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ABSTRACT

Many popular object-oriented programming languages, such
as C++, Smalltalk-80, Java, and Eiffel, do not support
multiple dispatch. Yet without multiple dispatch,
programmers find it difficult to express binary methods and
design patterns such as the “visitor” pattern. We describe a
new, simple, and orthogonal way to add multimethods to
single-dispatch object-oriented languages, without affecting
existing code. The new mechanism also clarifies many
differences between single and multiple dispatch.
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1 INTRODUCTION

Single dispatch as found in C++ [Stroustrup 97], Java
[Arnold & Gosling 98, Goslinget al. 96], Smalltalk-80
[Goldberg & Robson 83], and Eiffel [Meyer 92, Meyer 97],
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tuple gives multiple dispatch. To illustrate the idea, we have
designed a simple class-based OO language cﬁllmdﬁ.
While perhaps not as elegant as a language built directly with
multiple dispatch, we claim the following advantages for our
mechanism:

1. It can be added to existing single dispatch languages,
such as C++ and Java, without affecting either (a) the
semantics or (b) the typing of existing programs written
in these languages.

. It retains the encapsulation mechanisms of single-
dispatch languages.

. It is simple enough to be easily understood and
remembered, we believe, by programmers familiar with
standard single dispatch.

. It is more uniform than previous approaches of

incorporating multiple dispatch within a single-
dispatching framework.

To argue for the first two claims, we present the semantics of
the language in two layers. The first layer is a small, class-

selects a method using the dynamic class of one object, thebased single-dispatching languag@&Core of no interest in

message’s receiveMultiple dispatch as found in CLOS
[Chapter 28, Steele 90] [Paepcke 93], Dylan [Shalit 97,
Feinberget al. 97], and Cecil [Chambers 92, Chambers 95],

itself. The second layer, Tuple proper, includes SDCore and
adds multiple dispatch by allowing messages to be sent to
tuples.

generalizes this idea, selecting a method based on theOur support for the third claim is the simplicity of the

dynamic class of any subset of the message’s arguments
Multiple dispatch is in many ways more expressive and
flexible than single dispatch in object-oriented (OO)
programming [Bobrovet al. 86, Chambers 92, Castagna 97,
Moon 86].

In this paper we propose a new, simple, and orthogonal way
of adding multiple dispatch to existing languages with single
dispatch. The idea is to add tuples as primitive expressions

mechanism itself. If, even now, you think the idea of sending
messages to tuples is clearly equivalent to multiple dispatch,
then you agree. To support the fourth claim, we argue below
that our mechanism has advantages over others that solve the
same problem of incorporating multiple dispatch into
existing single-dispatching languages.

The rest of this paper is organized as follows. In Section 2 we
describe the single-dispatching core of Tuple; this is needed

and to allow messages to be sent to tuples. Selecting 8y to show how our mechanism can be added to such a

method based on the dynamic classes of the elements of th?anguage.

Appears in the OOPSLA ‘98 Conference Proceedir
Conference on Object-Oriented Programming, Systems
AgpllcatlonsVancouver, British Columbia, Canada, October
22,1998, pp. 374-387.

In Section 3 we describe the additions to the
single- dispatching core that make up our mechanism and
support our first three claims. Section 4 supports the fourth
claim by comparison with related work. In Section 5 we offer

* With apologies to Brucet al, whose TOOPLE language [Bruetal.93]
is pronounced the same way.



cl ass Point { inheritance causes no problems with respect to the new ideas

fields (xval: int,yval i nt ;
fields X(()S - {xv);\ll} ) we are advocating.)
met hod y(): int {yval} , We use a standard syntax for message sends. For example, if
met h{od}dlstanceFrom(I:Lme): I nt pl is an instance ofPoint or a subclass, then the
expression p1l.distanceFrom(In2) invokes the
instance’s distanceFrom method with the argument
cl ass ColorPoint ~ inherits Point{ In2 . Within the method body, the keywosk! f refers to
fi el ds (colorval:Color) . : .
met hod color():Color { colorval } thereceiverof the message, in this cask.
) } ) . Dynamic dispatching is used to determine which method to
Figure 1: The classéint andColorPoint . invoke. In particular, the receiver’s class is first checked for

a method implementation of the right name and number of

arguments. If no such method exists, then that class’s
some conclusions. In Appendix A we give the concrete immediate superclass is checked, and so on up the
syntax of Tuple, and in Appendix B we give the language’s inheritance hierarchy until a valid implementation is found

formal typing rules. (or none is found and amnessage-not-understoogrror

2 SDCORE, THE SINGLE-DISPATCHING CORE OF oceurs).

TUPLE For simplicity, and to ease theoretical analysis, we have not
In this section, we introduce the syntax and semantics of included assignment and mutation in SDCore. Again, these
SDCore by example. could be easily added.

2.2 Type Checking for SDCore

The single-dispatching core of Tuple is a class-based An overview of the static type system for SDCore is included

language that is similar in spirit to conventional OO here for completeness. The details (see Appendix B) are

languages like C++ and Java. Integer and boolean values,imended to be completely standard. For ease of presentation

along with standard operations on these values, are built intoSDC,:o_re’S type system is ;lmplte_r than that found In more
the language. Figure 1 illustrates SDCore with the well- realistic languages, as this is peripheral to our contributions.
known Point/ColorPoint example. Thdoint  class There are four kinds of type attributes. The typed and
contains two fields, representing an x and y coordinate bool are the types of the built-in integer and boolean values,
respectively. Each point instance contains its own values for respectively. Thdunction type(Ty,....,Ty) - Tps1 iS the type
these fields, supplied when the instance is created. Forof functions that accept as inpatargument values of types
example, the expressiorew Point(3,4) returns a fresh T, ..., T,, respectively and return a result of tyfg,;. The
point instance withxval and yval set to 3 and 4 class type CN, whereCN is a class name, is the type of
respectively. ThePoint class also contains methods for instances of the clagN.

retrieving the values of these two fields and for calculating
the distance from the point to some line. (We assume the
Line class is defined elsewhere.)

2.1 Syntax and Semantics

Types are related by a simple subtyping relation. The types
i nt and bool are only subtypes of themselves. The
ordinary contravariant subtyping rule is used for function
For ease of presentation, SDCore’s encapsulation model istypes [Cardelli 88]. A class typEN; is a subtype of another
extremely simple. An instance’s fields are only accessible in class typeCN, if the classCN; is a subclass of the cla&3N,.
methods where the instance is the receiver argument. AnTo ensure the safety of this rule, the type system checks that,

instance may contain inherited fields, which this rule allows for every method namm in classCN,, m's type inCN, is a

to be accessed directly; this is similar to ghretectednotion supertype ofn's type inCN,." Classes that do not meet this
in C++ and Java. check will be flagged as errors. Thus every subclass that
TheColorPoint  class is a simple subclass of tReint 23;:?;61;26 type checker implements a subtype of its

class, augmenting that definition withamlorval  field
and a method to retrieve the color. (We assume that a classTo statically check a message send expressionof the form
Color is defined elsewhere.) Th€olorPoint  class Eo. I1(Ey,...En), we check that the static type & is a
inherits all of thePoint class’s fields and methods. To subtype of a class typeéNwhose associated class contains a
create an instance of a subclass, one gives initial values formethodl of type (Ty,...,T;)) - Th+1, Where the types of the
inherited fields first and then the fields declared in the expressions E,,...E, are subtypes of theT,,.. T,
subclass. For example, one would writmew
ColorPoint(3,5,red) . As usual, subclasses can also " Unlike C++ and Java, SDCore does not allow static overloading of
override inherited methods. To simplify the |anguage, method names. However, since we add multiple dispatch to SDCore by a

. - . - separate mechanism, and since dynamic dispatch can be seen as dynamic
SDCore has only single inheritance. (However, multiple overloading, there is little reason fo do so.
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respectively; in this cas&g. I(Ey.... E,) has typel,,,. For
example, pl.distanceFrom(In2) has type i nt,
assuming thgbl has typePoint andin2 has type.ine .

2.3 Problems with Single Dispatching

Single dispatching does not easily support some
programming idioms. The best-known problem of this sort is
the “binary method problem” [Brucet al. 95]. For example,
consider adding an equality test to tHeoint and
ColorPoint  classes above as follows. (For simplicity, in
SDCore we have not includesliper, which would allow
ColorPoint  's equal method to callPoint ’'s equal
method.)

cl ass Point {

bool
and yval = p.y() }

Hét hod equal(p:Point):
{xval = p.x()
}

cl ass ColorPoint i nherits Point {

.r'riet hod equal(p:ColorPoint): bool

-- a type error in SDCore

{ (xval = p.x() and yval = p.y())
and colorval.equal(p.color()) }

}

As is well-known, this makes it impossible for
ColorPoint  to be considered a subtype@bint [Cook

et al.90]. In other wordsColorPoint  instances cannot be
safely used wherever aPoint is expected, so
polymorphism on the point hierarchy is lost. (For this reason
the example is ill-typed in SDCore.)

The problem is semantic, and not a fault of the SDCore type

system. It stems from the asymmetry in the treatment of the

two Point instances being tested for equality. In particular,

tupl e cl ass (pl:Point, p2:Point) {
met hod equal():  bool

{ plx()=p2x(
and pl.y() = p2.y() }

tupl e cl ass (cpl:ColorPoint,
cp2:ColorPoint) {
net hod equal():  bool
{ (cpl.x() =cp2.x()
and cpl.y() = cp2.y()
and (cpl.color(),
cp2.color()).equal() }

}
Figure 2: Two tuple classes holding methods for tesl
equality of points.

3 TUPLE, THE MULTIPLE-DISPATCHING EXTENSION
OF SDCORE

Tuple extends SDCore with tuple expressions, tuple classes,
tuple types, and the ability to declare and send messages to
tuples, which gives multiple dispatch. Nothing in the
semantics or typing of SDCore is changed by this extension.

3.1 Syntax and Semantics

In Tuple the expressiofE,, ..., E,) creates a tuple of size
with components,...,\,, Where eacly; is the value of the
corresponding expressid.

Figure 2 shows how one would solve the Point/ColorPoint
problem in Tuple. Rather than definirequal methods
within thePoint andColorPoint  classes, we create two
newtuple classesor the methods. In the first tuple class, a
tuple of twoPoint instances is the receiver. The nanpds
andp2 can be used within all methods of the tuple class to
refer to the tuple components. However, tuple classes are
client code and as such have no privileged access to the fields
of such components. The second tuple class is similar,
defining equality for a tuple of tw@olorPoint  instances.
(We assume that there is a tuple class for the tuptadr |,
Color ) with anequal method.) There can be more than

one instance is the message receiver and is therebyone typle class for a given tuple of clasbes.

dynamically dispatched upon, while the other is an ordinary
argument to the message and plays no role in metho
selection [Castagna 95]. Multiple dispatch avoids this
asymmetry by dynamically dispatching based on the run-
time class obotharguments.

A more general problem is the “visitor” design pattern
[Pages 331-344, Gamnadal. 9. This pattern consists of a

dSince no changes are made to Bwint or ColorPoint

classes when addingqual methods to tuple classes, the
subtype relationship betwe&olorPoint  andPoint is
unchanged. That is, by adding tequal method to a tuple
class instead of to the original classes of Figure 1,
ColorPoint  remains a safe subtypebint .

The syntax for sending a message to a tuple is analogous to

hierarchy of classes, typically representing the elements of athat for sending a message to an instance. For example,

structure. In order to define new operations on these

sends the messagedual() to

(p1,p2).equal()

elements without modifying the element classes, a separatdN® tuple (p1,p2) , which will invoke one of the two

hierarchy of visitors is created, one per operation. The code;

to invoke when a “visit” occurs is dependent both on which
visitor and which element is used. Multimethods easily
express the required semantics [Section 7, Baumgaether

al. 96], while a singly-dispatched implementation must rely
on unwieldy simulations of multiple dispatching.

As in ML [Milner et al. 90], we do not allow tuples of length one. This
prevents ambiguity in the syntax and semantics. For example, an
expression such a&).g(y) is interpreted as a message sent to an
instance, not to a tuple. Tuples have either zero, or two or more elements.

T We allow the built-in typesnt andboolean to appear as components of a
tuple class as well. Conceptually, one can think of corresponding built-in
classesnt andboolean, each of which has no non-trivial subclasses or
superclasses.



equal methods. Just as method lookup in SDCore relies on tupl e cl ass (p:Point, out:Terminal) {

the dynamic class of the receiver, method lookup in Tuple met hod print():() _

. . { -- prints Points to the terminal
relies on the dynamic classes of the tuple components.
Therefore, the appropriaeual method is selected from }
either the Point , Point ) or the (ColorPoint o .
ColorPoint ) tuple class based on the dynamic classes of t ”p'n%t%'o"’(‘jssri(npt'(';‘(’)'“t' out:Printer) {
pl and p2. In particular, the method from the { - prin'ts Points to the printer
(ColorPaint , ColorPoint ) tuple class is only invoked
if both arguments ar€olorPoint  instances at run-time. }
The use pf dynamic_classes distinguishes muItip_Ie dispatch tupl e cl ass (cp:ColorPoint,
from static overloading (as found, for example, in Ada 83 out:ColorPrinter) {
[Ada 83]). met hod print():()

{ -- print ColorPoints to the printer in color

The semantics of sending messages to tuples, multiple
dispatch, is similar to that in Cecil [Chambers 95]. Consider
the expressionH;,... Ey).I(En+1,...Ey), Where eactE; has
valuey;, and whereCy ; is the minimal dynamic class of.

A method in a tuple class3,...C,) is applicableto this
expression if the method is namedif for each ki<n the 3.2 Multiple Dispatch is not just for Binary Methods

dynamic clas€y jis a subclass df;, and if the method takes  pytimethods are useful in many common situations other
m-n additional arguments. (The classes of the additional than pinary methods [Chambers 92, Baumgagter. 96]. In
arguments are not involved in determining applicability, but particular, any time the piece of code to invoke depends on

their number does matter.) Among the applicable methods ygre than one argument to the message, a multimethod
(from various tuple classes), a unique most-specific method gasjly provides the desired semantics.

is chosen. A methobl; in a tuple classQ; j,....Cy ) ismore

Figure 3: Multimethods in tuple classes for printing.
unit tuple type(), is like C’s void type.

specific thara methodMl, in a tuple class@; y,...Cp ) if for For example, suppose one wants to print points to output
each kisn, Cy is a subclass of, ;. (The other arguments ~ devices. Consider a clas3utput with three subclasses:

in the methods are not involved in determining specificity.) Terminal , an  ordinary Printer , and a

If no applicable methods exist, message-not-understood ColorPrinter . We assume tha€olorPrinter is a

error occurs. If there are applicable methods but no most- Subclass ofPrinter . Printing a point to the terminal
specific one, aessage-ambiguoesror occurs. Algorithms ~ requires different code than printing a point to either kind of

for efficiently implementing multiple dispatch exist (see, Printer. In addition, color printing requires different code
e.g., [Kiczales & Rodriguez 93]). than black-and-white printing. Figure 3 shows how this

situation is programmed in Tuple.
This semantics immediately justifies part 1(a) of our claim
for the orthogonality of the multiple dispatch mechanism.
An SDCore expression cannot send a message o a tup ColorPoint classes will not upset the fact that
Furthermore, the semantics of message sends has two Cases. orPoint  is a subtype oPoint . The problem is that
one for sending messages to instances and one for sendingve need to invoke the appropriate. method basedath
messages to tuples. Hence the meaning of an expression in

. : . whether the first argument isRoint  or ColorPoint  and
SDCore is unaffected by the presence of multiple dispatch. whether the second argument Eerminal , Printer , or

dCoIorPrinter . In a singly-dispatched language, an
unnatural work-around such as Ingalls’s “double

In this example, there is no binary method problem. In
Ieparticular, the addition of print methods to tReint and

The semantics for tuple classes also justifies our secon
claim. That is, since tuple classes have no special privileges”,. o . .
to access the fields of their component instances, thed'Sp"?‘tChlng technique [Inlgalls 86, _Bruoet al. 95] is
encapsulation properties of classes are unaffected. However,reqUIred to encode the desired behavior.
because of this property, Tuple, like other multimethod 3.3 Tuples vs. Classes
languages, does not solve the “privileged access” aspect o
the binary methods problem [Brueg¢ al. 95]. It may be that

a mechanism such as C++ friendship grants would solve language, as is well-known [Brucet al. 95]. The Ingalls

rTOSt of t(;"? mI{Jra_ct_llce. \éve av0|detd ,?r:v'?glgnet??ﬁs.m 'E[uple double-dispatching technique mentioned above is a faithful
classes defaull privileged access fo the TIe1ds oTthe INSIaNCes; . 1o 4ion but often requires exponentially (in the size of the
n a_tuple becau_se that would violate |r_1format|_0n hiding. In tuple) more methods than a multimethod-based solution.
particular, any client could access the fields of instances of a

class C simply by creating a tuple class wit€ as a A second attempt to simulate multiple dispatch in single-
component. dispatching languages is based on product classes [Section

fThe ability to express multiple dispatching via dispatching
on tuples is not easy to simulate in a single-dispatching



3.2, Bruceet al.95]. This simulation is not faithful, as it loses
dynamic dispatch. However, it is instructive to look at how
this simulation fails, since it reveals the essential capability
that Tuple adds to SDCore. Consider the following classes in
SDCore (adapted from the Brueeal. paper).

cl ass TwoPoints {
fi el ds(pl:Point, p2:Point)
net hod equal()
{  pLlx()=p2.x()
} and pl.y() = p2.y() }
cl ass TwoColorPoints {
fi el ds(cpl:ColorPoint, cp2:ColorPoint)
method equal()
{ (cpl.x() = cp2.x()
and cpl.y() = cp2.y())
and ( new TwoColors(
cpl.color(),
cp2.color())).equal() }
}

can arise if the intent of the dispatch code (to do dispatch) is
not clear to maintenance programmers. By contrast, when
writing tuple classes it is clear that multiple dispatch is
desired. The semantics of Tuple ensures that each dispatch is
handled consistently, and the static type system ensures that
this dispatching is complete and unambiguous.

3.4 Type Checking for Tuple

We add to the type attributes of SDCgm@duct type®f the
form (T,,...,T,); these are the types of tuples containing
elements of typedy,...,T,. A product type T¢',...,T)) is a
subtype of (,..., ) when eacH;' is a subtype of;.

Because of the multiple dispatching involved, type checking
messages sent to tuples is a bit more complex than checking
messages sent to instances (see Appendix B for the formal
typing rules). We divide the additions to SDCore’s type
system into client-side and implementation-siderules

With these classes, one could create instances that simulat§Chambers & Leavens 95]. The client-side rules check

tuples via thenew expression of SDCore. For example, an
instance that simulates a tuple containing tWoint
instances is created by the expressiomew
TwoPoints(my_pl,my_p2) However, this loses
dynamic dispatching. The problem is that theew

messages sent to tuples, while the implementation-side rules
check tuple class declarations and their methods. The aim of
these rules is to ensure statically that at run-time no type
mismatches occur and that moessage-not-understoaa
message-ambiguousrror will occur in the execution of

expression requires the name of the associated class to benessages sent to tuples.

given statically. In particular, when the following message
send expression is executed

( new TwoPoints(my_p1,my_p2)).equal()

the method in the clasBvoPoints  will always be invoked,
even if bothmy pl and my p2 denote ColorPoint
instances at run-time.

By contrast, a tuple expression does not statically determine
what tuple classes are applicable. This is because messag
sent to tuples use the dynamic classes of the values in th

tuple instead of the static classes of the expressions used to
construct the tuple. For example, even if the static classes of

my_pl andmy_p2 are bothPoint , if my_pl andmy_p2
denote ColorPoint instances, then the message send
expression(my_pl,my_p2).equal() will invoke the
method in the tuple class for CplorPoint
ColorPoint ) given in Figure 2. Hence sending messages
to tuples is not static overloading but dynamic overloading.
It is precisely multiple dispatch.

Of course, one can also simulate multiple dispatch by using
a variant of thaypecasetatement to determine the dynamic
types of the arguments and then dispatching appropriately.
(For example, in Java one can use geClass method
provided by the clas®bject .) However, writing such code

by hand will be more error-prone than automatic dispatch by
the language. Such dispatch code will also need to be
duplicated in each method that requires multiple dispatch,
causing code maintenance problems. Every time a new clas
enters the system, the dispatch code will need to be
appropriately rewritten in each of these places, while in
Tuple no existing code need be modified. Further problems
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The client-side rule is the analog of the method application
rule for ordinary classes described above. In particular, given
an application( Ey,...,5). I( En+1,---Ey) We ensure that
there is some tuple class for the product type (., T,,) such
that the static type of Ey,...,E,) is a subtype ofTy,...,T,).
Further, that tuple class must contain a method
implementation nameldvith m-nadditional arguments such
tgat the static types oEp.q,...En are subtypes of the
method’s additional argument types. Because the rule
explicitly checks for the existence of an appropriate method
implementation, this eliminates the possibility message-
not-understooctrrors.

However, the generalization to multiple dispatching can
easily cause method-lookup ambiguities. For example,
consider again the Point/ColorPoint example from Section 2.
Suppose that, rather than defining equality for the tuple
classes (Point,Point) and
(ColorPoint,ColorPoint) , we had defined equality
instead for the tuple classéBoint,ColorPoint) and
(ColorPoint,Point) . According to the client-side rule
given above, aequal message sent to twolorPoint
expressions is legal, since there exists a tuple class of the
right type that contains an appropriate method
implementation. The problem is that there exist two such
tuple classes, and neither is more specific than the other.
Therefore, at run-time such a method invocation will cause a
method-ambiguousrror to occur.

Our solution is based on prior work on type checking for
multimethods [Castagnet al. 92, Castagna 95]. For each
pair of tuple classesTy,...,T,) and (T¢',...,T) that have a



method named that acceptk additional arguments, we as dispatching on classes or on types. However, in the two
check two conditions. alternate designs presented above, the dispatching semantics
could be designed either way. Although both options are
feasible, it is conceptually simpler to dispatch on classes, as
this nicely generalizes the single-dispatching semantics and
keeps the dynamic semantics of the language completely
independent of the static type system.

The first check ensuremonotonicity[Castagnaet al. 92,
Castagna 95, Goguen & Meseguer 87, Reynolds 80]. Let
(S, -U and &/,....§)-U' be the types of the
methods named in the tuple classesTy,...,T,) and
(T{',...,Ty), respectively. Suppose thdi(...,T,) is a subtype

of (T¢,....Ty). Then §&,....) - U must be a subtype of The names of the tuple formals in a tuple class are, in a sense,
(S',--,&') - U'. By the contravariant rule for function types, a generalization a$el f for a tuple. They also allow a very
this means that for eaghS' must be a subtype &, andU simple form of the pattern matching found in functional
must be a subtype &f'. languages such as ML [Milnest al. 90]. Having the tuple

The second check ensures that the two methods are no{ormals be bound to the elements of the tuple allows Tuple,
ambiguous. We define two typeand T to be related if ike ML, to include tuple values without needing to build into

either S subtypesT or vice versa. In this casenin(ST) the Ianguagg p.rimitive'operations to extract the components
denotes the one &andT that subtypes the other. It must be ofa t“P'e- Itis mtergstmg to spepulate abogt the advantages
the case thaflg,...,T,) and (T;',..., T.") are not the same tuple. that might bg obtained by adpilng algebraic da.tatype's and
Further, if for eaclj, T, andT;' are related, then there must be more extensive pattern-matching features to object-oriented

a tuple classrin(Ty,T4'),...min(T,,T,)) that has a method gﬂgguages (see also [Bourdoncle & Merz 97, Erestl.
named| with k additional arguments. The existence of this D-
method is necessary and sufficient to disambiguate betweerds RELATED WORK

the two methods being checked. In this section we discuss two kinds of related work. The first

The type rules for tuple classes and message sends to tuplesoncerns generic-function languages; while these do not
validate part (b) of our first claim. That is, Tuple’s extensions solve the problem we address in this paper, using such a
to the SDCore type system are orthogonal. The typing rules language is a way to obtain multiple dispatch. The second,
in Tuple are a superset of the typing rules in SDCore. Hence, more closely-related work, addresses the same problem that

if an SDCore program or expression has typdt will also we do: how to add support for multiple dispatch to languages
have typeT in Tuple. with single dispatch.
3.5 Discussion An inspirational idea for our work is the technique for

In Tuple we chose a by-name typing discipline, whereby avoiding binary methods by using product classgs described
there is a one-to-one correspondence between classes an@ly Bruceet al.[Section 3.2, Brucet al. 95]. We discussed
types. This unification of classes with types and subclassesthis in detail in Section 3.3 above.

with subtypes allows for a very simple static type system. It another source of inspiration for this work was Castagna’s
also reflects the common practice in popular object-oriented paper on covariance and contravariance [Castagna 95]. This
languages. Indeed, this approach is a variant of that used bymakes clear the key idea that covariance is used for all
C++ and Java. (Java’s interfaces allow a form of separation grguments that are involved in method lookup and
of types and classes.) Although the type system is simplistic, contravariance for all arguments that are not involved in
the addition of multimethods to the language greatly |gokup. In Tuple these two sets of arguments are cleanly
increases its expressiveness, allowing safe covariantseparated, since in a tuple class the arguments in the tuple are
overriding while preserving the equivalence between ysed in method lookup, and any additional arguments are not
subclassing and subtyping. used in method lookup. The covariance and contravariance

There are several other ways in which we could design the conditions are reflected in the type rules for Tuple by the
type system. For example, a purely structural subtyping Monotonicity condition.

paradigm could be used, with classes being assigned to4.1 Generic-Function Languages

record types based on the types of their methods. Another
possibility would be to maintain by-name typing but keep
this typing and the associated subtyping relation completely
orthogonal to the class and inheritance mechanisms. This is
the approach taken in Cecil [Chambers 95]. We ruled out
these designs for the sake of clarity and simplicity.

Our approach provides a subset of the expressiveness of
CLOS, Dylan, and Cecil multimethods, which are based on
generic functions. Methods in tuple classes do not allow
generic functions to have methods that dynamically dispatch
on different subsets of their arguments. That is, in Tuple the
arguments that may be dynamically dispatched upon must be
Another design choice is whether to dispatch on classes or ondecided on in advance, since the distinction is made by client
types. In Tuple, this choice does not arise because of thecode when sending messages to tuples. In CLOS, Dylan, and
strong correlation between classes and types. In particular,Cecil, this information is not visible to clients. On the other
the Tuple dispatching semantics can be viewed equivalentlyhand, a Tuple programmer can hide this information by
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always including all arguments as part of the tuple in a tuple generic function formed from the multimethods in the class
class. (This suggests that a useful syntactic sugar for Tupleof the receiver, and the second dispatch is the usual generic
might be to usé(E,, ... E,,) as sugar fork,,... E,).f() whenn function dispatch on the remaining arguments in the
is at least 2.) message.

Second, generic function languages are more uniform, sinceOne seeming advantage of encapsulated multimethods is that
they only have one dispatching mechanism and can treatthey have access to the private data of the receiver object,
single dispatching as a degenerate case of multiple whereas in Tuple, a method in a tuple class has no privileged
dispatching rather than differentiating between them. access to any of the elements in the tuple. In languages like
C++ and Java, where private data of the instances of a class
are accessible by any method in the class, this privileged
access will be useful for binary methods. However, this
advantage is illusory for multimethods in general, as no
special access is granted to private data of classes other than

Ir'TI](lélt(I:rTitra]_?]?ijaFlar_sstzn?ulr %es;%réﬁarl bTeu;edre?;.?r?SliagEsthat of the receiver. This means that access must be provided
' va simply by INg Wple exp ! WP 4 clients, in the form of accessor methods, or that some

:ﬁg?:s tip:ewc;aiz?z 2;‘2\/\}2(9 ea:(ti)!tlitzgtocosggdng];dssr?gf Sbéoother mechanism, such as C++ friendship grants, must
o . ' .. provide such access to the other arguments’ private data.
modified and will execute and type check as before. This is P . g . P .

in contrast to the generic function model, which causes a Two problems with encapsulated multimethods arise
major shift in the way programs are structured. because the multimethod dispatch is preceded by a standard

S d del L | based lati dispatch to a class. The first problem is the common need to
econd, our model maintains class-based encapsu atlonduplicate methods or to use stub methods that simply

keeping the semantics of objects as self-interpreting records'forward the message to a more appropriate method. For
The generic function model gives this up and must base example, sinc€olorPaint  overrides thequal generic
encapsulation on scoping constructs, such as p""Ck"’lgesfunction ’in Point , it must duplicate theequal method
[Chapter 11, Steele 90] or local declarations [Chambers & declared within the,Point class. As observed in the Bruce

Leavens 97]. et al. paper, this is akin to the Ingalls technique for multiple
4.2 Encapsulated and Parasitic Multimethods polymorphism [Ingalls 86]. Parasitic multimethods

Encapsulated multimethods [Section 4.2.2, Bratal. 95] [Boyland & Castagna 97], a variant of encapsulated
[Section 3.1.11, Castagna 97] are similar in spiritto ourwork Multimethods, remove this disadvantage by allowing
in their attempt to integrate multimethods into existing Parasitic methods to be inherited.

singly-dispatched languages. The following example usesThe second problem caused by the two dispatches is that
this technique to program equality tests for points in an existing classes sometimes need to be modified when new

Although we believe that these advantages make CLOS-style
multimethods a better design for a new language, the
approach illustrated by Tuple has some key advantages for
adapting existing singly-dispatched languages to

extension to SDCore. subclasses are added to the system. For example, in order to
cl ass Point { program special behavior for the equality method accepting
. one Point and oneColorPoint  (in that order), it is
nmet hod equal(p:Point): bool . . .
{ xval=px() and yval = p.y() } necessary to modify théoint class, adding the new
} encapsulated multimethod. This kind of change to existing
cl ass ColorPoint  inherits Point{ code is not needed in Tuple, as the programmer simply
met hod equal(p:Point): bool creates a new tuple clags. Indeed, Tuple even allows more
{ xval = p.x() and yval = p.y() } than one tuple class with the same tuple of component
met hod equal(p:ColorPoint): ool classes, allowing new multimethods that dispatch on the

{ (xval =p.x() and yval = p.y()) isti i
and colorval.equal(p.color() } same tuple as existing multimethods to enter the system

} without requiring the modification of existing code.

With encapsulated multi-methods, each message send result&ncapsulated and parasitic multimethods have an advantage
in two dispatches (in general). The first is the usual dispatch in terms of modularity over both generic-function languages
on the class of the receiving instance (messages cannot band Tuple. The modularity problem of generic-function
sent to tuples). This dispatch is followed by a second, languages, noted by Cook [Cook 90], is that independently-
multimethod dispatch, to select a multimethod from within developed program modules, each of which is free of the
the class found by the first dispatch. In the example above, possibility of message-ambiguousrrors, may cause
the messagpl.equal(p2) first finds the dynamic class message-ambiguou®rrors at run-time. For example,
of the object denoted hyl. If p1 denotes L£olorPoint consider defining the methodqual in three modules:
then a second multimethod dispatch is used to select betweemmodule A defines it in a tuple classPfint , Point ),

the two multimethods for equal in the class module B in a tuple class Roint , ColorPoint ), and
ColorPoint . In essence, the first dispatch selects a module C in a tuple class QolorPoint , Point ). By
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themselves these do not cause any possibility of messageexisting code as new classes enter the system. On the other
ambiguous errors, and a program that uses eitandB or hand, this uniformity also causes Tuple to suffer from the
A andC will type check. However, a program that includes modularity problem of generic-function languages, which
all three modules may have message-ambiguous errorscurrently precludes the important software engineering
since a message sent to a tuple of t@olorPoint benefits of separate type checking.

instances will not be able to find a unique most-specific
method. Therefore, a link-time check is necessary to ensure
type safety. Research is underway to resolve this problem for
generic function languages [Chambers & Leavens 95],
which would also resolve it for Tuple. However, to date no
completely satisfactory solution has emerged.

The Tuple language itself is simply a vehicle for illustrating
the idea of multiple dispatching via dispatching on tuples.
Although it would complicate the theoretical analysis of the
mechanism, C++ or Java could be used as the singly-
dispatched core language.

The design choices of encapsulated and parasitic ACKNOWLEDGMENTS
multimethods were largely motivated by the goal of avoiding
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B.1 Type attributes

17 . . A T = Type

The Definitive Guide to the New Object-Oriented Dynamic int| bool | P| T,-T, | CN

LanguageAddison-Wesley, Reading, Mass., 1997. | Texp| kdec| c C]] s | ttup
[Steele 90] Guy L. Steele JEommon Lisp: The Language P = {1 {F§ TypeEnv

(second edition)Digital Press, Bedford, MA, 1990. 'és = I(D p, cs t9 gggSCEOnn\}eXt
[Stroustrup 97] Bjarne Stroustruphe C++ Programming c = (F, p, CN Classinfo

Language: Third Edition Addison-Wesley, Reading, ts = [11 [TIY Tuples o

Mass., 1997. TIS = TuplelnfoRelationships

o (pm (P T, ) .

APPENDIX A FORMAL SYNTAX t = (Fop) TupleClassinfo

Following Schmidt [Schmidt 94], type attributes of the form
T exp stand for expressions that return typdype attributes
of the formk dec stand for declarations that have the effect

The following is the concrete syntax for Tuple. Thalic
font notations to the right are the names of the syntactic

domains. . ;
o of making a context. Type attributes of the formclsrecord
PROG ::= Program . . .
RDS E information,c, about a class; these are used as the types of
RDS := Recursive-Declaration-Seq  classes (as opposed to their instances). Type attributes of the
~ D| DRDS . formt tup record informationt, about a tuple class.
D = Declaration
| tcluglsg f' ?sti ;-IFdé F'\{l\/ISS% The domainsTypeEnvand ClassEnvare regarded as finite
| cl ass |i inherits I,{ fieldsFMS} functions from identifiers to types; hence we make sure that
F = Formals there is at most one association for a given identifier in its
FS - O 1 (F9 Formal-List domain. Similarly we regard the domairuplesas a finite
h LT I:T, FS relation between product types and type attributes of the
TF = Tuple-Formals formt tup.
() I(TF _
TFS = Tuple-Formal-List B.2 Preliminary definitions and functions
|1: Tl' |2: T2
T | 1T, TFS T We define the following helper functions on finite functions,
it | bool ype relations, and lists of formals:
| Pl T;-T, | CN : T =
P n= Product-Type dom({ Ill'Tlli""l ”I'T’.‘I_}) _{ Il.’r'"'l ”}T
O (TT9 _ rang€({ 11Ty, InTah) = { T, T}
s == T, T, | T, TTS Tuple-Type-List The function+ denotes a shadowing union of two relations
MS = Method-List (or functions), favoring the second one:
M| MMS
M = Method ro+ro={(xy) | &y) Orpor [(xy) Orsand
nethod | F: T{ E} x Odom(ry)]}
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The functiont is also extended to a shadowing union of ypeContextdavoring the second:
(Pr.CS1tS)) + (P2.CSLSY) = (P1 + P2, €Sy + €, tsy [ tSp)

We define the following helper functions on the don@issinfo
field-type$(|1:T;L,...,In:Tn), p, 1) =(Tg,Tp)
meth-en(F, p, I') =p

We define the helper functigneth-envalso on the domaifiupleClassinfo
meth-en{F, p) =p

We define a helper function on the syntax of methods:
namégnmet hod IF : T{E}) =1

We define a helper function on types:
lengtT) =if OnOT, ...0OT,. (n= 0 andT = (T4,...,T,)) thenn else 1

We define a helper function on pairs of types:
min(S,Tes) = if csk S< TthenSelseT

We define a helper function to check the disjointness of a list of identifiers:
disjoinf(l4,...,I)) =0i.0j. (1si<nand I<j<n

andl; =1) 0 (i =j)
B.3 Type Checking Rules
BesidesT, we also us&, U, andV for types. Recall tha is used for product types.

B.3.1 Type Checking Programs

kotk - RDS k dec, ky+k | impl-side-type-check,
Kotk FE: Texp whereky =

[program] (O L Ton(ON Too ol
AN B2 s N\VALY EE =7 b |

1)
17

- RDS E T exp
Figure B-1: Rule of the fornk- Program: Type The class ham&opis used to avoid special cases that would
result from some classes not having a superclass.
B.3.2 Type Checking Recursive Declaration Sequences

A recursive declaration sequence allows mutual recursion among its declarations.
k+ (kg + k) D :kydec, k+ (ks +ky) | RDS:kodec — where ,cs,ts;) =Ky,

(Prosytsy)=ko,
[rds]

k| D; RDS: (k; + ko) dec don(py) n dom(py) = {},
dom(csy) n don(csy) = {}

Figure B-2: Rule of the formypeContexf Recursive-Declaration-SequencgypeContextlec.
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B.3.3 Type Checking Declarations

K+ Kargsk M1 1S > Ty, o K+ Kargsh My 1 §- Ty

wherem=0,n=> 0,
dicjninf(l 1)

[tuple-dec] k}-tupleclass(Iy:Uy,...JmUm) { Mq... My}
({3 {H{((Ug,..,Up),((12:Ug,.. d U p)tup))}) dec

k|- class | inherits Top{

fields (11:Uq,... ) ;yUm) My ... My} Kdec
[class-dec] telds (l:Uy, i Up) My . Mo }

ALY Ty

Kargs= ({11::U 1A miUmb{H {1,
p={MN{:S; - Tyq,....MN;: §, - Ty}
Oi. 1<i<n0O MN; =namégM;)

wherem=0,n=0

k- dlass | { fields (13:U,.../;Up) My ... My } : Kdlec
(pests) + ({(self, LD + KpgsE My 1S - Ty,

(pests) + ((s8f.DL0D) + Knask Mt Sy T
¢St Sy1) = Trg) < Sty — Ty -

[class-inh- cs| Sy — Ty < Sy’ = Ty
dec]

wherem=0,n>0,1>0,i >0,
(I":ccls) O cs,

p' = meth-en(c),

(I, 1:V1,.ede V) =fieldgc),
disjoint(l¢ 1,....kc j,11,-+»Im)s

Kigs= ({le,xVar-de Vb D)+

(p,csts) |- class | inherits1'{
fieIdS(ll:Ul,...,lm:Um) Ml Mn}
C({3 e Ve de Vil U, iU pa el
{}) dec

Y r—tmYmb 1),
Uj. 1<j=sn0 MN; = namgM)),
p=p +{MNy:S - Ty,....MN;: S, - T},
1t{1,..,n} - {1,..,n}, Ttis a permutation,
0j. 1<j<i O (MNpg):Sng)' = Try) OF',
0j.i<jsnD MNy O dom(p)

Figure B-3: Rules of the forfiypeContexf Declaration: TypeContextlec.

B.3.4 Type Checking Methods
K+ ({(1pTDs (TR FE:Texp

wheren= 0,

[method]

KFmethod I (13T i) i T{E}: (T T) > T disjointly,....kn)

Figure B-4: Rule of the forfiypeContexf Method: Type
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B.3.5 Type Checking Expressions

(p.csts) FEq: Ty exp, ..., (p.csts) FE,: T exp wheren = 0,
[new] {EN-e-Fl cs
(p.csts) - new CN (Ey,...,5) : CNexp field-typegc) = (Ty,....T)
app-rec] (p.csts) FEp:lpexp, (pcsts) |- E @ Sexp where (g:c dls) 0 cs
(p.csts) F Eg: (Tyq,-.., Tp) exp, (p,csts) | E : Sexp wheren=0,n# 1,
[app- (T Tt Cte
rod] ] U Ip/y teupP =t
P (p.csts) - Eg. MN E : Texp (MN:S— T) O meth-en(t)
KFE;:Tiexp, ..., KFE,:Toexp
[tuple] wheren>0,nz 1
ki (Eq....5) 1 (Tq,..., Tp) exp
[self] (p,csts) | self : Texp where(self:T) O p
[id] (p,csts) F1: Texp where(l:T) O p
[sub- (p,csts) FE: Sexp, cspFS<T
sumption]

(p,csts) FE: Texp

Figure B-5: Rules of the formiypeContexf Expression Type We omit rules for the built-in operators on

integers and booleans.

B.3.6 Subtyping Rules

[sub-eq] cSFT<T

[sub- cskS<T, cspT<U
rans] cskS<U
[sub-CN] csi- CN<CN,

[sub- cskS Ty, ..., CSES<T,
procl CSF (S 9) € (T )

CsFT1<S, csFS<T),

[sub-fun]
cSsEFS-SH<T1-T,

Figure B-6: Subtyping rules of the forGlasseg- Type< Type
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B.3.7 Implementation-side Type Checking Rules

wheren=0,m= 0,
(p,csts) |- impl-check MM, ..., (p,csts) |- impl-check M {t1,....t} = rangg(ts),

[impl-all] : . VNG, MN} =
(p,csts) | impl-side-type-check Oi-y mdommeth-entt;))

cst (P1,Ty) is-monotonic-irf(Pq,T1),....Pn T,

cst (PnTo) is-mor?otonic-ir{.(Pl,Tl) ..... Prn T wherenz 0,
[impl- (p,csts) | (P1,T1) unambiguous-with-eadiiP,,T),...,[Pn, T)] [(PLTY, P T =
method] for MR, (P | Pttup) Ots

(p.csts) b (P4, T,.1) unambiguous-with-eadP,,, T)] for MN and MN:T) U meth-en(t)]
(p,csts) | impl-check MN
wheren =0,
CS I— Tl — T2 < T1’1—> T1’2, ...,CS I— T1 — T2 < Tn,l—’ Tn,2 {T1‘1—> T1,21---’Tn,1_’ Tn,2} =
[is-mono] Hi1—-Ti2lcsEFP<P
cst (P,T; - T,) is-monotonic-in s and @,T,1-Tip) Os
andlength(T; 1) = length(T,)}
(p,csts) | (P, T) unambiguous-witliP,,T;) for MN,

[unam- )
biguous- (p,csts) | (P,T) unambiguous-witliP,, T,,) for MN wherens 0
each] (p.csts) | (P,T) unambiguous-with-eadliPy,T;),...,Pn, Try)]

for MN

wheren=0,m= 0,

PP,

P= (I'l ..... Tn), P’ = (Tl' ..... Tm'),
(n=mandlength(S =length(S)

[unam- (p.csts) | (P,S— T) unambiguous-witP',S — T') for un ~ @nd €. 1sjsn0 ,
cst(T;,Tj) are-related)

biguous-] O (((min(Py,Py’,cs),...min(Py, Py’ cs)),
ttup) Ots
and @s'.ar".
(length(S") =length(S) and
(MN:S' - T'"") O meth-engt)))
[are- CSEFS<T
related-1] cst (S,7) are-related
[are- csFT<S
related-2]

cst (S,7) are-related

Figure B-7: Rules for checking the implementation-side type safety of a program. We use list notation [...]
and list comprehensions (as in Haskell) in some of these rules.
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