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I. I NTROOUCTION 

TESTING by random pattems has many advantages 

compared to other test strategies, e. g. , the self·test 

capability. a reduclion of computing time, and high cov

erage of parametric faults. During the last few years many 

papers have been published on problems concerning ran

dom tests. such as computing fault det~tion probabili· 

ties and test lengths. Some of these results will be sum

marized as prerequisites of the later investigations. 

In Section II , a theorem is established which provides 

a strong bound on the probability that all faults of a given 

set are detected by a given amount of random pattems. 

Another theorem shows that a real random test and a pseu· 

dorandom test by shift register sequences require the same 
length if Ihe number of primary inputs is sufficiently large. 

It is shown that in general the fault coverage increases. 

and the overall test length decreases if several random 

pattern sets with different I·probabilities are applied . The 
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optimized input probabilities can be computed numeri
cally if a procedure which satisfies certain restrictions is 

available for estimating fault detection probabilities. 

These restrictions are discussed at the end of Section II . 
In Section Ill , the complexity of computing an opti

mil,ed random test schedule is determined. Since this 

problem is at least NP-hard, we avoid the e uct calcula
tion by using an efficient heuristic (Sect ion IV). Some im

plementation details are givcn in Section V and results are 

discussed in Section VI. Finally we present a system for 

generating weighted random test patterns baving multiple 
distributions, which is used for the extemaltest of circuits 

with integrated scan path. 

II . BASIC F ACfS 

2. 1. Fault Detection Probabilities 
One of the main tasks in random pattern tes ting is the 

computation of fault dctection probabilities. Many tools 

and algorithms have been proposed for estimating thcse 

probabilities (e.g .• (9] , (2], (22], 110] , [I]). However, 
most of them are restricted 10 the usual stuck-at fau!t 

model , but an extension 10 more complex faults is easy 
unless a sequential behavior is involved (27]. Unfortu

nately, algorithms for the e xact computation of fault de

tection probabilities have a very high worst-case com

plexity. 

Observation 1: Computing fault detection probabilities 
is at least NP·hard . 

This observation is a simple consequence of the NP-
completeness of the fault detection problem (13], and 

hence, all known methods for est imating fault detection 

probabilities analytically in polynomial time have un· 

bounded relative estimation erron. The conjecture that a 
stochastic Monte Carlo algorithm would yield a higher 

precision more efficiently is not true. 

Observation 2: Estimating fault detection probabilities 
is '·complete, i. e., one cannot expect a s tochastic algo· 

rithm with a sample size boundcd by a polynomial in the 
reciprocal of the relative estimation error. 

The proof of Observation 2 is straightforward using melh· 

ods. for instance, presented in [121 . That means we can

not expect tools for estimating fault detection probabili

ties with arbitrary high precisio n in polynomial computing 

time. As we have to put up with approximated fault de· 
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lection probabilities. algorithms to compute lengths of 
random tests based on these values should not be over 

sophisticated. 

2.2. Fault Detection Probabilities and Test ungths 

There are some papers on computing required test 
lengths for pseudorandom patterns applied by BIST reg
isters or a low-cost test equipment (20). Taking the pseu

dorandomness into account, shorter test lengths are ob
tained but more complex algorithms are required. This is 
not necessary as random models are sufficiently precise. 

Theorem 1: Let p < 1/4 be the detection probability 

of a fault/in a combinational circuit with i > 4 primary 
inputs. Let f be the escape probability that / is neither 

detected by N, random patterns nor by Np pseudorandom 
patterns. For 2 1/1 Ol!: Np we have N, s N, + 2( I - In 

(t». i.e., N, .. Np • 

Proof' (See Appendix A). 
Even if we assume the very low escape probability of { 

; = 0.001 , theorem I provides N, s N, + 16. Hence, the 

theorem leads to observation 3. 

Observation 3: For nOI e"haustively testable circuits, 
the difference between the length of a random test and the 

length of a pseudorandom test is negligible. 

If an exhaustive test of the circuit is possible, then it is 
preferred anyway . As a consequence, we can use the ran

dom model assumption without any loss of generality for 
those circuits where an exhaustive test is impossible and 
where N, s 2 ;/z. For instance, if we have to apply less 

than 8000 patterns to a circuit with more than 25 primary 
inputs, then random and pseudorandom pattern sets will 

have the same size . 
Now let F be a set of faults of the combinational circuit 

C with 11 inputs. Faults in F should not induce sequential 
behavior. Let X := (XI' ••• ,x,, > e [0, I] " be a tuple 

of real numbers, denoting the I-probability for each pri

mary input. For a fault /. let Pf (X) be the probability of 
detecting that fault by a random pattern generated with 

distribution X. The probability that all faults of F are de
tected with N raooom patterns is estimated by 

IN{X) ~ II (1 - ( 1 - PI{X))'). (I) 
I " 

Of course, fonnula (1) only holds if we assume thai the 
detection of some faults by N patterns forms completely 
independent events. Therefore, some author.> try to com
pute an exact value by means of Markov-theory (5), but 
the next theorem shows that formula (I) is a very precise 

estimation. 

Let (};)I .$/$ j< be an enumeration of F, where i < j 
implies PI; :s Ph' In order to simplify the notation we omit 
the concrete distribution X. The expression P(A, N) de· 
nOles the probability to detect all faults of the set A S;; F 

'" 
by N random patterns under some distribution X. Then we 

can show the following theorem. 

Theorem 2: 
S .. 

Then . , 
iN - (I-IN) E(i -Pf) 1-' 

s P(F, N) 

Proof: (See Appendix B). 
Using this theorem we can state the following. 

Observation 4: Let iN ... I be the derived probability 
to detect all faults. Formula (I) underestimates the exact 

probability by less than O( pn (IN) I) and overestimates 
it by less than 0(1( 1 - I N ) In (iN) I). 

Observation 4 is derived by 

!' } - I !' 

L: (I - pfi)N IT (I - (I - PJi)'Y) S L (I - Ph)N 
). 2 ~ . I J- Z 

:SL(I - Pf)N 
I" 

S - Lln(l-(l - Pf)'''')= -In (IN) 

'" 
using formula (12) in the Appendix. 

For instance, if we have three faults with Pfl = 10-
1

, 

P/2 = 5 . 10- 7 and Pfl = 10- 6
, then using formula (I), 

we will need N = 69 . 106 patterns, in order to detect all 
faults with probability 0.999. The estimation of Theorem 

2 yields: 

0.999 - 1O- 1S .s p({/I,h.J3} ' N) S 0.999 + 10-
1' . 

The following fact has already been observed in [SJ. 

Observation 5: Only the faults with lowest detection 
probability have impact on the necessary test length. 

In [23) it is discussed thai those faults having a detec
tion probability which is more than 10 times larger than 
the minimal detection probability can be neglected. 

The next statement has already been established in r 18] . 

Observation 6: The necessary number of random pal

terns increases linearly with the reciprocal of the minimal 
fault detection probability . 

Thus during a conventional random test, the size of a 
test can grow exponentially with the number of inputs. 
For instance, consider an AND32 (Fig. I) where each of 
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the 32 inputs is sct 10 " \ " with probability x. Then an 
arbitrary stuck-al-O fault is de tected with probability Xl2 , 
and each of the 32 stuck-at-I faults with probability (1 -
x ) . .fl l, For x .. 0.5 and Ii test confidence of 0.999 for 
detecting all 33 faulls, formula (1) yields 0.999 = ( I -
( I - 2-11),y)33 and N ... 4 .48 . 1010, 

By using unequiprobable patterns, i.e., x =/:. 0.5, test 
lengths can be reduced drastically (22] . ( IS). For exam

ple. by setling 

x: .. !io.s 
we would need approximately N ... 6 . IOZ patterns. 

Observation 7: There ate circuits for which using un
equiprobabJe patterns can reduce the lest lengths by OT
ders of magnitude. 

In [231. 1241 an efficient procedure for computing op
timized input probabilities was presented. Unfo nunately, 
some circui ts are res istanl to this optimization when only 
a single distribut ion X is used. For the connection of an 
AN032 and an oR32 in Fig. 2 no better single distribution 

exists than (XI = 0.5 Ii E I >. 
Thc problem is solved by first applying 600 patterns 

wi th input probabil ity 

and then 600 patterns with input probability 

x :- I - !Jo.5. 
This way we oblain a complete fa ult covemge wilh con
fidence 0.999 with N, - 1200 random pallems. 

In the rest of this paper. we deal with the problem of 

computing several distributions X fo r random patterns in 
order to minimize the overall test length based on tools 
estimating rault detect ion probabilit ies. 

2.3. Efficiency amJ Accuracy o/ the Testability 
Measures 

Computing optimized distributions X is essentially done 
by numerical algorithms maximizing fonnula ( I). Re
cently several algorithms have been proposed for exactly 
computing fault detect ion probabilit ies using a 4-valued 
logic (10) or using some graph-theoretic propenies of the 

, , 
',--

& 

; AND" 

;> , 

0.,2 

circuit 119J . However. unt il now, no repons about thei r 
measured perfonnance are available. Funhennore, fault 
detection probabilities have to be estimated by a testabi l
ity measure which meets the following requi rements. 

a) High Efficiency: During optimization, the detection 
probabilities PI ( X ) have to be evaluated very often for 
different arguments X. The involved fault detection prob
abilities PI (X) cannot be detennined exactly due to the 
high problem complexity. Therefore, we have to usc heu
ristics for estimating fault detection probabilities, and dis
pense with the exact computat ion. 

b) Unique Resulu Instead of BoumJs: The so-called 
"CUlling algorithm " is a heuristic algorithm to compute 
bounds on the detection and signal probabilities (9]. If 
one of the bounds is constant 0 or I , th is information is 
not sufficient , since these bounds are nOl sensit ive to vari 
ations of the input probability distribution X. In order to 
decide on optimal input probabil ities, especially the re
sponse to faults wi th low detection, probabilities are in
teresting . Thus we need a Single real number as an esti

mate. 
c' Handling Wdgh led IIIPUI Probobililies: For each 

fault. its de tection probability will be computed several 
rimes for different input probabilities X. If these prob
abil ities differ only in a few input posit ions, Ihe algorithm 
should take advantage of this facL 

d, No Random Errors: If the algorithm is run for dif
fe rent input probabilities, the estimation error should nOI 
be a random variable. If the error is random, computing 

optimal weights turns in to a stochastic optimizing prob
lem which has a very high complexity. Standard opti
mizing procedures like the Newton iteration in gellC/1I.l do 
not converge based on stochastic inputs. Only in special 
cases can these algorithms be modified, for instance, for 
PLA 's as described in (26). 
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These four requirements are fulfilled by the tool PRO
TEST (probabilistic testability analysis) as described in 
(22], 123]. Furthennore, this tool has the advantage that 

the user can control the tradeoff between the precision of 
the estimation and the required computing time. All the 
resu!ts reponed in this paper are obtained with PRO

TEST . 

UI. OPTIMIZINO I NPUT PROBABILITIES 

Now wecan fonnulate the optimizing problem in a more 
fonnal way. 

3. I. Problem A 

Let G be the desired probability to detect all faults. Find 
a number k, k distributions X i, and k numbers Nh i = I. 

, k. such that 

G~ II (I - n ( I -P/( X' ))") 
f~ F , - I 

• 
and N: = L: NI is minimal. 

; .. 1 

The problem is solved if we sel k equal to the minimal 
number of detenninistic test pallems. that is the size of 
the smallest possible test set. Then each X i E 10. I r rep

resents a test pattern, we have Ni "" 1 for each pattern. 
and N = k. However. the problem to find a minimal test 
set has been proven to be NP-complete [3]. hence, there 

is litt le hope to develop an efficient CAD tool based on a 
solution for the NP-hard Problem A. Even the weaker 
Problem B turns out to be NP-hard. 

3.2. Problem B 

Let G and k be given. Find k distributions Xl and num
bers Nj , i = I ... . . k, such that 

G~ II (1 - n (I-P/ (X' ))"). 
f O ' I _ I 

• 
and N ; = L: Ni is minimal. 

i _ I 

It is easy to prove that Problem A can be reduced to Prob
lem B, so an efficient algorithm for B cannot be expected 
either. Therefore, our goal is nOl an optimal solution of 
problem A or B. but we satisfy ourselves with finding an 

efficient procedure. Fig. 2 indicates that the problem arises 
because different faults of the circuits require different 
distributions. Hence, we fonnulate: our problem as fol
lows. 

Optimizing Problem: Let G and k be given . We are 
searchi ng for a partition (Fl , . .. , Ft > of F ; = FI U 
... U F • . distributions X',' . " X* and numbers N I ,' • '. 

Nt, such that 

, 
G s n II (I - (i - PI (X' ))",). andN:= L: N, 

, _ I fe F, i - I 

(2 ) 

is sufficiently smaiL 
For k ; ;= 1 this problem has already been solved in (231. 

(24] , and we now list some basic results presented there. 

Forthe input probabilities X;= (XI ' ... • X. > E 10. 1J" 
we have for all faultsf 

~ Pf (xi . ... ,Xi _ I , 0, XI+ I .... • x. »). 
(3) 

This is a strJightforward consequence of Shannon's for
mula . Now we can compute a fault detection probability 

and its partial derivative for an arbitrary value of X;. if we 
know the values under the conditions that input i is con
stant "0" and constant " I . " 

(4 ) 

By some straighlfolWard approximations using fonnula 
(12) in the Appendix, fonnula (2) leads to 

In (G) "" ~ ~ (I - Pf(X)( "" - L: e-Pf{X )N. (5) 
f ~F f " r 

We call a tuple X E (0, I]" optimal, if the objective func

tion 

(6) 

is minimal. Obviously this cOlTesponds to the faclthat the 
probability of detecting all fauits by N patterns is maxi

mal. Minimizing the objective: function would need ex
ponential effort in general. However, a sufficient heuristic 
is found, since the first partial derivative of the objective 
function can be computed explicitly: 

- Pf (X1'" .X'_ I' O, XI-f-h" .x. )) 
• e - Pf{X)N. (7) 
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The next step shows that the second derivative i~ positi ve 
everywhere: 

d:t;Z(X) ~ 

d ~ = l:N (PI (XI • .. . , XI _ I . I. Xi" I ' Xn) 
X i 1M' 

- P/ (X [, " , X; _ I> O,X,+ I. 

• e - pt( X )N , 

, ,.))' 

(8 ) 

Thus the objective function is strictly convex with respect 

to a single variable, and these c)[plicit fonnulas can be 
used to find the optimal value fo r X; by the bisection 

method, the regula falsi or the NeWlon iteration {71. The 
complete optimizing procedure is the follow ing. 

Procedure Optimize 

(F: Faultsets. X: Starn-ector) 

Old: = 21l..,{X) 
New := OI\'X) 
While Old > (I + ).)New h do 

Old: = New 
Fori := I IO I/do 

Search optimal value y using (7), (8) and 

a standard technique for input i 
Xi:= Y 
New : = 6 .... (X) . 

The par.l.lnetcrlI A and E are specified by the user , and they 

determine another tradeoff between accuracy and com

puting time. In the next section we discuss the extension 
to multiple distributions. 

IV . PARTtTtONING A F AULT SliT 

In order to gain efficiency , the optimizing pmblem is 

solved by splilling the fault set into two subsets itera

tively. In this section. it is discussed how to find two tu

ples VI> V1 e to. II" and a partition 1'1 U 1'2 = F. such 
that the sum of the two corresponding objective functions 
is minimi.:ed: 

O ~ ' (VI) + o.{1 (Vz) := 6 e -pt{ I',)1'I + 6 e - pt( I',)i'I 
r&F, reF, 

< 1i ~ (X) . 

For each po C Fthe objective function 6:; may be multi

modal and its global minimi.:ation would need e)(ponen

tial effort . Hence, we do notify to compute a global min

imum. but we look fo r a direction. where starting from a 
tuple Xo the decrease of Ii:; is ma)(imal . The next theorem 
will give a helpful hin!. 

Theorem j; Let U C R ~ be convex. t: U .... R. and grad 

(n : = (dt/ x; )1 "'i"' ~ be the gradient of r. For each Xo e 
U the vector - grad (r)(Xo) indicates the direction of 

strongest decrease. If r is linear a local minimum is found 
on the line Xo - Q grad (!)(Xo). Q ~ o. 

Proof" Mathematical calculus . 

Even though 0,"; is not a linear function, Theorem 3 

claims that - grad (o~)(Xo ) is the required direction. 
Thus we define the new function 

by 

~ :;(a); = 1i:;(Xo - Q gntd (O:;)(XO)) . 

The formula 

D(f'> , N. Xo. 0) := - d~ ( O) (9) 

exactly measures the decrease of our objective function in 

its optimal direction. The solution of 

D (f'>. N. Xo. ")') = 0 ( 10) 

provides input probabilities Xo - "y grad (1i:;)(Xo). de
fining a minimum point in this direction. Therefore. our 

weakened partitioning problem can be solved by FI and 

Fl such that 

'''D''(''F,-, "" N ~ , ","---, 0"') + .j D (Fl , N. Xo. 0) > 0 ( I I ) 

is maximal. the square root is used for nonnali.:ing. It 
should be noted that for linear functions this process would 
indeed be optimal. 

The rest of this section discusses the tasks necessary for 
panitioning. These tasks have to be done only for the 

small subset of faults wi th lowest delel;tion probability 

due to Observation 5. If th is set is small enough. the pre

sented method will compute a global optimal solution 
maximizing formula (I I). For large fault sets computing 

time I;an be saved. if the method is somewhat simplified. 

a) CQl/lpuring the Gradiem: The gradient for X() - "Y 
grad (o:;)(Xo) can be computed explicitly using (7). If 

additionally (3) is used. it is immediatel)' seen that we 
only have to 1;0mputePj (X) and either Pr (X I • •• •• Xi_ I . 

O,X/. , . .. . xn) orPr (XI . ··· . Xi_I! !.Xi" ]. 
X,, ) for this purpose. 

b) Sorting (he Faull Sel: For each fau lt let 

'" ~ grad ( e -Pf( X )N )(XO) II 
be the Euclidean norm of the gradient of e -pt (X)i'I in Xo. 

and let ( " ) j '" l be an enumeration of F with 

i s k ... d .. ,.{ .ftt) 2: d,, (Xo ). 

Now we select a constant value c and the most impor
tant subset of faults F C F where F : = (/; liS c ) . The 

results presented ill the next section are prollided for c = 
20. As usual . if the number of faults with low detectabil

ity is small enough. then a global optimum can be 
achieved . 
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E·I. I ~~EI.l n .o.~ 
fi,. 3. Node . 1 k .cl ~ ",illl il' both wcccuor:s. 

c) Staning Panitioning: Firstly. we are looking for a 
starting partit ioning F •. Ft C F: 

Set Fu. F.:", 0. 
Fori := I !o e do 

if -I"'D("F"'.U""t"r,"I."N-.x,,".O") + -ID(F".N,x,;,O) > 
JD(F~,N.~,O) + JIJ( F bU{/;}.N,~,O) 

then Fu :- F .. U{Ji} . 
else F.:= F. U{Ji} . 

This starting partitioning corresponds to an objective 

value: 

II : = JO( FQ • N . .to. 0) + J O(F •• N. "0. 0). 

d) Constructing a March Tree: Now a search tree T 
can be constructed, where each node n:presents two dis· 
joint subsets of F. Node II is a di rect successor of node 
8 , if one of the subsets o f A is equal to one of 8. and if 
the other subset contains eltactly one more fault (see Fig. 

3). Thus a node of depth k represents a partition of the 
first k faults into twO subsets. 

Due to the triangle inequality, at a node A at depth m 
.:s c with fault sets F, .. F", the search can be stopped if 

II ~ -ID(F". N, "0. 0) + .JD(F .... N . .to. 0) 

+ (m - c) d ~ ("O) 

since no leaf succeeding node A will be better than the 
start ing partitioning. If we reach a leaf this way , then a 

better solution Fa. F. is found and .. must be updated. The 
compteltity of th is process is distinctly lower than 2". since 
most of the branches are aborted at a very early stage of 
the search. 

~ ) The CompJ~t~ Panitioning: The remaining fau lts of 
F (i f some exist) are now added to the sets F" and F" in 
the same way as described in Section JV-c). Finally . for 
each fault it is checked whether or not the result can be 
improved by changing its membership . This greedy al
gori thm is stopped if 

11 := .JO(F., N • .to. 0) + .J D (F ~ , N. "0, 0) 

is maltimized . 
f ) Computing a Tuple oj Olnimal Input Prabo.bili-

ties; If the gradie nt for 6Z is already computed, ( 10) is 
solved by a bisection method. This provides a "1. with 

D (F •• N, "0. "1Q) ... 0 and a "1. with O(F •• N . .to. "1.) ... 

'" 
O. We set 

FI : .. Fa' VI : = Xo -"1d grad (6Z' )(Xo) 

oed 

F1 ;.., F ~. V1 : = "0 - "1. Srad (WHx,;)· 
Finally, we improve V, and V1 by the procedure Opti. 

mize of Section UI . If the gl"ddienl is unknown. Optimize 

is started immediately. 

V. MULTIPLE OPTIMAL DISTRIBUTIONS 

Of course partitioning is not restricted to twO sets. Ex
perience has shown that better results are obtained by a 
successive procedure as compared to partitioning into m 
sets at one time. 

Procedure Multiple_Optimize 
(F : Fauttsets, X: Startvector, 
m: Number of d istributions) . 

FIlJ :== F 
XU] :- X 
For i : = to m - I do 

Let j S m - t be such that F1 j I requires the 
Iyrgest test set. 
Partition Flj] into F. , Fh • 

Optimize (Fa,Xlj l ,Xa) and Optimize 

(Fh. XIjJ .X.) as mentioned in 
Section IV·e). 

FIji : =: F. , XIjJ: - X. , FIi l :'" Fb 
XTi] :=X •. 

This procedure provides m distribut ions X;. and m disjoint 
CaulE sets F;. Computing the m test lengths Nj by (2) would 
overestimate the necessary size. since there is a chance 
that a pattern according to XI detects some faults of a set 

F; also. j *" i. The optimal numben NI can be computed 
by the form ula of Problem 8) in Section III . 

The test appl ication is simplified. if we assume that we 
use the same amount Nfl of patterns for each distribut ion. 
In th is case Ihe mentioned fonnula is simplified in to 

and N :'" mflN". 

VI. R euLTs 

In Table J optimizing results are shown based on detec · 

tion possibili ties provided by PROTEST. The first ex
ample is the ANDOlI.32-circuit of Fig. 2. For the welt· 
known benchmark circuits IgJ, Ii. ; '"' 1, ...• 8 optimized 
input probabilities have been computed. The fi rst column 
denotes the c ircuit name, Ihe second one the necessary 
number of not optimized. equiprobable random patterns. 
and the following 8 columns contain the necessary num
ber of random patterns assuming that for each distribution 
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, 
AndOr 1.IItIO 1.1It10 

'" B.xl '.Ael 

"" Hd U.l 

,,~ 1.403 l.401 

,.., 1.7«1 1.003 

<135' 2.706 2.706 

" .. "' .. , .. 
02670 U.7 U.5 

,,~ 1. 106 ,~ 

dlU ,.'" ,~ .... .~, l .Ot2 

a»l 4.8<11 ,.'" 

TABLE I 
Dl n RI BUT I O~~ ~~ D TEsT S'Zo;s 

nll<li>« of ru>d<>m -
we;pu: , , • , , 

1.'03 I.IIt) 2.103 '''' 
,., 

B.OtI .. , '.kl 5.11<1 5.7.1 

.~ 9.6<2 '.ld 'iI.k2 9 .... 2 

,.~ , . ~ I.kl ,~ l .le3 

2.103 1.2<3 1.1., 1.2<1 I.1d 

3.106 .. ~ 4.106 .... .ld , .. 1.5 •• , .. ' .W , ... 
,.'" ,~ ,~ , ... ,,.. 

'''' , ... 1.706 2.h5 2.9<' 

A.hl 9 .... 3 .. '" 9.9d l.l«l 

2.6el "" 3.Ot2 4.!e2 2.9<2 

7.1c.S ,~ .~ 2605 ,~ 

, • 
. 

6.6el Bel 

9 .... 2 Ud 

I.kl l.kJ 

1.2<] 1.403 , .. 5.2.6 

l .x4 1.8<4 

4.8<4 4 .5. 4 

].)05 ,~ 

,.'" 1.2<4 

2.702 2.7.1 ,., 2.h! 

the same amount N" of patterns is applied. For all ell

amples a detection confidence of G = 0.999 was required 
for the probability of detecting all faults . For the set of 
distributions which results in a minimal ollerall size, the 
number of test patterns is printed in bold letters. 

For the small circuit C 17 some distribut ions degenerate 
to detenninistic test patterns. This circuit with 5 primary 
inputs is not appropriate for random pallern testi ng, and 
the requirements of Theorem I are not fulfilled . The 
ANOOR violates Theorem I in the equiprobable case but 
not for weighted patte rns. Three points are outstanding. 

Firstly , all of the benchmark circu ils and the counter
ell3mple ANOOR32 can be tested by only a few thousand 
random patterns. From a theoretical point of lIiew, all cir
cuits can be made random testable by the presented pro
cedure. 

Secondly, the overall number of necessary patterns does 
not decrease monotonically with the number of distribu
tions. This is a practical consequence of the discussed 
problem complellity and the applied heuristics during op
timizing and partitioning. 

Thirdly, the resul ts differ slightly from the results re
ported. e.g. , in \23], \24}, since they depend on param
eters of the testability measure to a large ellten!. The pa
rameters were chosen such that partitioning could be done 
within less than 1 h of computing time for each circuit. 
The program is running under the operation system UN IX, 
and the ellperiments were performed on a SUN 3/50 
workstation . 

However, the results of Table I are only estinlations, 
they denote that at most one out of thousand test sets of 

these lengths will fail to obtain a complete coverage of all 
irredundant faults. These predictions on fau lt coverage are 
validated by fault simulation as shown in Table U. 

TABLE II 
F ~ULT C ov n ~o F. I'ItOV1D£ D IV S I M UL ~TI O~ OF W EIOIITEO P~TT U I"IS 

~ ....... - ._- .- "" ""'''''''''' - ....... , -- -. ";111 rupecI 

~ foul .. by - • .. -
117) ,- '" f ...... ( .. ) 

'" " , , 1110.00 100.00 

«" '" • • 911.31 100.00 - m • • 98.911 100.00 .., '" , , 100.00 100.00 

cUSS "" • • 911.53 100.00 

" .. 'D • • ..... 100.00 

"'" ,mM '" '" 9S.4I 100.00 

"." '"'" '" '" ~ .. 100.00 

c!llU 1316 .. ~ ~m 100.00 

~. , .. .. .. ~" 100.00 

clSS1 "'" m '" 91.\} ...U 
°<:1SS1 57lM '" '" 9l.26 100.00 

During faull simulation it is useful 10 merge the m dif
ferently weighted pattern sets. since the fault dropping 
technique cannot be ellploited otherwise_ In the first col

umn of Table II , the circuit name is found. The second 
column contains the numbers of merged weighted pallems 
which have been applied . For each dist ribution the same 
amount of pallems have been generated: the number of 
the pattern that detected the last fault is always given. 

The third column of Table II contains the number of 

redundant faults found by the deterministic test pattern 
generator of Schulz and Autn (17]. which identifies all 
redundant faults in the benchmark circuits. The fou rth 
column contains the number of fa ults not detected by sim
ulation. the fifth column the fault coverage wi th respect 
to a ll fau lts , and the Sillth the fault coverage with respect 
to all detectable faults. In each case. Ihe optimal number 
of distributions which is found in Table III has been ap

plied. 
It should be noted that the amount of simulated patterns 

was much smaller than that one required by PROTEST, 
due to restrictions of the avai lable fa ul t simulator. Pre
sumably this is the reason for the 0.1 % undetected fau lts 
of the circuit c7552, and thus the weighted patterns wilt 
be another application field of the recently proposed fast 
fault simulators for combinational circuits (e.g .. 116]. 
\21]). In the example "c7552 , a higher precision of PRO
TEST is used in order to compute 17 different sets of 

weights. Then the computing time for optimizing in
creases from approllimately I to 7.5 h, but fau lt simula
tion shows a higher fault coverage. In both cases c7552 
and "c7552, fault simulation was aborted if 20 000 pat
terns did not detect any new fault. 

Table III compares the results of fault simulation using 
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TABLE lIE 
F~Ul T$ NOT DETECTED Usn.a W EICHTED ~"D EQUIPROB~BLE P ~TTER"S 

(R~DUN[)AI'<C1F.s) 

"'"" 
N_. _. 

Nwnbc<offluJu 

~ ...- ~-

~- -~ 
on , " , , 
"'" • '" , , 
COO, , 'N , , 
""" , "" , " 
CIlSS , ".. , , 
"'~ 

, "'" , " 
""" , ''''M , '" ""., , """ , , 
cms , JJJ6 , • ""'. , '''' , • 
C1S!l • "''' • '" 
equiprobable patterns and weighted patterns. The fi rst 

column contains the applied number of distributions. 
These are the numbers where the presented panitioning 

and optimizing procedures predict the shonest test length. 
In general. since no global statement about the optimal 
number of dis tributions can be obtained sufficiently, it is 
recommenderl to stop the panitioning at that point, where 
the test length is short enough for practical applications. 
The second column of Table III is the number of weighted 

patterns simulated. The third column is the number of 
testable faullS not detected during simulat ions, Le., re
dundancies are removed . 

The same amount of equiprobable patterns was simu
lated, and the last column contains the number of testable 
faults not detected by equiprobable patterns. For the equ i

probable case, results of longer simulation runs are found 
in (29] , where 22 1 random patterns did not lead to a com
plete fault coverage fo r some circuits. 

VII . ApPLICATIONS 

The mentioned tools for estimating fault detection 
probabili ties are mainly used to predict the necessary test 

length of a random test, which can be carried out by a 
BIST structure like a BI LBO (1 4). Since a large class of 
circuits is resistant to such a conventional random test, 

optimized input probabilities should be computed. A test 
strategy based on weighted random patterns can also be 
implemented as self-test using a so called CURT (gener
ator of unequiprobable random teslS) [25). However, even 
this way, not all circuits can be deal! with adequately. 

The presented method o f computing multiple distribu

tions is applicable to all combinational circuits, but un
fonunately there is no obvious way to implement them by 

, .. 

-

Scan palh 

Primary 
inputs 

Device urdc:r 
lesl 

Primary 
OU1PUIS 

Fig . 4 . LSSD'Nsed .. ndom Ie$! . 

'" 

a BIST technique. However, of course, they can be used 

for a so called l SSD or scan-path random test ([ Il l, (4) . 

Fig. 4 shows the basic architecture of a scan design in 
combination with random pattern generation using linear 

feedback shift registers. 
The pattern generator and the signature registers are 

built on an external chip which sequentially generates ran

dom patterns with multiple dist ributions. Such a test chip 
has been designed and processed as a gate array (61. Cur
rently, a circuit which can generate weighted patterns cor
responding to multiple dist ributions has been designed and 

processed. 
Using these chips leads to a weighted random pattern 

test system at low costs, where a similar or even a beller 

faul t coverage is reachable as compared to a conventional 
deterministic test (see (28)). In addition to the low priced 
test equipment the test application time will also decrease 

to the high-speed pattern generation. 

VIII . CONCLUS IONS 

An efficient method has been presented to compute 
multiple distribut ions fo r random patt.erns , which can be 
applied successively. Using multiple distributions , all 

combinational circuits can be made random testable, and 
a high fault coverage which is coropetitive with that 
reached by most of the deterministic test pattern genera

tors is provided by a few thousands of random patterns. 
The differently weighted random test sets can be ap

plied to scan path circuits using an external chip, combin
ing the advantages of a low cost test and high fault cov

erage. Since the size of the random test set is rather small , 
the fault coverage can be validated by simulation. 

Funhermore several facts about test ing us ing random 
patterns have been proven . It has been shown, that the 
number of random patterns required for a cenain fa ult 
coverage can be computed wi thout regard to the pseudo-
random propeny and with the independence assumption 

for fault detection . 
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ApPENDIX A 

PROOF OF THEOREM 

Clearly we have Np ::5 N, _ The power series , i the log
arithm provides . . , 

_ P- = Z p i 2:; L ~ = -In ( I - p) 2:; p. 
1- P i _ I i _ I I 

for Ip l < 1. (12) 

Fault detection by random patterns follows the binomial 
distribution, thus we have 

t = (I_p) N, or 

-In (d = -N,ln (I - p) 2:; pN,. (13) 

Fault detection by pseudorandom pallems follows the hy
pergeometric distribution , that is 

••• 
2 i (1 - p) - k 

2i k 

(1-2/~kP)' 
Since k ::5 21/2 andp < 1/ 4, we have (2 i / 2Ik) p < I , 
and by using the left inequation of (12) we get 

N, " ( 2' ) 
-In{t} .. - L In 1 - - ,-- p 

h O 2 - k 

2' 

2T=k P 

••• 2' 
1 - 2i _

k
P 

N,_ I 
2' "L . 

. - 02 ' (1 p) 

S PNp(i{1 
2' 

p) 

,P 

NJ 

( 
1 -1.(.)) 

:s p Np + I P 2 1/2 

~ p(N, + 2( 1 - I. (.))) . 

Hence, 

-In {t} 
Np ::5 N, ::5 -- :s Np + 2(1 - In (E») 

p 

and the theorem is proven . 

ApPENDIX B 

PROOF OF THEOREM 2 

We set lift'" I : "" P( (Ji l i S n + I). N) - n ~.: II (I -
( I _ pjj )N). 

Now we have P(F, N) = i N + Ii ~ , and using the Baye
sian formu la we can estimate .. , 
'." "p({h l' ~ .1.N) - II (1 - ( 1 - Pfi )' ) ,. , 

- (I - Pj • • ,(p({Ji li S n} 

N I no pallern detects 1ft '" I ) 
" p({ fo il S • I, N) - ( 1 - (1 - Pt., ,n 

• . n ( 1 - ( I -p, )' ) ,. , 
- (1 - P, .. ,)'p({fo ll S 01 
N I no pattern detects f" ... 1 ) 

- p( {Ji Ii S n}, N ino pallem detectsJ., .. d) . 
ThusliHI S lift + (I - Pj • • , )NDi_1 ( I - (I - pj;) N), 
and since Ii, = 0: 

."' 1 j- ' 

lift '> ' S Z (I - pj/ IT (I _ (I _ pjj )N). 
1-1 k_ 1 

On the other hand 

p({Jili S n},N lnopattemdelecls/ft .. I):S I 

and we have 

., , 
2:; -(I-iN):E (l-PJ, )N. 

1- 2 ' 
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