
1

Multiple Dispatch as Dispatch on Tuples

Gary T. Leavens

Department of Computer Science,
Iowa State University,

229 Atanasoff Hall, Ames, Iowa, 50011 USA
leavens@cs.iastate.edu

+1 515 294-1580

Todd D. Millstein

Department of Computer Science and Engineering,
University of Washington,

Box 352350, Seattle, WA 98195-2350 USA
todd@cs.washington.edu

+1 206 543-5118

ABSTRACT

Many popular object-oriented programming languages, such
as C++, Smalltalk-80, Java, and Eiffel, do not support
multiple dispatch. Yet without multiple dispatch,
programmers find it difficult to express binary methods and
design patterns such as the “visitor” pattern. We describe a
new, simple, and orthogonal way to add multimethods to
single-dispatch object-oriented languages, without affecting
existing code. The new mechanism also clarifies many
differences between single and multiple dispatch.

Keywords

Multiple dispatch, multimethods, generic functions, typing,
single dispatch, binary methods, semantics, language design,
Tuple.

1 INTRODUCTION

Single dispatch, as found in C++ [Stroustrup 97], Java
[Arnold & Gosling 98, Goslinget al. 96], Smalltalk-80
[Goldberg & Robson 83], and Eiffel [Meyer 92, Meyer 97],
selects a method using the dynamic class of one object, the
message’s receiver.Multiple dispatch, as found in CLOS
[Chapter 28, Steele 90] [Paepcke 93], Dylan [Shalit 97,
Feinberget al.97], and Cecil [Chambers 92, Chambers 95],
generalizes this idea, selecting a method based on the
dynamic class of any subset of the message’s arguments.
Multiple dispatch is in many ways more expressive and
flexible than single dispatch in object-oriented (OO)
programming [Bobrowet al.86, Chambers 92, Castagna 97,
Moon 86].

In this paper we propose a new, simple, and orthogonal way
of adding multiple dispatch to existing languages with single
dispatch. The idea is to add tuples as primitive expressions
and to allow messages to be sent to tuples. Selecting a
method based on the dynamic classes of the elements of the

tuple gives multiple dispatch. To illustrate the idea, we have
designed a simple class-based OO language calledTuple* .
While perhaps not as elegant as a language built directly with
multiple dispatch, we claim the following advantages for our
mechanism:

1. It can be added to existing single dispatch languages,
such as C++ and Java, without affecting either (a) the
semantics or (b) the typing of existing programs written
in these languages.

2. It retains the encapsulation mechanisms of single-
dispatch languages.

3. It is simple enough to be easily understood and
remembered, we believe, by programmers familiar with
standard single dispatch.

4. It is more uniform than previous approaches of
incorporating multiple dispatch within a single-
dispatching framework.

To argue for the first two claims, we present the semantics of
the language in two layers. The first layer is a small, class-
based single-dispatching language,SDCore, of no interest in
itself. The second layer, Tuple proper, includes SDCore and
adds multiple dispatch by allowing messages to be sent to
tuples.

Our support for the third claim is the simplicity of the
mechanism itself. If, even now, you think the idea of sending
messages to tuples is clearly equivalent to multiple dispatch,
then you agree. To support the fourth claim, we argue below
that our mechanism has advantages over others that solve the
same problem of incorporating multiple dispatch into
existing single-dispatching languages.

The rest of this paper is organized as follows. In Section 2 we
describe the single-dispatching core of Tuple; this is needed
only to show how our mechanism can be added to such a
language. In Section 3 we describe the additions to the
single- dispatching core that make up our mechanism and
support our first three claims. Section 4 supports the fourth
claim by comparison with related work. In Section 5 we offer

Appears in the OOPSLA ‘98 Conference Proceedings,
Conference on Object-Oriented Programming, Systems, and
Applications, Vancouver, British Columbia, Canada, October 18-
22, 1998, pp. 374-387.

* With apologies to Bruceet al., whose TOOPLE language [Bruceet al.93]
is pronounced the same way.

2

some conclusions. In Appendix A we give the concrete
syntax of Tuple, and in Appendix B we give the language’s
formal typing rules.

2 SDCORE, THE SINGLE-DISPATCHING CORE OF
TUPLE

In this section, we introduce the syntax and semantics of
SDCore by example.

2.1 Syntax and Semantics

The single-dispatching core of Tuple is a class-based
language that is similar in spirit to conventional OO
languages like C++ and Java. Integer and boolean values,
along with standard operations on these values, are built into
the language. Figure 1 illustrates SDCore with the well-
known Point/ColorPoint example. ThePoint class
contains two fields, representing an x and y coordinate
respectively. Each point instance contains its own values for
these fields, supplied when the instance is created. For
example, the expressionnew Point(3,4) returns a fresh
point instance withxval and yval set to 3 and 4
respectively. ThePoint class also contains methods for
retrieving the values of these two fields and for calculating
the distance from the point to some line. (We assume the
Line class is defined elsewhere.)

For ease of presentation, SDCore’s encapsulation model is
extremely simple. An instance’s fields are only accessible in
methods where the instance is the receiver argument. An
instance may contain inherited fields, which this rule allows
to be accessed directly; this is similar to theprotectednotion
in C++ and Java.

TheColorPoint class is a simple subclass of thePoint
class, augmenting that definition with acolorval field
and a method to retrieve the color. (We assume that a class
Color is defined elsewhere.) TheColorPoint class
inherits all of thePoint class’s fields and methods. To
create an instance of a subclass, one gives initial values for
inherited fields first and then the fields declared in the
subclass. For example, one would writenew
ColorPoint(3,5,red) . As usual, subclasses can also
override inherited methods. To simplify the language,
SDCore has only single inheritance. (However, multiple

inheritance causes no problems with respect to the new ideas
we are advocating.)

We use a standard syntax for message sends. For example, if
p1 is an instance ofPoint or a subclass, then the
expression p1.distanceFrom(ln2) invokes the
instance’s distanceFrom method with the argument
ln2 . Within the method body, the keywordself refers to
thereceiver of the message, in this casep1 .

Dynamic dispatching is used to determine which method to
invoke. In particular, the receiver’s class is first checked for
a method implementation of the right name and number of
arguments. If no such method exists, then that class’s
immediate superclass is checked, and so on up the
inheritance hierarchy until a valid implementation is found
(or none is found and amessage-not-understooderror
occurs).

For simplicity, and to ease theoretical analysis, we have not
included assignment and mutation in SDCore. Again, these
could be easily added.

2.2 Type Checking for SDCore

An overview of the static type system for SDCore is included
here for completeness. The details (see Appendix B) are
intended to be completely standard. For ease of presentation
SDCore’s type system is simpler than that found in more
realistic languages, as this is peripheral to our contributions.

There are four kinds of type attributes. The typesint and
bool are the types of the built-in integer and boolean values,
respectively. Thefunction type(T1,...,Tn)→Tn+1 is the type
of functions that accept as inputn argument values of types
T1, ..., Tn respectively and return a result of typeTn+1. The
class type, CN, whereCN is a class name, is the type of
instances of the classCN.

Types are related by a simple subtyping relation. The types
int and bool are only subtypes of themselves. The
ordinary contravariant subtyping rule is used for function
types [Cardelli 88]. A class typeCN1 is a subtype of another
class typeCN2 if the classCN1 is a subclass of the classCN2.
To ensure the safety of this rule, the type system checks that,
for every method namem in classCN2, m’s type inCN2 is a
supertype ofm’s type inCN1.

* Classes that do not meet this
check will be flagged as errors. Thus every subclass that
passes the type checker implements a subtype of its
superclass.

To statically check a message send expressionof the form
E0. I(E1,...,En), we check that the static type ofE0 is a
subtype of a class typeCNwhose associated class contains a
methodI of type (T1,...,Tn)→Tn+1, where the types of the
expressions E1,...,En are subtypes of theT1,...,Tn

class Point {
fields (xval: int, yval: int)
method x(): int { xval }
method y(): int { yval }
method distanceFrom(l:Line): int

{ ... }
}

class ColorPoint inherits Point {
fields (colorval:Color)
method color():Color { colorval }

}

 Figure 1: The classesPoint andColorPoint .

* Unlike C++ and Java, SDCore does not allow static overloading of
method names. However, since we add multiple dispatch to SDCore by a
separate mechanism, and since dynamic dispatch can be seen as dynamic
overloading, there is little reason to do so.

3

respectively; in this case,E0. I(E1,...,En) has typeTn+1. For
example, p1.distanceFrom(ln2) has type int,
assuming thatp1 has typePoint andln2 has typeLine .

2.3 Problems with Single Dispatching

Single dispatching does not easily support some
programming idioms. The best-known problem of this sort is
the “binary method problem” [Bruceet al.95]. For example,
consider adding an equality test to thePoint and
ColorPoint classes above as follows. (For simplicity, in
SDCore we have not includedsuper, which would allow
ColorPoint ’s equal method to callPoint ’s equal
method.)

class Point {
...
method equal(p:Point): bool

{ xval = p.x() and yval = p.y() }
}

class ColorPoint inherits Point {
...
method equal(p:ColorPoint): bool

-- a type error in SDCore
{ (xval = p.x() and yval = p.y())

and colorval.equal(p.color()) }
}

As is well-known, this makes it impossible for
ColorPoint to be considered a subtype ofPoint [Cook
et al.90]. In other words,ColorPoint instances cannot be
safely used wherever aPoint is expected, so
polymorphism on the point hierarchy is lost. (For this reason
the example is ill-typed in SDCore.)

The problem is semantic, and not a fault of the SDCore type
system. It stems from the asymmetry in the treatment of the
two Point instances being tested for equality. In particular,
one instance is the message receiver and is thereby
dynamically dispatched upon, while the other is an ordinary
argument to the message and plays no role in method
selection [Castagna 95]. Multiple dispatch avoids this
asymmetry by dynamically dispatching based on the run-
time class ofboth arguments.

A more general problem is the “visitor” design pattern
[Pages 331-344, Gammaet al. 95]. This pattern consists of a
hierarchy of classes, typically representing the elements of a
structure. In order to define new operations on these
elements without modifying the element classes, a separate
hierarchy of visitors is created, one per operation. The code
to invoke when a “visit” occurs is dependent both on which
visitor and which element is used. Multimethods easily
express the required semantics [Section 7, Baumgartneret
al. 96], while a singly-dispatched implementation must rely
on unwieldy simulations of multiple dispatching.

3 TUPLE, THE MULTIPLE-DISPATCHING EXTENSION
OF SDCORE

Tuple extends SDCore with tuple expressions, tuple classes,
tuple types, and the ability to declare and send messages to
tuples, which gives multiple dispatch. Nothing in the
semantics or typing of SDCore is changed by this extension.

3.1 Syntax and Semantics

In Tuple the expression(E1, ..., En) creates a tuple of sizen
with componentsv1,...,vn, where eachvi is the value of the
corresponding expressionEi.

*

Figure 2 shows how one would solve the Point/ColorPoint
problem in Tuple. Rather than definingequal methods
within thePoint andColorPoint classes, we create two
new tuple classesfor the methods. In the first tuple class, a
tuple of twoPoint instances is the receiver. The namesp1
andp2 can be used within all methods of the tuple class to
refer to the tuple components. However, tuple classes are
client code and as such have no privileged access to the fields
of such components. The second tuple class is similar,
defining equality for a tuple of twoColorPoint instances.
(We assume that there is a tuple class for the tuple (Color ,
Color) with an equal method.) There can be more than
one tuple class for a given tuple of classes.†

Since no changes are made to thePoint or ColorPoint
classes when addingequal methods to tuple classes, the
subtype relationship betweenColorPoint andPoint is
unchanged. That is, by adding theequal method to a tuple
class instead of to the original classes of Figure 1,
ColorPoint remains a safe subtype ofPoint .

The syntax for sending a message to a tuple is analogous to
that for sending a message to an instance. For example,
(p1,p2).equal() sends the message “equal() ” to
the tuple (p1,p2) , which will invoke one of the two

* As in ML [Milner et al. 90], we do not allow tuples of length one. This
prevents ambiguity in the syntax and semantics. For example, an
expression such as(x).g(y) is interpreted as a message sent to an
instance, not to a tuple. Tuples have either zero, or two or more elements.

† We allow the built-in typesint andboolean to appear as components of a
tuple class as well. Conceptually, one can think of corresponding built-in
classesint andboolean, each of which has no non-trivial subclasses or
superclasses.

tuple class (p1:Point, p2:Point) {
method equal(): bool

{ p1.x() = p2.x()
and p1.y() = p2.y() }

}
tuple class (cp1:ColorPoint,

cp2:ColorPoint) {
method equal(): bool

{ (cp1.x() = cp2.x()
and cp1.y() = cp2.y())
and (cp1.color(),

cp2.color()).equal() }
}

Figure 2: Two tuple classes holding methods for testing
equality of points.

4

equal methods. Just as method lookup in SDCore relies on
the dynamic class of the receiver, method lookup in Tuple
relies on the dynamic classes of the tuple components.
Therefore, the appropriateequal method is selected from
either the (Point , Point) or the (ColorPoint ,
ColorPoint) tuple class based on the dynamic classes of
p1 and p2 . In particular, the method from the
(ColorPoint , ColorPoint) tuple class is only invoked
if both arguments areColorPoint instances at run-time.
The use of dynamic classes distinguishes multiple dispatch
from static overloading (as found, for example, in Ada 83
[Ada 83]).

The semantics of sending messages to tuples, multiple
dispatch, is similar to that in Cecil [Chambers 95]. Consider
the expression (E1,...,En).I(En+1,...,Em), where eachEi has
valuevi, and whereCd,i is the minimal dynamic class ofvi.
A method in a tuple class (C1,...,Cn) is applicable to this
expression if the method is namedI, if for each 1≤i≤n the
dynamic classCd,i is a subclass ofCi, and if the method takes
m−n additional arguments. (The classes of the additional
arguments are not involved in determining applicability, but
their number does matter.) Among the applicable methods
(from various tuple classes), a unique most-specific method
is chosen. A methodM1 in a tuple class (C1,1,...,C1,n) is more
specific thana methodM2 in a tuple class (C2,1,...,C2,n) if for
each 1≤i≤n, C1,i is a subclass ofC2,i. (The other arguments
in the methods are not involved in determining specificity.)
If no applicable methods exist, amessage-not-understood
error occurs. If there are applicable methods but no most-
specific one, amessage-ambiguouserror occurs. Algorithms
for efficiently implementing multiple dispatch exist (see,
e.g., [Kiczales & Rodriguez 93]).

This semantics immediately justifies part 1(a) of our claim
for the orthogonality of the multiple dispatch mechanism.
An SDCore expression cannot send a message to a tuple.
Furthermore, the semantics of message sends has two cases:
one for sending messages to instances and one for sending
messages to tuples. Hence the meaning of an expression in
SDCore is unaffected by the presence of multiple dispatch.

The semantics for tuple classes also justifies our second
claim. That is, since tuple classes have no special privileges
to access the fields of their component instances, the
encapsulation properties of classes are unaffected. However,
because of this property, Tuple, like other multimethod
languages, does not solve the “privileged access” aspect of
the binary methods problem [Bruceet al.95]. It may be that
a mechanism such as C++ friendship grants would solve
most of this in practice. We avoided giving methods in tuple
classes default privileged access to the fields of the instances
in a tuple because that would violate information hiding. In
particular, any client could access the fields of instances of a
class C simply by creating a tuple class withC as a
component.

3.2 Multiple Dispatch is not just for Binary Methods

Multimethods are useful in many common situations other
than binary methods [Chambers 92, Baumgarteret al.96]. In
particular, any time the piece of code to invoke depends on
more than one argument to the message, a multimethod
easily provides the desired semantics.

For example, suppose one wants to print points to output
devices. Consider a classOutput with three subclasses:
Terminal , an ordinary Printer , and a
ColorPrinter . We assume thatColorPrinter is a
subclass ofPrinter . Printing a point to the terminal
requires different code than printing a point to either kind of
printer. In addition, color printing requires different code
than black-and-white printing. Figure 3 shows how this
situation is programmed in Tuple.

In this example, there is no binary method problem. In
particular, the addition of print methods to thePoint and
ColorPoint classes will not upset the fact that
ColorPoint is a subtype ofPoint . The problem is that
we need to invoke the appropriate method based onboth
whether the first argument is aPoint or ColorPoint and
whether the second argument is aTerminal , Printer , or
ColorPrinter . In a singly-dispatched language, an
unnatural work-around such as Ingalls’s “double
dispatching” technique [Ingalls 86, Bruceet al. 95] is
required to encode the desired behavior.

3.3 Tuples vs. Classes

The ability to express multiple dispatching via dispatching
on tuples is not easy to simulate in a single-dispatching
language, as is well-known [Bruceet al. 95]. The Ingalls
double-dispatching technique mentioned above is a faithful
simulation but often requires exponentially (in the size of the
tuple) more methods than a multimethod-based solution.

A second attempt to simulate multiple dispatch in single-
dispatching languages is based on product classes [Section

tuple class (p:Point, out:Terminal) {
method print():()

{ -- prints Points to the terminal
... }

}

tuple class (p:Point, out:Printer) {
method print():()

{ -- prints Points to the printer
... }

}

tuple class (cp:ColorPoint,
out:ColorPrinter) {

method print():()
{ -- print ColorPoints to the printer in color

... }
}

Figure 3: Multimethods in tuple classes for printing. The
unit tuple type,(), is like C’s void type.

5

3.2, Bruceet al.95]. This simulation is not faithful, as it loses
dynamic dispatch. However, it is instructive to look at how
this simulation fails, since it reveals the essential capability
that Tuple adds to SDCore. Consider the following classes in
SDCore (adapted from the Bruceet al. paper).

class TwoPoints {
fields(p1:Point, p2:Point)
method equal()

{ p1.x() = p2.x()
and p1.y() = p2.y() }

}
class TwoColorPoints {

fields(cp1:ColorPoint, cp2:ColorPoint)
method equal()

{ (cp1.x() = cp2.x()
and cp1.y() = cp2.y())
and (new TwoColors(

cp1.color(),
cp2.color())).equal() }

}

With these classes, one could create instances that simulate
tuples via thenew expression of SDCore. For example, an
instance that simulates a tuple containing twoPoint
instances is created by the expressionnew
TwoPoints(my_p1,my_p2) . However, this loses
dynamic dispatching. The problem is that thenew
expression requires the name of the associated class to be
given statically. In particular, when the following message
send expression is executed

(new TwoPoints(my_p1,my_p2)).equal()

the method in the classTwoPoints will always be invoked,
even if both my_p1 and my_p2 denoteColorPoint
instances at run-time.

By contrast, a tuple expression does not statically determine
what tuple classes are applicable. This is because messages
sent to tuples use the dynamic classes of the values in the
tuple instead of the static classes of the expressions used to
construct the tuple. For example, even if the static classes of
my_p1 andmy_p2 are bothPoint , if my_p1 andmy_p2
denote ColorPoint instances, then the message send
expression(my_p1,my_p2).equal() will invoke the
method in the tuple class for (ColorPoint ,
ColorPoint) given in Figure 2. Hence sending messages
to tuples is not static overloading but dynamic overloading.
It is precisely multiple dispatch.

Of course, one can also simulate multiple dispatch by using
a variant of thetypecasestatement to determine the dynamic
types of the arguments and then dispatching appropriately.
(For example, in Java one can use thegetClass method
provided by the classObject .) However, writing such code
by hand will be more error-prone than automatic dispatch by
the language. Such dispatch code will also need to be
duplicated in each method that requires multiple dispatch,
causing code maintenance problems. Every time a new class
enters the system, the dispatch code will need to be
appropriately rewritten in each of these places, while in
Tuple no existing code need be modified. Further problems

can arise if the intent of the dispatch code (to do dispatch) is
not clear to maintenance programmers. By contrast, when
writing tuple classes it is clear that multiple dispatch is
desired. The semantics of Tuple ensures that each dispatch is
handled consistently, and the static type system ensures that
this dispatching is complete and unambiguous.

3.4 Type Checking for Tuple

We add to the type attributes of SDCoreproduct typesof the
form (T1,...,Tn); these are the types of tuples containing
elements of typesT1,...,Tn. A product type (T1′,...,Tn′) is a
subtype of (T1,...,Tn) when eachTi′ is a subtype ofTi.

Because of the multiple dispatching involved, type checking
messages sent to tuples is a bit more complex than checking
messages sent to instances (see Appendix B for the formal
typing rules). We divide the additions to SDCore’s type
system into client-side and implementation-siderules
[Chambers & Leavens 95]. The client-side rules check
messages sent to tuples, while the implementation-side rules
check tuple class declarations and their methods. The aim of
these rules is to ensure statically that at run-time no type
mismatches occur and that nomessage-not-understoodor
message-ambiguouserror will occur in the execution of
messages sent to tuples.

The client-side rule is the analog of the method application
rule for ordinary classes described above. In particular, given
an application(E1,...,En). I(En+1,...,Em) we ensure that
there is some tuple class for the product type (T1,...,Tn) such
that the static type of(E1,...,En) is a subtype of (T1,...,Tn).
Further, that tuple class must contain a method
implementation namedI with m-nadditional arguments such
that the static types ofEn+1,...,Em are subtypes of the
method’s additional argument types. Because the rule
explicitly checks for the existence of an appropriate method
implementation, this eliminates the possibility ofmessage-
not-understood errors.

However, the generalization to multiple dispatching can
easily cause method-lookup ambiguities. For example,
consider again the Point/ColorPoint example from Section 2.
Suppose that, rather than defining equality for the tuple
classes (Point,Point) and
(ColorPoint,ColorPoint) , we had defined equality
instead for the tuple classes(Point,ColorPoint) and
(ColorPoint,Point) . According to the client-side rule
given above, anequal message sent to twoColorPoint
expressions is legal, since there exists a tuple class of the
right type that contains an appropriate method
implementation. The problem is that there exist two such
tuple classes, and neither is more specific than the other.
Therefore, at run-time such a method invocation will cause a
method-ambiguous error to occur.

Our solution is based on prior work on type checking for
multimethods [Castagnaet al. 92, Castagna 95]. For each
pair of tuple classes (T1,...,Tn) and (T1′,...,Tn′) that have a

6

method namedI that acceptsk additional arguments, we
check two conditions.

The first check ensuresmonotonicity[Castagnaet al. 92,
Castagna 95, Goguen & Meseguer 87, Reynolds 80]. Let
(S1,...,Sk)→U and (S1′,...,Sk′)→U′ be the types of the
methods namedI in the tuple classes (T1,...,Tn) and
(T1′,...,Tn′), respectively. Suppose that (T1,...,Tn) is a subtype
of (T1′,...,Tn′). Then (S1,...,Sk)→U must be a subtype of
(S1′,...,Sk′)→U′. By the contravariant rule for function types,
this means that for eachj, Sj′ must be a subtype ofSj, andU
must be a subtype ofU′.

The second check ensures that the two methods are not
ambiguous. We define two typesS and T to be related if
either S subtypesT or vice versa. In this case,min(S,T)
denotes the one ofSandT that subtypes the other. It must be
the case that (T1,...,Tn) and (T1′,...,Tn′) are not the same tuple.
Further, if for eachj, Tj andTj′ are related, then there must be
a tuple class (min(T1,T1′),...,min(Tn,Tn′)) that has a method
namedI with k additional arguments. The existence of this
method is necessary and sufficient to disambiguate between
the two methods being checked.

The type rules for tuple classes and message sends to tuples
validate part (b) of our first claim. That is, Tuple’s extensions
to the SDCore type system are orthogonal. The typing rules
in Tuple are a superset of the typing rules in SDCore. Hence,
if an SDCore program or expression has typeT, it will also
have typeT in Tuple.

3.5 Discussion

In Tuple we chose a by-name typing discipline, whereby
there is a one-to-one correspondence between classes and
types. This unification of classes with types and subclasses
with subtypes allows for a very simple static type system. It
also reflects the common practice in popular object-oriented
languages. Indeed, this approach is a variant of that used by
C++ and Java. (Java’s interfaces allow a form of separation
of types and classes.) Although the type system is simplistic,
the addition of multimethods to the language greatly
increases its expressiveness, allowing safe covariant
overriding while preserving the equivalence between
subclassing and subtyping.

There are several other ways in which we could design the
type system. For example, a purely structural subtyping
paradigm could be used, with classes being assigned to
record types based on the types of their methods. Another
possibility would be to maintain by-name typing but keep
this typing and the associated subtyping relation completely
orthogonal to the class and inheritance mechanisms. This is
the approach taken in Cecil [Chambers 95]. We ruled out
these designs for the sake of clarity and simplicity.

Another design choice is whether to dispatch on classes or on
types. In Tuple, this choice does not arise because of the
strong correlation between classes and types. In particular,
the Tuple dispatching semantics can be viewed equivalently

as dispatching on classes or on types. However, in the two
alternate designs presented above, the dispatching semantics
could be designed either way. Although both options are
feasible, it is conceptually simpler to dispatch on classes, as
this nicely generalizes the single-dispatching semantics and
keeps the dynamic semantics of the language completely
independent of the static type system.

The names of the tuple formals in a tuple class are, in a sense,
a generalization ofself for a tuple. They also allow a very
simple form of the pattern matching found in functional
languages such as ML [Milneret al. 90]. Having the tuple
formals be bound to the elements of the tuple allows Tuple,
like ML, to include tuple values without needing to build into
the language primitive operations to extract the components
of a tuple. It is interesting to speculate about the advantages
that might be obtained by adding algebraic datatypes and
more extensive pattern-matching features to object-oriented
languages (see also [Bourdoncle & Merz 97, Ernstet al.
98]).

4 RELATED WORK

In this section we discuss two kinds of related work. The first
concerns generic-function languages; while these do not
solve the problem we address in this paper, using such a
language is a way to obtain multiple dispatch. The second,
more closely-related work, addresses the same problem that
we do: how to add support for multiple dispatch to languages
with single dispatch.

An inspirational idea for our work is the technique for
avoiding binary methods by using product classes described
by Bruceet al. [Section 3.2, Bruceet al. 95]. We discussed
this in detail in Section 3.3 above.

Another source of inspiration for this work was Castagna’s
paper on covariance and contravariance [Castagna 95]. This
makes clear the key idea that covariance is used for all
arguments that are involved in method lookup and
contravariance for all arguments that are not involved in
lookup. In Tuple these two sets of arguments are cleanly
separated, since in a tuple class the arguments in the tuple are
used in method lookup, and any additional arguments are not
used in method lookup. The covariance and contravariance
conditions are reflected in the type rules for Tuple by the
monotonicity condition.

4.1 Generic-Function Languages

Our approach provides a subset of the expressiveness of
CLOS, Dylan, and Cecil multimethods, which are based on
generic functions. Methods in tuple classes do not allow
generic functions to have methods that dynamically dispatch
on different subsets of their arguments. That is, in Tuple the
arguments that may be dynamically dispatched upon must be
decided on in advance, since the distinction is made by client
code when sending messages to tuples. In CLOS, Dylan, and
Cecil, this information is not visible to clients. On the other
hand, a Tuple programmer can hide this information by

7

always including all arguments as part of the tuple in a tuple
class. (This suggests that a useful syntactic sugar for Tuple
might be to usef(E1,...,En) as sugar for (E1,...,En).f() whenn
is at least 2.)

Second, generic function languages are more uniform, since
they only have one dispatching mechanism and can treat
single dispatching as a degenerate case of multiple
dispatching rather than differentiating between them.

Although we believe that these advantages make CLOS-style
multimethods a better design for a new language, the
approach illustrated by Tuple has some key advantages for
adapting existing singly-dispatched languages to
multimethods. First, our design can be used by languages
like C++ and Java simply by adding tuple expressions, tuple
types, tuple classes, and the ability to send messages to
tuples. As we have shown, existing code need not be
modified and will execute and type check as before. This is
in contrast to the generic function model, which causes a
major shift in the way programs are structured.

Second, our model maintains class-based encapsulation,
keeping the semantics of objects as self-interpreting records.
The generic function model gives this up and must base
encapsulation on scoping constructs, such as packages
[Chapter 11, Steele 90] or local declarations [Chambers &
Leavens 97].

4.2 Encapsulated and Parasitic Multimethods

Encapsulated multimethods [Section 4.2.2, Bruceet al. 95]
[Section 3.1.11, Castagna 97] are similar in spirit to our work
in their attempt to integrate multimethods into existing
singly-dispatched languages. The following example uses
this technique to program equality tests for points in an
extension to SDCore.

class Point {
...
method equal(p:Point): bool

{ xval = p.x() and yval = p.y() }
}
class ColorPoint inherits Point {

...
method equal(p:Point): bool

{ xval = p.x() and yval = p.y() }
method equal(p:ColorPoint): bool

{ (xval = p.x() and yval = p.y())
and colorval.equal(p.color()) }

}

With encapsulated multi-methods, each message send results
in two dispatches (in general). The first is the usual dispatch
on the class of the receiving instance (messages cannot be
sent to tuples). This dispatch is followed by a second,
multimethod dispatch, to select a multimethod from within
the class found by the first dispatch. In the example above,
the messagep1.equal(p2) first finds the dynamic class
of the object denoted byp1 . If p1 denotes aColorPoint ,
then a second multimethod dispatch is used to select between
the two multimethods for equal in the class
ColorPoint . In essence, the first dispatch selects a

generic function formed from the multimethods in the class
of the receiver, and the second dispatch is the usual generic
function dispatch on the remaining arguments in the
message.

One seeming advantage of encapsulated multimethods is that
they have access to the private data of the receiver object,
whereas in Tuple, a method in a tuple class has no privileged
access to any of the elements in the tuple. In languages like
C++ and Java, where private data of the instances of a class
are accessible by any method in the class, this privileged
access will be useful for binary methods. However, this
advantage is illusory for multimethods in general, as no
special access is granted to private data of classes other than
that of the receiver. This means that access must be provided
to all clients, in the form of accessor methods, or that some
other mechanism, such as C++ friendship grants, must
provide such access to the other arguments’ private data.

Two problems with encapsulated multimethods arise
because the multimethod dispatch is preceded by a standard
dispatch to a class. The first problem is the common need to
duplicate methods or to use stub methods that simply
forward the message to a more appropriate method. For
example, sinceColorPoint overrides theequal generic
function in Point , it must duplicate theequal method
declared within thePoint class. As observed in the Bruce
et al.paper, this is akin to the Ingalls technique for multiple
polymorphism [Ingalls 86]. Parasitic multimethods
[Boyland & Castagna 97], a variant of encapsulated
multimethods, remove this disadvantage by allowing
parasitic methods to be inherited.

The second problem caused by the two dispatches is that
existing classes sometimes need to be modified when new
subclasses are added to the system. For example, in order to
program special behavior for the equality method accepting
one Point and oneColorPoint (in that order), it is
necessary to modify thePoint class, adding the new
encapsulated multimethod. This kind of change to existing
code is not needed in Tuple, as the programmer simply
creates a new tuple class. Indeed, Tuple even allows more
than one tuple class with the same tuple of component
classes, allowing new multimethods that dispatch on the
same tuple as existing multimethods to enter the system
without requiring the modification of existing code.

Encapsulated and parasitic multimethods have an advantage
in terms of modularity over both generic-function languages
and Tuple. The modularity problem of generic-function
languages, noted by Cook [Cook 90], is that independently-
developed program modules, each of which is free of the
possibility of message-ambiguouserrors, may cause
message-ambiguouserrors at run-time. For example,
consider defining the methodequal in three modules:
module A defines it in a tuple class (Point , Point),
module B in a tuple class (Point , ColorPoint), and
module C in a tuple class (ColorPoint , Point). By

8

themselves these do not cause any possibility of message-
ambiguous errors, and a program that uses eitherA andB or
A andC will type check. However, a program that includes
all three modules may have message-ambiguous errors,
since a message sent to a tuple of twoColorPoint
instances will not be able to find a unique most-specific
method. Therefore, a link-time check is necessary to ensure
type safety. Research is underway to resolve this problem for
generic function languages [Chambers & Leavens 95],
which would also resolve it for Tuple. However, to date no
completely satisfactory solution has emerged.

The design choices of encapsulated and parasitic
multimethods were largely motivated by the goal of avoiding
this loss of modularity. Encapsulated multimethods do not
suffer from this problem because they essentially define
generic functions within classes, and each class must
override such a generic function as a whole. (However, this
causes the duplication described above.) Parasitic
multimethods do not have this problem because they use
textual ordering within a class to resolve ambiguities in the
inheritance ordering. However, this ordering is hard to
understand and reason about. In particular, if there is no
single, most-specific parasite for a function call, control of
the call gets passed among the applicable parasites in a
manner dependent on both the specificity and the textual
ordering of the parasites, and determining at which parasite
this ping-ponging of control terminates is difficult. Boyland
and Castagna also say that, compared with their textual
ordering, ordering methods by specificity as we do in Tuple
“is very intuitive and clear” [Page 73, Boyland & Castagna
97]. Finally, they note that textual ordering causes a small
run-time penalty in dispatching, since the dispatch takes
linear instead of logarithmic time, on the average.

5 CONCLUSIONS

The key contribution of this work is that it describes a
simple, orthogonal way to add multiple dispatch to existing
single-dispatch languages. We showed that the introduction
of tuples, tuple types, tuple classes for the declaration of
multimethods, and the ability to send messages to tuples is
orthogonal to the base language. This is true in both
execution and typing. All that tuple classes do is allow the
programmer to group several multimethods together and
send a tuple a message using multimethod dispatching rules.
Since existing code in single-dispatching languages cannot
send messages to tuples, its execution is unaffected by this
new capability. Hence our mechanism provides an extra
layer, superimposed on top of a singly-dispatched core.
Design decisions in this core do not affect the role or
functionality of tuples and tuple classes.

Tuple also compares well against related attempts to add
multiple dispatch to singly-dispatched languages. We have
shown that Tuple’s uniform dispatching semantics avoids
several problems with these approaches, notably the need to
“plan ahead” for multimethods or be forced to modify

existing code as new classes enter the system. On the other
hand, this uniformity also causes Tuple to suffer from the
modularity problem of generic-function languages, which
currently precludes the important software engineering
benefits of separate type checking.

The Tuple language itself is simply a vehicle for illustrating
the idea of multiple dispatching via dispatching on tuples.
Although it would complicate the theoretical analysis of the
mechanism, C++ or Java could be used as the singly-
dispatched core language.

ACKNOWLEDGMENTS

Thanks to John Boyland for discussion and clarification
about parasitic multimethods. Thanks to the anonymous
referees for helpful comments. Thanks to Olga Antropova,
John Boyland, Giuseppe Castagna, Sevtap Karakoy, Clyde
Ruby, and R. C. Sekar for comments on an earlier draft.
Thanks to Craig Chambers for many discussions about
multimethods. Thanks to Olga Antropova for the syntactic
sugar idea mentioned in Section 4.1. Thanks to Vassily
Litvinov for pointing us to [Baumgartneret al. 96] and to
Craig Kaplan for an idea for an example. Leavens’s work
was supported in part by NSF Grants CCR 9593168 and
CCR-9803843.

REFERENCES

[Ada 83] American National Standards Institute.Reference
Manual for the Ada Programming Language. ANSI/MIL-
STD 1815A, February, 1983.

[Amadio & Cardelli 93] Roberto M. Amadio and L. Cardelli.
Subtyping recursive types.ACM Transactions on
Programming Languages and Systems,15(4):575-631,
1993.

[Arnold & Gosling 98] Ken Arnold and James Gosling.The
Java Programming Language. Second Edition, Addison-
Wesley, Reading, Mass., 1998.

[Baumgartneret al. 96] Gerald Baumgartner, Konstantin
Läufer, Vincent F. Russo. On the Interaction of Object-
Oriented Design patterns and Programming Languages.
Technical Report CSD-TR-96-020, Department of
Computer Science, Purdue University, February 1996.

[Bobrowet al.86] Daniel G. Bobrow, Kenneth Kahn, George
Kiczales, Larry Masinter, Mark Stefik, and Frank Zdybel.
CommonLoops: Merging Lisp and Object-Oriented
Programming. In Norman Meyrowitz (editor),OOPSLA
’86 Conference Proceedings, Portland, Oregon,
September 1986, volume 21, number 11 ofACM
SIGPLAN Notices, pp. 17-29. ACM, New York,
November, 1986.

[Bourdoncle & Merz 97] François Bourdoncle and Stephan
Merz. Type Checking Higher-Order Polymorphic Multi-
Methods.Conference Record of POPL ’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Paris, France, pp. 302-315.
ACM, New York, January 1997.

9

[Boyland & Castagna 97] John Boyland and Giuseppe
Castagna. Parasitic Methods: An Implementation of
Multi-Methods for Java. Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’97).
Volume 32, number 10 ofACM SIGPLAN Notices, pp. 66-
76. ACM, New York, November 1997.

[Bruceet al.93] Kim B. Bruce and Jon Crabtree and Thomas
P. Murtagh and Robert van Gent and Allyn Dimock and
Robert Muller. Safe and decidable type checking in an
object-oriented language. In Andreas Paepcke (editor),
OOPSLA ’93 Conference Proceedings.Volume 28,
number 10 ofACM SIGPLAN Notices, pp. 29-46. ACM,
New York, October, 1993.

[Bruce et al. 95] Kim Bruce, Luca Cardelli, Giuseppe
Castagna, The Hopkins Object Group, Gary T. Leavens,
and Benjamin Pierce. On Binary Methods.Theory and
Practice of Object Systems, 1(3):221-242, 1995.

[Cardelli 88] Luca Cardelli. A Semantics of Multiple
Inheritance.Information and Computation, 76(2/3):138-
164, February/March, 1988. An earlier version appeared
in the 1984 Semantics of Data Types Symposium, LNCS
173, pp. 51-66, Springer-Verlag, 1984.

[Castagnaet al.92] Giuseppe Castagna, Giorgio Ghelli, and
Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, San
Francisco, June, 1992, pp. 182-192, volume 5, number 1
of LISP Pointers. ACM, New York, January-March, 1992.

[Castagna 95] Giuseppe Castagna. Covariance and
contravariance: conflict without a cause.ACM
Transactions on Programming Languages and Systems,
17(3):431-447, 1995. See also [Chapter 5, Castagna 97].

[Castagna 97] Giuseppe Castagna. Object-Oriented
Programming A Unified Foundation. Birkhäuser, Boston,
1997.

[Chambers 92] Craig Chambers. Object-Oriented Multi-
Methods in Cecil. In O. Lehrmann-Madsen, editor,
ECOOP ’92 Conference Proceedings, Utrecht, the
Netherlands, June/July, 1992, volume 615 of Lecture
Notes in Computer Science, pp. 33-56. Springer-Verlag,
Berlin, 1992.

[Chambers 95] Craig Chambers. The Cecil Language:
Specification and Rationale: Version 2.0. Department of
Computer Science and Engineering, University of
Washington, December, 1995. http://
www.cs.washington.edu/research/projects/cecil/www/
Papers/cecil-spec.html

[Chambers & Leavens 95] Craig Chambers and Gary T.
Leavens. Typechecking and Modules for Multi-Methods.
ACM Transactions on Programming Languages and
Systems, 17(6):805-843. November, 1995.

[Chambers & Leavens 97] Craig Chambers and Gary T.
Leavens. BeCecil, A Core Object-Oriented Language with
Block Structure and Multimethods: Semantics and
Typing. Department of Computer Science, Iowa State
University, TR #96-17a, April 1997. ftp://
ftp.cs.iastate.edu/pub/techreports/TR96-17/TR.ps.Z; the
appendix sections only are in ftp://ftp.cs.iastate.edu/pub/
techreports/TR96-17/appendix.ps.Z.

[Cook et al. 90] William Cook, Walter L. Hill, and Peter S.
Canning. Inheritance is not Subtyping. In Conference
Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco,
California, pp 125-135. ACM, New York, 1990.

[Cook 90] William Cook. Object-Oriented Programming
versus Abstract Data Types. In J.W. de Bakker, W.P. de
Roever, and G. Rozenberg, editors,Foundations of Object-
Oriented Languages, REX School/Workshop Proceedings,
Noordwijkerhout, the Netherlands, May/June, 1990,
volume 489 ofLecture Notes in Computer Science, pp.
151-178. Springer-Verlag, New York, 1991.

[Ernstet al. 98] Michael D. Ernst, Craig Kaplan, and Craig
Chambers. Predicate Dispatching: A Unified Theory of
Dispatch. To appear inECOOP '98, the 12th European
Conference on Object-Oriented Programming, Brussels,
Belgium, July, 1998. Also http://www.cs.washington.edu/
research/projects/cecil/www/www/Papers/gud.html.

[Feinberget al. 97] Neal Feinberg, Sonya E. Keene, Robert
O. Mathews, and P. Tucker Withington.The Dylan
Programming Book. Addison-Wesley Longman, Reading,
Mass., 1997.

[Gammaet al. 95] Erich Gamma and Richard Helm and
Ralph Johnson and John Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, Mass., 1995.

[Goguen & Meseguer 87] Joseph A. Goguen and Jose
Meseguer. Order-Sorted Algebra Solves the Constructor-
Selector, Multiple Representation and Coercion Problems.
In Symposium on Logic in Computer Science, Ithaca, NY,
pp. 18-29. IEEE Press, NY, June, 1987.

[Goldberg & Robson 83] Adele Goldberg and David
Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, Mass., 1983.

[Goslinget al. 96] James Gosling, Bill Joy, Guy Steele, Guy
L. Steele.The Java Language Specification. Addison-
Wesley, Reading, Mass., 1996.

[Ingalls 86] D. H. H. Ingalls. A Simple Technique for
Handling Multiple Polymorphism. In Norman Meyrowitz,
editor, OOPSLA ’86 Conference Proceedings, Portland,
Oregon, November, 1986, volume 21, number 11 ofACM
SIGPLAN Notices, pp. 347-349. ACM, New York,
October, 1986.

[Kiczales & Rodriguez 93] Gregor Kiczales and Luis H.
Rodriguez Jr. Efficient Method Dispatch in PCL. In
[Paepcke 93], Chapter 14.

[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice
Hall, New York, 1992.

10

[Meyer 97] Bertrand Meyer.Object-Oriented Software
Construction. Second Edition, Prentice Hall, New York,
1997.

[Milner et al. 90] Robin Milner, Mads Tofte, and Robert
Harper. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

[Moon 86] David A. Moon. Object-Oriented Programming
with Flavors. In Norman Meyrowitz (editor),OOPSLA ’86
Conference Proceedings, Portland, Oregon, September
1986, volume 21, number 11 ofACM SIGPLAN Notices,
pp. 1-8. ACM, New York, November, 1986.

[Paepcke 93] Andreas Paepcke.Object-Oriented
Programming: The CLOS Perspective. MIT Press, 1993.

[Reynolds 80] John C. Reynolds. Using Category Theory to
Design Implicit Conversions and Generic Operators. In
Neil D. Jones (editor),Semantics-Directed Compiler
Generation, Proceedings of a Workshop, Aarhus,
Denmark, pp. 211-258. Volume 94 of Lecture Notes in
Computer Science, Springer-Verlag, NY, 1980.

[Schmidt 94] David A. Schmidt.The Structure of Typed
Programming Languages.MIT Press, Cambridge, Mass.,
1994.

[Shalit 97] Andrew Shalit.The Dylan Reference Manual:
The Definitive Guide to the New Object-Oriented Dynamic
Language.Addison-Wesley, Reading, Mass., 1997.

[Steele 90] Guy L. Steele Jr.Common Lisp: The Language
(second edition). Digital Press, Bedford, MA, 1990.

[Stroustrup 97] Bjarne Stroustrup.The C++ Programming
Language: Third Edition. Addison-Wesley, Reading,
Mass., 1997.

APPENDIX A FORMAL SYNTAX

The following is the concrete syntax for Tuple. Theitalic
font notations to the right are the names of the syntactic
domains.
PROG ::= Program

RDS E
RDS ::= Recursive-Declaration-Seq

D | D RDS
D ::= Declaration

 tuple class TF { MS }
| class I1 { fields F MS}
| class I1 inherits I2 { fields F MS}

F ::= Formals
 () | (FS)

FS ::= Formal-List
I:T | I:T, FS

TF ::= Tuple-Formals
 () | (TFS)

TFS ::= Tuple-Formal-List
I1:T1, I2:T2

| I:T, TFS
T ::= Type

int | bool
| P| T1→T2 | CN

P ::= Product-Type
() | (TTS)

TTS ::= Tuple-Type-List
T1, T2 | T, TTS

MS ::= Method-List
M | M MS

M ::= Method
method I F : T { E }

E ::= Expression
new CN(ES) | E.MN E | TUP

| self | I
| < built-in operations on ints and bools>

ES ::= Expression-List
E1 | E, ES

TUP ::= Tuple
 () | (TES)

TES ::= Tuple-Expression-List
E1, E2 | E, ES

CN ::= Class-Name
I

MN ::= Method-Name
I

I ::= Identifier
“strings of alphanumerics, starting with an alphabetic”

APPENDIX B FORMAL TYPING RULES

B.1 Type attributes

For type checking, we extend the type attributes found in the
concrete syntax to a larger domain, which we also callType,
as follows. (The symbolsP, CN, and FS mean the same
syntactic domains as above, but we interpret theTs that occur
in product types and formals as meaning the domainType
below.)

T ::= Type
int | bool | P | T1→T2 | CN

| T exp | k dec | c cls | t tup
p ::= {} | {FS} TypeEnv
k ::= (p, cs, ts) TypeContext
cs ::= p ClassEnv
c ::= (F, p, CN) ClassInfo
ts ::= [] | [TIS] Tuples
TIS ::= TupleInfoRelationships

(P, T) | (P, T) , TIS
t ::= (F, p) TupleClassInfo

Following Schmidt [Schmidt 94], type attributes of the form
T exp stand for expressions that return typeT. Type attributes
of the formk dec stand for declarations that have the effect
of making a contextk. Type attributes of the formc cls record
information,c, about a class; these are used as the types of
classes (as opposed to their instances). Type attributes of the
form t tup record information,t, about a tuple class.

The domainsTypeEnvandClassEnvare regarded as finite
functions from identifiers to types; hence we make sure that
there is at most one association for a given identifier in its
domain. Similarly we regard the domainTuplesas a finite
relation between product types and type attributes of the
form t tup.

B.2 Preliminary definitions and functions

We define the following helper functions on finite functions,
relations, and lists of formals:

dom({ I1:T1,...,In:Tn}) = { I1,...,In}
range({ I1:T1,...,In:Tn}) = { T1,...,Tn}

The function+ denotes a shadowing union of two relations
(or functions), favoring the second one:

r1 + r2 = {(x,y) | (x,y) ∈ r2 or [(x,y) ∈ r1 and
x ∉dom(r2)]}

11

The function+ is also extended to a shadowing union of twoTypeContexts, favoring the second:

(p1,cs1,ts1) + (p2,cs2,ts2) = (p1 + p2, cs1 + cs2, ts1 ∪ ts2)

We define the following helper functions on the domainClassInfo:

field-types((I1:T1,...,In:Tn), p, I′) = (T1,...,Tn)
meth-env(F, p, I′) = p

We define the helper functionmeth-env also on the domainTupleClassInfo:

meth-env(F, p) = p

We define a helper function on the syntax of methods:

name(method I F : T { E }) = I

We define a helper function on types:

length(T) = if ∃ n ∃ T1 ... ∃ Tn. (n ≥ 0 andT = (T1,...,Tn)) thenn else 1

We define a helper function on pairs of types:

min(S,T,cs) = if cs|− S≤ T thenSelseT

We define a helper function to check the disjointness of a list of identifiers:

disjoint(I1,...,In) = ∀ i.∀ j. (1 ≤ i ≤ n and 1 ≤ j ≤ n
andI i = I j) ⇒ (i = j)

B.3 Type Checking Rules

BesidesT, we also useS, U, andV for types. Recall thatP is used for product types.

B.3.1 Type Checking Programs

Figure B-1: Rule of the form|− Program: Type. The class nameTopis used to avoid special cases that would
result from some classes not having a superclass.

B.3.2 Type Checking Recursive Declaration Sequences

A recursive declaration sequence allows mutual recursion among its declarations.

Figure B-2: Rule of the formTypeContext|− Recursive-Declaration-Sequence: TypeContextdec.

[program]

k0+k |− RDS: k dec, k0+k |− impl-side-type-check,
k0+k |− E : T exp

————————————————————————————————————
|− RDS E: T exp

wherek0 =
({},{Top:((),{}, Top) cls}, {})

[rds]

k + (k1 + k2) |− D : k1 dec, k + (k1 + k2) |− RDS : k2 dec
———————————————————————————————————————

k |− D; RDS: (k1 + k2) dec

where (p1,cs1,ts1) = k1,
(p2,cs2,ts2) = k2,
dom(p1) ∩ dom(p2) = {},
dom(cs1) ∩ dom(cs2) = {}

12

B.3.3 Type Checking Declarations

Figure B-3: Rules of the formTypeContext|− Declaration: TypeContextdec.

B.3.4 Type Checking Methods

Figure B-4: Rule of the formTypeContext|− Method: Type.

[tuple-dec]

k + kargs |− M1 : S1→T1, ...,k + kargs |− Mn : Sn→Tn
———————————————————————————————————
k |− tuple class (I1:U1,...,Im:Um) { M1 ... Mn } :

({},{},{((U1,...,Um),((I1:U1,...,Im:Um),p)tup))}) dec

wherem ≥ 0,n ≥ 0,
disjoint(I1,...,Im),
kargs= ({ I1:U1,...,Im:Um},{},{}),
p = {MN1:S1→T1,...,MNn: Sn→Tn}
∀ i. 1 ≤ i ≤ n ⇒ MNi = name(Mi)

[class-dec]

k |− class I inherits Top {
fields (I1:U1,...,Im:Um) M1 ... Mn } : k′dec

———————————————————————————————————
k |− class I { fields (I1:U1,...,Im:Um) M1 ... Mn } : k′dec

wherem ≥ 0,n ≥ 0

[class-inh-

dec]

(p,cs,ts) + ({(self,I)},{},{}) + kflds |− M1 : S1→T1,
...,
(p,cs,ts) + ({(self,I)},{},{}) + kflds |− Mn : Sn→Tn,

cs |− Sπ(1)→Tπ(1) ≤ Sπ(1)′→Tπ(1)′,
...,
cs |− Sπ(i)→Tπ(i) ≤ Sπ(i)′→Tπ(i)′,
—————————————————————————————————
(p,cs,ts) |− class I inherits I′{

fields (I1:U1,...,Im:Um) M1 ... Mn }

: ({}, {I: ((Ic,1:V1,...,Ic,l:Vl,I1:U1,...,Im:Um),p,I′)cls},
{}) dec

wherem ≥ 0,n ≥ 0, l ≥ 0, i ≥ 0,
(I′:c cls) ∈ cs,
p′ = meth-env(c),
(Ic,1:V1,...,Ic,l:Vl) = fields(c),
disjoint(Ic,1,...,Ic,l,I1,...,Im),
kflds= ({ Ic,1:V1,...,Ic,l:Vl},{},{}) +

({ I1:U1,...,Im:Um},{},{}),
∀ j. 1 ≤ j ≤ n ⇒ MNj = name(Mj),
p = p′ + { MN1:S1→T1,...,MNn: Sn→Tn},
π:{1,..,n} →{1,..,n}, π is a permutation,
∀j. 1 ≤ j≤i ⇒ (MNπ(j):Sπ(j)′→Tπ(j)′) ∈ p′,
∀ j. i < j≤ n ⇒ MNπ(j) ∉ dom(p′)

[method]
k + ({(I1,T1),...,(In,Tn)},{},{}) |− E : T exp

—————————————————————————————————
k |− method I (I1:T1,...,In:Tn) : T { E } : (T1,...,Tn)→T

wheren ≥ 0,
disjoint(I1,...,In)

13

B.3.5 Type Checking Expressions

Figure B-5: Rules of the formTypeContext|− Expression: Type. We omit rules for the built-in operators on
integers and booleans.

B.3.6 Subtyping Rules

Figure B-6: Subtyping rules of the formClasses|− Type ≤ Type.

[new]
(p,cs,ts) |− E1 : T1 exp, ..., (p,cs,ts) |− En : Tn exp
————————————————————————————————

(p,cs,ts) |− new CN (E1,...,En) : CN exp

wheren ≥ 0,
(CN,c) ∈ cs,
field-types(c) = (T1,...,Tn)

[app-rec]
(p,cs,ts) |− E0 : I0 exp, (p,cs,ts) |− E : Sexp
—————————————————————————————

(p,cs,ts) |− E0.MN E : Texp

where (I0:c cls) ∈ cs,
(MN:S→T) ∈ meth-env(cs)

[app-

prod]

(p,cs,ts) |− E0 : (T1,...,Tn) exp, (p,cs,ts) |− E : Sexp
——————————————————————————————————

(p,cs,ts) |− E0.MN E : Texp

wheren ≥ 0,n ≠ 1,
((T1,...,Tn), t tup) ∈ ts,
(MN:S→T) ∈ meth-env(t)

[tuple]
k |− E1 : T1 exp, ..., k|− En : Tn exp
—————————————————————————

k |− (E1,...,En) : (T1,...,Tn) exp
wheren ≥ 0,n ≠ 1

[self] (p,cs,ts) |− self : T exp where(self:T) ∈ p

[id] (p,cs,ts) |− I : T exp where(I:T) ∈ p

[sub-

sumption]

(p,cs,ts) |− E : Sexp, cs |− S≤ T
——————————————————————

(p,cs,ts) |− E : T exp

[sub-eq] cs |− T ≤ T

[sub-

trans]

cs |− S≤ T, cs |− T ≤ U
—————————————————————

cs |− S≤ U

[sub-CN] cs |− CN≤CN2 where (CN:(F,p,CN2) cls) ∈ cs

[sub-

prod]

cs |− S1 ≤ T1, ..., cs |− Sn ≤ Tn
—————————————————————————

cs |− (S1,...,Sn) ≤ (T1,...,Tn)
wheren ≥ 0,n ≠ 1

[sub-fun]
cs |− T1 ≤ S1, cs |− S2 ≤ T2

———————————————————————
cs |− S1→S2 ≤ T1→T2

14

B.3.7 Implementation-side Type Checking Rules

Figure B-7: Rules for checking the implementation-side type safety of a program. We use list notation [...]
and list comprehensions (as in Haskell) in some of these rules.

[impl-all]
(p,cs,ts) |− impl-check MN1, ...,(p,cs,ts) |− impl-check MNn
———————————————————————————————————————

(p,cs,ts) |− impl-side-type-check

where n ≥ 0,m ≥ 0,
{ t1,...,tm} = range(ts),
{ MN1,...,MNn} =

∪i=1..m dom(meth-env(ti))

[impl-

method]

cs |− (P1,T1) is-monotonic-in[(P1,T1),...,(Pn,Tn)],
...,

cs |− (Pn,Tn) is-monotonic-in[(P1,T1),...,(Pn,Tn)],
(p,cs,ts) |− (P1,T1) unambiguous-with-each[(P2,T2),...,(Pn,Tn)]

for MN,
...,

(p,cs,ts) |− (Pn-1,Tn-1) unambiguous-with-each[(Pn,Tn)] for MN
——

(p,cs,ts) |− impl-check MN

wheren ≥ 0,
[(P1,T1),...,(Pn,Tn)] =

[(P,T) | (P,t tup) ∈ ts
and (MN:T) ∈ meth-env(t)]

[is-mono]
cs |− T1→T2 ≤ T1,1→T1,2, ...,cs |− T1→T2 ≤ Tn,1→Tn,2

———————————————————————————————————————
cs |− (P,T1→T2) is-monotonic-in s

wheren ≥ 0,
{ T1,1→T1,2,...,Tn,1→Tn,2} =

{ Ti,1→Ti,2 | cs |− P ≤ Pi
and (Pi,Ti,1→Ti,2) ∈ s
andlength(Ti,1) = length(T1)}

[unam-

biguous-

each]

(p,cs,ts) |− (P,T) unambiguous-with(P1,T1) for MN,
...,

(p,cs,ts) |− (P,T) unambiguous-with(Pn,Tn) for MN
————————————————————————————————————

(p,cs,ts) |− (P,T) unambiguous-with-each[(P1,T1),...,(Pn,Tn)]
for MN

wheren ≥ 0

[unam-

biguous-]

(p,cs,ts) |− (P,S→T) unambiguous-with(P′,S′→T′) for MN

wheren ≥ 0,m ≥ 0,
P ≠ P′,
P = (T1,...,Tn), P′ = (T1′,...,Tm′),
(n = m andlength(S) = length(S′)
and (∀ j. 1 ≤ j ≤ n ⇒

cs |− (Tj,Tj′) are-related))
⇒ (((min(P1,P1′,cs),...,min(Pn,Pn′,cs)),

t tup) ∈ ts
and (∃ S′′.∃T′′.

(length(S′′) = length(S) and
(MN:S′′→T′′) ∈ meth-env(t)))

[are-

related-1]

cs |− S≤ T
—————————————————

cs |− (S,T) are-related

[are-

related-2]

cs |− T ≤ S
—————————————————

cs |− (S,T) are-related

