,qrs(jjx) andqrs(kjx) are
the marginals derived fromqrs(j; kjx).

We will now show that the ranges of the optimum mapsx̂0, x̂1, and
x̂2 are often discrete and finite. Note that, in this case,J andK may be
assumed to be discrete and finite as well (i.e., they may be replaced by
finite sets of indexes). If the pointsy0, y1, andy2 are in the ranges of
x̂0, x̂1, andx̂2, respectively, (24) imposes the following requirement
on (y0; y1; y2):

dx p(x)Z(x)

� exp �
1

T
[d(x; y0) + �1d(x; y1) + �2d(x; y2)]

�
@

@y0
d(x; y0) = 0 (26)

where

Z(x) = dj r(j) dk s(k) exp�
1

T
D(x; x̂0jk; x̂

1
j ; x̂

2
k)

�1

depends only onx.

Lemma 3: The ranges of the optimum mapsx̂0, x̂1, andx̂2 are dis-
crete and finite in the following cases:

3Since we derive a necessary condition, we do not need to be too careful about
how restrictive our definition of admissibility is. Hence, we simply require that
admissible functions be measurable, that the required integrals exist, and that
changing the order of integration and differentiation (where needed) is allowed.
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Fig. 1. MDSQ for Gaussian source. = = 3 bpss, = 0 006, = 0 012. Minimum and maximum for LA are 22.52 dB and 19.55
dB. for DA = 23.02 dB, achieved by the distortion triple( ) = ( 26.50 dB, 4.60 dB, 12.51 dB). (For ( ) =
(3 3 4.60 dB, 12.51 dB), promised by [15] is 25.18 dB.) For ease of comparison, a line along which= 23.02 dB is drawn. Design with
initialization from [18] is marked by+.

1) d(x; y) is a real, monotonic entire function ofx andy, and the
source alphabetX is discrete and finite;

2) d(x; y) = kx � yk2 is the squared-error distortion, and the
source alphabetX is compact.

Proof:
Case 1):If X is discrete and finite, the integral overp(x) in (26)

may be replaced by a finite sum. The left-hand side of (26) is then a
real entire function ofy0, y1, andy2, since the entire functions are
closed under differentiation, composition, and finite summation. The
monotonicity ofd ensures that the ranges ofx̂0, x̂1, andx̂2 are within
X . Liouville’s theorem then demands that these ranges be discrete and
finite.

Case 2):It follows from [17, proof of Theorem 2] that the solution
setsfy0g, fy1g, andfy2g for an integral equation of the form of (26),
with d(x; y) = kx�yk2, cannot have an accumulation point. SinceX
is compact, this implies that the solution sets are, in fact, discrete and
finite.

Fix the values of the Lagrangian multipliersT , �1, and�2, and
consider the corresponding triple(D0; D1; D2). The above discus-
sion then shows that the minimum rate-sum of the section ofS at
(D0; D1; D2) may be calculated using (24), (25), and (21) in the min-
imization of (22). If it is now assumed that the conditions of Lemma 3
are satisfied, thenJ andK may be taken to be discrete and finite, so
that the integrals over these spaces in (24), (25), (21), and (22) may be
replaced by finite sums. In this case, note that the Lagrangian functional
of (22) is identical to the free energy of MCDA at the temperatureT ,
(12). Similarly, the transition probability distribution of (21) is identical
to the transition probabilities (11) of MCDA. The necessary conditions
for optimality of reproduction points of (24) and (25) are identical to
the codevector update rules of (14). Thus, the MCDA iterations at a

fixed temperatureT , and for fixed�1 and�2, are identical to the cal-
culations of (24), (25), (21), and (22) to determine the minimum-rate
sum onS corresponding to(D0; D1; D2).

Consider the MCDA algorithm for MDVQ design, with prespeci-
fied constraints on the sizes of the various codebooks. These translate
to corresponding constraints on the sizes of the solution sets of (24)
and (25). AsT is decreased from an initial high value, the MCDA al-
gorithm “crawls up” the convex hullS . Note that the correct number of
code vectors to use at any temperature arises naturally in the MCDA al-
gorithm, with code vectors splitting into new code vectors at the phase
transitions.4 Once the constraints on the solution set sizes are reached,
the algorithm may be interpreted as calculating the best approximation
with fixed reproduction alphabet sizes to the minimum rate sums on
S . Finally, at the limit of zero temperature, the algorithm produces an
MDVQ with the desired codebook sizes, as explained in the previous
section.

V. SIMULATION RESULTS

The proposed DA-based design algorithm may be used to design
unstructured MDVQs with unequal rate and distortion constraints on
the two channels. We illustrate the wide applicability of the DA algo-
rithm by considering three examples: 1) scalar quantizer design for un-
equal rate and equal distortion constraints, 2) scalar quantizer design
for equal rate and unequal distortion constraints, and 3) two-dimen-
sional vector quantizer design for equal rate and distortion constraints.

4An additional approximation may be introduced since we ignore the possi-
bility of phase transitions where new code vectors grow continuously from zero
mass. See [17] for a more detailed discussion of such phase transitions.
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Fig. 2. MDSQ for Gaussian source. = 3 bpss, = 2 bpss, = = 0 01. Minimum and maximum for LA are 18.34 dB and 16.78
dB. for DA = 19.35 dB, achieved by the distortion triple( ) = ( 22.49 dB, 6.31 dB, 4.38 dB). (For ( ) =
(3 3 6.31 dB, 4.38 dB), promised by [15] is 21.45 dB.) For ease of comparison, a line along which= 19.35 dB is drawn.

For comparison, we consider the performance of the existing itera-
tive MDVQ design technique [18], [7], which we call the “Lloyd ap-
proach” (LA) as it is directly based on Lloyd’s algorithm for conven-
tional scalar quantizer design [13] and its vector extension [12]. Recall
that the performance of LA depends heavily on the initialization. We
use 20 differentrandominitializations for the LA in our simulations.
The initialization proposed in [18] is for MDSQ design with equal rate
and distortion constraints. In particular, this initialization does not gen-
eralize to vectors or for unequal rate constraints. However, as an addi-
tional comparison, we used this initialization for MDSQ design with
equal rate but unequal distortion constraints.

In all three examples, the quantizer designed by DA is seen to
yield a significantly lower expected distortion cost than LA with
random/heuristic initializations. Further, the wide variation in perfor-
mance of the quantizers designed by LA illustrates and emphasizes the
significance of the problem of local minima even for simple low-rate
quantizers.

In Fig. 1, we present the results for the design of scalar quantizers
with unequal distortion constraints for a unit-variance Gaussian source.
The constraints were:R1 = R2 = 3 bpss and�1 = 0:006; �2 =

0:012. The training set consisted of 5000 samples. The quantizers pro-
duced by LA with different random initializations show wide variation
in performance (the best and the worst of these designs differ by�3 dB
in terms of the expected distortion cost). Note that LA initialized with
the heuristic proposed in [18] yields significant gains over random ini-
tialization, and demonstrates the benefits of a good heuristic. However,
MDSQ designed via the proposed DA approach outperforms by�0.5
dB the best of all LA initializations.

In Fig. 2, we present results for scalar quantizer design under unequal
rate constraints. The constraints were:R1 = 3 bpss,R2 = 2 bpss,
and�1 = �2 = 0:01. The training set consisted of 5000 samples
of a unit-variance Gaussian source. The DA design is compared with

randomly initialized designs of LA. The DA design gains�1 dB over
the best of the latter in terms of the expected distortion cost. Note that
the heuristic index assignment cannot be extended to this case.

Recall that Ozarow determined, in [15], the MD achievable region
for the memoryless Gaussian source. We also compared the DA-based
designs of Figs. 1 and 2 with the theoretical benchmark provided by
[15]. While the precise comparisons are noted in the captions of the
corresponding figures, here it must only be noted that the expected dis-
tortion costs of the MDSQs designed by DA are within�2.2 dB of
the respective optimal expected distortion costs (in the limit of infinite
block lengths) promised by the results of Ozarow.

In Fig. 3, we present the results for the design of two-dimensional
vector quantizers for a Gauss–Markov source with autocorrelation co-
efficient � = 0:9 and unit variance per dimension. A training set
of 5000 vectors was used. The rate and distortion constraints were
R1 = R2 = 1.5 bpss (i.e., each side codebook has eight two-dimen-
sional code vectors) and�1 = �2 = 0:01. We compare the perfor-
mance of DA design with quantizers produced by LA for 20 different
random initializations. The distortion cost of the MDVQ designed by
DA is �0.6 dB below the distortion of the “best” quantizer produced
by random initializations of LA. Note that the heuristic index assign-
ment proposed in [18] cannot be generalized to this case.

Finally, note that the DA-based algorithm has a longer running time
than LA, but the ratio of the running times of the two algorithms is
a constant, influenced by the choice of the cooling schedule for the
former.

VI. CONCLUSION

Deterministic annealing is proposed for the design of MDVQs when
the two channels need not have identical capacities or failure probabil-
ities. This approach eliminates the dependence on initial configuration
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Fig. 3. Two-dimensional MDVQ for Gauss–Markov source= 0 9. = = 1.5 bpss, = = 0 01. Minimum and maximum for LA are
12.56 dB and 11.79 dB. for = 13.20 dB, with corresponding distortion triple( ) = ( 15.13 dB, 1.76 dB, 0.19 dB). For ease

of comparison, a line along which = 13.20 dB is drawn.

and avoids many poor local minima of the cost surface. Further, no
knowledge is assumed on the underlying probability distribution of the
source. DA is motivated by analogy to statistical physics and is derived
from principles of information theory. A random encoding rule is used,
and the encoding probabilities are determined by minimization of the
expected distortion cost at a specified level of entropy. The algorithm
starts at the global minimum at high temperature and tracks the min-
imum while lowering the temperature. An MD quantizer is obtained at
the limit of low temperature. We compared our approach with existing
methods, and obtained consistent, substantial improvements.

APPENDIX

A continuous phase transition occurs when the temperature is re-
duced below a critical value, if the existing solution changes from a
minimum of the Lagrangian functionalF � of (7) to a saddle point or
a local maximum. We use this condition, and variational calculus, to
derive an expression for the critical temperatures.

Let us consider the perturbed central and side codebooks given by

X̂ 0 + �	0 = fx̂0jk + � 
0

jk; (j; k) 2 J �Kg
X̂ 1 + �	1 = fx̂1j + � 

1

j ; j 2 Jg
and

X̂ 2 + �	2 = fx̂2k + � 
2

k; k 2 Kg
where 0jk,  1j , and 2k are the perturbation vectors, and the nonnega-
tive scalar� is used to scale the perturbations. We denote(	0; 	1; 	2)
by 	 and the vector of concatenated perturbations( 0jk  1j  2k) by
 jk. Further, we define the concatenation of central and side error vec-
tors asejk = ((x� x̂0jk) (x� x̂1j ) (x� x̂2k)). Here, and in the subse-
quent derivations, all vectors (unless transposed) are row vectors.

In terms of the Lagrange functional of (7) evaluated with the
perturbed codebooksF �(X̂ 0 + �	0; X̂ 1 + �	1; X̂ 2 + �	2), we

can write the necessary condition for the optimality of the codebooks
(X̂ 0; X̂ 1; X̂ 2) as

@

@�
F
�(X̂ 0 + �	0

; X̂ 1 + �	1
; X̂ 2 + �	2)j�=0 = 0

for all choices of finite perturbation	. (Note that this leads directly
to the centroid rules of (9).) We must also require a condition on the
second derivative to ensure the minimum is stable

@2

@�2
F
�(X̂ 0 + �	0

; X̂ 1 + �	1
; X̂ 2 + �	2)j�=0 � 0 (27)

for all choices of finite perturbation	. A necessary condition for bi-
furcation is equality in (27). Applying straightforward differentiation,
we obtain the following condition for equality in (27):

T dx p(x)
jk

(
2

T
)q(j; kjx)ejkL2 t

jk

2

+2
jk

q(j; k) jkL I3n � 2

T
LCxjj; kL L 

t
jk = 0 (28)

whereq(j; kjx) is given by (6). Here,I3n is the(3n � 3n) identity
matrix

L =

In 0 0

0
p
�1In 0

0 0
p
�2In

whereIn is the(n � n) identity matrix, and

Cxjjk =
x

p(xjj; k)etjkejk

is the covariance matrix of the posterior distributionp(xjj; k) of the
cluster corresponding to the index pair(j; k).
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We claim that the left-hand side of (27) is positive for all perturba-
tions iff the second term of (28) is positive. The “if” part is trivial since
the first term of (28) is nonnegative. We prove the “only if” part. Con-
sider a subset of index pairs,C, with coincident central and side code
vectors. This subset bifurcates if the matrixI3n � ( 2

T
)LCxjjkL loses

positive definiteness, in which case the second term on the left-hand
side of (28) can be nonpositive. (Note thatCxjjk is the same for all
(j; k) 2 C.) We now show a particular perturbation that makes the
first term vanish in this case. In fact

 jk = 0; 8 (j; k) 62 C; and
(j; k)2C

 jk = 0

works. So the subsetC bifurcates at temperatureT if the conditional
distributionp(xjjk) satisfies the condition

det I3n �
2

T
LCxjjkL = 0: (29)

The above condition is implicit in the critical temperature. The critical
temperature for the first phase transition (i.e., when the code vectors
coincident at the centroid of the source distribution move apart for the
first time) can be explicitly evaluated, giving

Tc = 2(1 + �1 + �2)�max (30)

where�max is the largest eigenvalue of the source covariance matrix.
This critical temperature may be compared with the critical temperature
for the first phase transition when DA is used for single-description VQ
design [16]:T SDVQc = 2�max, and

T
MDVQ
c = (1 + �1 + �2)T

SDVQ
c :

This result is consistent with the observation that the MDVQ design
algorithm degenerates to the DA algorithm for single description VQ
design [16] if�1 = �2 = 0.
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