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Abstract

In this paper, we presentmultipleerror diagnosis algorithms
to overcome two significant problems associated with cur-
rent error diagnosis techniques targeting large circuits: their
use of limited error models and a lack of solutions that scale
well for multiple errors. Our solution is based on a non-
enumerative analysis technique, based on logic simulation
(3-valued and symbolic), for simultaneously analyzingall
possible errors atsetsof nodes in the circuit. Error mod-
els are introduced in order to address the “locality” aspect of
error location and to identify sets of nodes that are “local”
with respect to each other. Theoretical results are provided
to guarantee the diagnosis of modeled errors and robust di-
agnosis approaches are shown to address the cases when er-
rors do not correspond to the modeled types. Experimental
results on benchmark circuits demonstrate accurate and ex-
tremely rapid location of errors of large multiplicity.

1 Introduction

Error diagnosis is typically invoked after a failed design
verification step to determine possible causes for the failure.
It is critical both in providing feedback to designers about
potential error sites and in providing a limited set of candi-
dates where automatic correction could be performed.

Previous research in combinational error diagnosis has pri-
marily yielded solutions practical only for diagnosing sin-
gle errors in circuits. The solutions can be broadly clas-
sified into two categories: simulation-based or simulation-
like analysis-based approaches [1–10] and synthesis-like for-
mulations to error diagnosis and correction using symbolic
functional manipulation [11–13]. Exact synthesis formula-
tions for the error correction problem based on the use of
BDDs typically do not rely heavily on the error models and
can be extended for the general case of multiple errors rel-
atively easily. However, they typically do not scale up for
large circuits because of excessive run-time and memory re-
quirements.

In contrast, simulation-based approaches offer a viable al-
ternative for handling large circuits because they are efficient
both in terms of their run-time and memory performance.
In this class of techniques, by simulating each input vector

on a set of assumed error models and by determining the
modeled errors whose behavior conforms to the observed
erroneous behavior, potential error candidates are gradually
pruned. Diagnosis techniques based on this kind of analy-
sis where modeled causes are examined for their effects are
grouped under cause-effect techniques [10]. However, sig-
nificant problems with applying these techniques to practical
circuits result from their use oflimited error modelsand a
lack of solutions that scale well formultiple errors.

In this paper, we provide solutions to the above problems.
Our solution derives its motivation from previous work to al-
leviate the problems with restrictive error models [2, 9, 14,
15]. These methods suggested the use of models more ab-
stract than conventional ones in the applications of fault sim-
ulation, fault and error detection and diagnosis. However,
even these approaches were limited tosinglenode analysis.
The reason for the popularity of the single node analysis-
based techniques is that they provide excellent run-time per-
formance. However, the accuracy of the diagnosis procedure
suffers when the type of the error becomes more compli-
cated. It is becoming increasingly important, however, to
consider multiple design errors because even a single node
error made at one stage in the design flow may result in mul-
tiple errors at a subsequent stage.

Our Contributions

In this paper, we develop efficient diagnosis algorithms that
permit a departure from the notion of analyzing single nodes
in the circuit for their likelihood as error sites. Our algo-
rithms are easily integrated into a design simulation environ-
ment, are applicable to multiple levels of design hierarchy
(RTL/gate/transistor) and are easily extended to handle se-
quential circuits and practical circuit configurations (with li-
braries). In addition, our algorithms overcome restrictions
imposed by the use of overly restrictive error models. These
capabilities make our algorithm suitable for handling real-
world designs. In spite of targeting the analysis of multi-
ple sets of nodes simultaneously, we show that it is indeed
possible to achieve run-times comparable to single node-
analysis based techniques. Since the problem of errorlo-
cation suggests proximity amongst the multiple errors, we
develop models to identify and analyze groups of nodes that
arenear each other. We achieve our objectives by the fol-



lowing contributions:

� Development of an efficient,non-enumerative (with-
out explicitly considering each possible error), analysis
technique (that helps us achieve small run-times) based
on logic simulation (3-valued and symbolic) for simul-
taneously analyzing all possible errors atsets of nodes.

� Development of two error models (topologically
bounded, region-based) that enable the identification of
sets of nodes that areneareach other.

� Development of theoretical results thatguarantee the
exact diagnosis of modeled errors.

� Development of robust diagnosis algorithms that per-
form well even in the presence of unmodeled errors.

An important point to note is that while vectors differenti-
ating the specification and the implementation can be gener-
ated to increase the accuracy of diagnosis, our focus in this
work is on developing diagnosis algorithms that produce re-
sults of the highest quality, given a set of test vectors. Vector
generation was not considered in this work.

2 Efficient Analysis of Errors at Sets of Nodes

Definition 1 (Xlist) A set of nodes whose actual values
would be replaced during simulation by the value X, and the
X-values propagated to subsequent logic levels by 3-valued
logic simulation is called an Xlist.

Diagnosis With Xlists
The illustration of Figure 1 demonstrates the utility of Xlists
for achieving powerful diagnostic results even without any
enumeration on the possibility or kinds of errors. In this fig-
ure we have shown simulation results from the specification
and three simulation results on the faulty implementation.
The first result is from normal simulation on the faulty
implementation. The other two simulation results are with
the presence of Xlists indicated by the shaded regions A
and B. The output responses produced by the simulation
results on one erroneous primary output are also shown
(specification produces 0, implementation produces 1,
simulation with Xlist A produces X and simulation with
Xlist B produces 1).

Claim: No multiple error consisting entirely of nodes
in the region B, can explain the erroneous behavior.

The result is obvious from the fact that if there were in-
deed some error at the nodes in B, such that changing those
nodes would enable the implementation to conform to the
specification, then that changed functionality would still be
coveredby the X-values introduced at those nodes because
of the Xlist simulation. Of course, it is obvious that since
all possible error types are being targeted at these nodes, the
analysis is pessimistic. This is illustrated by the result on
Xlist A where we do not have a definitive diagnostic infer-
ence.
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Figure 1: Using Xlists for Diagnosis

3 Choosing the right Xlists - Error Models

In this section, we describe techniques to choose Xlists to
derive accurate diagnosis results. The aim here is to model
the locality of the errors (because we are performing error
location!) and derive candidate Xlists using this information.
Two error models are introduced to model the locality; one
based on a topological sorting of the nodes in the circuit and
the other based on growing a region around each node in the
circuit. We first define the error models and then based on the
error model under consideration, Xlists can be constructed to
include all the sets of nodes that are candidates as suggested
by the error model. In our discussion, an error refers to a
node or a set of nodes whose logic functions could be altered
to attain functional equivalence with the specification.

3.1 Topologically Bounded Errors

Let the circuit for the implementation under consideration
haven nodes. LetT = (1; 2; : : : ; n) be a topological
order on the nodes of the circuit.

Definition 2 (Topologically Bounded Error) An error is
called a topologically bounded error if the logic functions
at the nodes in setE = fe1; e2; : : : ; ekg are erroneous
and satisfy the following:

9 i; j; (1 � i � j � n) such that

fi � el � j; 8 l j 1 � l � kg:

The integersi, j are the lower and upper bounds within
which the error lies andj � i + 1 is called the bound on
the error.

3.2 Errors in Regions of the Circuit

We now define another model for local design errors. In
this model we define regions in the circuit that consist of
nodes that are located “near” each other. Regions are defined



// EachL is an Xlist of nodes
// MATCHCOUNT, PARTIALMATCHCOUNT,
// MISMATCHPENALTY
// and DROPTHRESHOLD are input parameters
// Match means a (0, 0) or (1, 1) combination
// Mismatch means a (0, 1) or (1, 0) combination
// Partialmatch means a (X, 0) (X, 1) combination
for eachVector
// Let CurrVec be the current vector
for eachXlist L do
if (Score[L] > DROPTHRESHOLD) do
for eachprimary output do
// Let CurrPo be the current primary output
if (Match(Impl(L, CurrVec, CurrPo), Spec(CurrVec, CurrPo)))
Score[L] += MATCHCOUNT;

elseif (PartialMatch (Impl(L, CurrVec, CurrPo),
Spec(CurrVec, CurrPo)))

Score[L] += PARTIALMATCHCOUNT;
else // MISMATCH
Score[L] -= MISMATCHPENALTY;

endif
endfor

endfor
endfor

Figure 2: Xlist ranking procedure

for each node in the circuit and are defined with respect to the
structural distance of nodes in the circuit. Structural distance
between two nodes refers to the minimum number of wires
(connections) needed to traverse from one node to the other.

Definition 3 (Region-based Error) An error is called a
region-based error of radiusr centered at nodep if the logic
functions at the nodes in setE = fe1; e2; : : : ; ekg are
erroneous and satisfy the following:

8 l ; 1 � l � k;

Structural Distance(el; p) � r

4 Diagnosis Algorithms

Our diagnosis algorithm based on the simulation of Xlists
is presented in Figure 2. Diagnosis proceeds for each
given vector, by considering each candidate Xlist (gen-
eration of candidate Xlists toguarantee exact diagno-
sis will be discussed later in the paper) and observing
the number of matchesf(0,0), (1,1) value combinationsg,
mismatchesf(0,1), (1,0) value combinationsg and partial
matchesf(X,0), (X,1) value combinationsg on the primary
outputs. If an Xlist produces a mismatch (match, partial
match), the “potential” of that Xlist to contain the error nodes
is reduced (increased, increased slightly). The “potential” of
that Xlist for either explaining or not explaining the erro-
neous behavior depends on the type of error and the error
models that the Xlists are created to handle. Confidence

in the modeling process is provided to the diagnosis pro-
cedure through three parameters: MATCHCOUNT, PAR-
TIALMATCHCOUNT, MISMATCHPENALTY, represent-
ing the confidence in a match result, partial match result and
a mismatch result, respectively. Assigning MATCHCOUNT
and MISMATCHPENALTY to large values supports diagno-
sis with high confidence in the error models while assigning
them to low values helps applications where the kinds of er-
rors are uncertain. In particular, if the errors are exactly of
the modeled type and Xlist construction has been performed
to cover all the modeled errors, then MISMATCHPENALTY
can be set to1. These input parameters are provided to the
diagnosis algorithm in order to prevent an over-reliance on
the error models.

4.1 Guaranteed Diagnosis

In this subsection, we present the results that guarantee
exact diagnosis of modeled errors. It is worth noting that our
guaranteed diagnosis results are not restricted to the error
models introduced. In fact, it can be shown that whenever
there exists an Xlist that contains every single node of the
actual error sites, it can be guaranteed to obtain the highest
score amongst all the Xlists.

Exact diagnosis of errors is possible when the error being
diagnosed is known to be of the modeled type. In order to
achieve the exact diagnosis, we need to configure the input
parameters of the diagnosis algorithm to reflect the confi-
dence in the error model. Specifically, we have to set the pa-
rameters MATCHCOUNT = 0, PARTIALMATCHCOUNT
= 0 and MISMATCHPENALTY =1. With this configura-
tion, our next two results demonstrate that exact diagnosis of
the modeled errors can be guaranteed.

Theorem 1 (Diagnosing topologically bounded errors)
If there exists an error (multiple) topologically bounded by
k, then by choosing overlapping Xlists as defined below, it
can be guaranteed that there exists an Xlist containing all
the nodes that are error sites and that its rank would be the
highest of any of the candidate Xlists.
(1; 2; : : : ; 2k); (k + 1; k + 2; : : : ; 3k);

(2k + 1; : : : ; 4k) : : : ((dn=ke � 2)k + 1; : : : ; n)

Proof: It is easy to show that there is at least one Xlist that
completely covers each node of the error. The proof follows
by noting that setting the above-mentioned input parameters
for the algorithm guarantees that only mismatches are pe-
nalized (by the definition of Xlists, it is guaranteed that no
mismatches would occur for any Xlist containing all the er-
ror nodes).

Theorem 2 (Diagnosing region-based errors)If there ex-
ists a region-based error (multiple) of radiusr centered at
nodei, then by choosing a region-based Xlist at each node
in the circuit that includes every node within a radius ofr



from that node, it can be guaranteed that the Xlist at nodei

would achieve the highest score of all the Xlists.

Proof: Follows from the fact that we have a guaranteed in-
clusion of all the error nodes in the Xlist at nodei and by ob-
serving again that it is possible to guarantee no mismatches
for any Xlist that includes all the error nodes.

Having provided the above two results, we now present a
practical problem and solution in the application of these re-
sults. When the diagnostic resolution of the diagnostic test
vectors is not sufficiently high, it is possible that the num-
ber of Xlists with the highest score (including the correct
Xlist) may be high for practical usage if the diagnosis al-
gorithm were run with the parameters MATCHCOUNT = 0,
PARTIALMATCHCOUNT = 0 and MISMATCHPENALTY
= 1. In order to overcome this problem, we again resort to
the flexibility provided by the input parameters in the diag-
nosis algorithm that matches may indeed be better than par-
tial matches. Of course, this may then make the diagnosis
algorithm slightly inexact, but it does provide an intuitive
and practical approach to rank candidate Xlists that do not
provide any mismatches. Our experiments show that this is
indeed a practical approach. A typical run of the diagno-
sis algorithm with modeled error types would proceed with a
MATCHCOUNT of 10, PARTIALMATCHCOUNT of 5 and
a MISMATCHPENALTY of 1000.

4.2 Improved diagnosis using symbolic variables

In order to improve the accuracy of the diagnosis pro-
cedure, we introduce symbolic variables at the outputs of
the Xlist regions to compute the primary output functions in
terms of these variables and use them to prune the set of diag-
nosis candidates obtained after application of the Xlist-based
diagnosis algorithm. This method improves the accuracy of
diagnosis due to removal of any losses in accuracy due to
the use of 3-valued logic and by ensuring that a function can
be realized at the outputs of any Xlist region in terms of its
inputs in order that the implementation be made function-
ally equivalent to the specification. Such a function may be
absent because conflicting values may be required at the out-
puts of an Xlist region for the same set of input values. The
absence of such a function at the outputs of an Xlist clearly
indicates the inability of that Xlist to explain the observed er-
ror and can be used to reduce the number of candidate Xlists.
An algorithm for the construction of these functions is out-
lined next. Details of the complete diagnosis algorithm are
omitted due to lack of space.

Let V = fv1; v2; � � � ; vmg be the vector set being used for
diagnosis. LetBijk be the function (BDD) built for theith
output, for thejth vector inV , and for thekth Xlist, Xk.
Let sets,Vsj1 ; � � � ; Vsjn , each contain vectors that produce
same values on the inputs of a particular Xlist. For example,
if vectorsv1; v3 andv6 produce same values at the inputs

of Xlist Xp, then one ofVsj1 ; � � � ; Vsjn will contain these
three vectors. Functions can be computed to store the val-
ues at the outputs of XlistXk such that the outputs of the
specification and the implementation are consistent for all
the vectors that produce the same input values at the input
of Xk. Construction of these functions is helped by con-
structing functions to store the values at the outputs of Xlist
Xk such that the outputs of the specification and the imple-
mentation are consistent for each individual vectorvj . An
intuitive explanation of these functions is that they represent
thecorrection functions at the outputs of Xlists for the re-
spective vector/vectors.

5 Experimental Results

We evaluate the performance of our new diagnosis algo-
rithms in this section. Experiments were performed on the
ISCAS 85 benchmark circuits. Diagnosis experiments were
repeated for 10 different errors for each benchmark circuit
and error type considered. Experiments were performed on
a SPARCstation20 workstation with 64MB of main memory.
The test vectors used in the diagnosis were adapted from the
single stuck-at vectors generated by the HITEC test genera-
tor [16]. We also note that the introduction of errors is ac-
companied by checking whether the error was detected by
the given vectors. If the error was not detected, then it was
immediately discarded and an alternative error was gener-
ated. This was done primarily because test generation to help
the diagnosis was not considered in this work.

Improvements due to region-based analysis over single
node-based analysis (Table 1)

The diagnosis algorithm as described in Figure 2 was used
for the diagnosis. It is first shown that while single node
analysis-based diagnoses are unable to track multiple design
errors, the new approaches produce remarkable improve-
ments in the accuracy of the diagnosis. These results are
summarized in Table 1. Ten instances of region-based er-
rors within aradius of 2 were introduced into each bench-
mark circuit and diagnosis results are analyzed for a single
node analysis-based approach and for a region-based Xlist
approach with a radius of 2. The center of the error and the
logic function changes were randomly chosen. The columns
in the table represent for each of the circuits, the number of
nodes in the circuit, the number of vectors used in the di-
agnosis, average number of logic changes introduced in the
circuit, average rank of the center of the error set in the can-
didate list (intuitively, since the error nodes are all centered
at the center node, it should have the best chance of tracking
the error), time taken in seconds for the diagnosis, average
rank of the region-based Xlist centered at the center of the
error and the time taken in seconds for the region-based di-
agnosis algorithm. The lesser the rank for the faulty node,
the better is the accuracy of the diagnosis. Therefore, it is



Table 1: Diagnosis results comparing point-based vs. region-based analysis

Circuit Nodes Vectors #Errors Point-Based Region-Based
Rank Time(sec) Rank Time(sec)

c432 275 55 7.40 113.10 0.25 7.90 0.88
c499 276 55 9.50 47.90 1.98 18.80 0.99
c880 469 75 5.90 7.00 3.26 5.40 0.53

c1355 619 88 11.40 121.70 15.07 18.40 5.70
c1908 938 280 8.90 116.50 63.98 5.40 5.59
c2670 1414 102 8.60 189.50 28.40 31.10 8.21
c3540 1741 350 10.70 200.50 165.58 17.30 42.45
c5315 2608 264 10.00 52.80 150.01 30.00 22.61
c6288 2480 46 9.90 197.60 105.54 96.90 135.46
c7552 3827 450 7.60 134.60 751.92 16.00 62.12

clear from the data in this table, that our new diagnosis al-
gorithm is significantly more effective. An interesting result
is the surprisingly large average rank produced for the cir-
cuit c6288 even with the improved diagnosis algorithm. The
most likely cause for this is the much lesser number of test
vectors used for this circuit. This, however, does not prevent
us from drawing our expected conclusion that the accuracy is
indeed significantly better than a single node analysis-based
diagnosis approach.

Improved diagnosis using symbolic variables (Table 2)
Improvements resulting from the introduction of symbolic
variables at the outputs of Xlist-regions to further reduce
the size of candidates which produced no MISMATCHES
are shown in Table 2. In this experiment, candidate Xlist
regions that produced no differences from the specification
were chosen and symbolic variables were introduced at their
outputs. Analysis using symbolic variables and assuming
modeled errors was performed in order to prune the set of
candidates. Table 2 shows for each circuit, percentage re-
duction in the number of candidate Xlists, time taken by the
procedure and the maximum size of the BDDs encountered
averaged over 25 different error diagnoses per circuit. The
data in the table clearly demonstrates that a significant im-
provement in the accuracy of diagnosis can be achieved with
this technique.

Variation in the accuracy and run-time required for
diagnosis with varying region sizes (Table 3)
In order to study the performance (both time and accuracy)
of the region-based diagnosis algorithm with the parame-
ter radius, the following experiment was performed. Errors
were introduced with an increasingly larger radius (varied
from 1 through 4) on one of the benchmark circuits, c432.
Again, ten instances of errors were diagnosed for each ra-
dius and average numbers are reported. As the radius was
increased, the number of errors introduced in the circuit also

Table 2: Diagnosis with symbolic variables

Circuit % Reduction Average Avg. Max.
Time(s) Bdd Nodes

c432 80.50 7.01 91.94
c499 20.85 1.81 358.40
c880 23.33 1.38 112.27

c1355 55.86 11.86 724.30
c1908 48.93 8.02 398.19
c2670 66.71 20.77 233.12
c3540 53.15 34.94 691.50
c5315 36.65 13.18 262.37
c6288 95.75 92.11 73.23
c7552 59.52 111.15 1122.82

Table 3: Variation of accuracy, run-times with error-radius

Circuit Radius #Errors XlistRank Time(s)
c432 1 3.00 7.70 0.47
c432 2 8.90 10.80 1.20
c432 3 18.80 25.20 2.57
c432 4 30.60 13.50 7.17

increased. These results are presented in Table 3. This data
can also be used to study the performance of the algorithm
in situations where confidence in the error model may not be
high (hence, we would choose larger regions). The small av-
erage ranks of the correct Xlist (out of 275 total Xlists) show
that the algorithm scales well to even gross errors.

Diagnosis for topologically bounded errors (Table 4)

Finally, Table 4 presents the results for diagnosing errors that
are topologically bounded. The columns represent for each
of the circuits, the number of nodes in the circuit, the num-



Table 4: Diagnosis results based on topological Xlists

Circuit Nodes Vectors #Errors XlistRank Time(s)
c432 275 55 7.30 1.80 0.24
c499 276 55 7.20 4.40 0.36
c880 469 75 7.50 1.50 0.35

c1355 619 88 8.00 9.30 2.41
c1908 938 280 7.90 4.80 5.39
c2670 1414 102 7.50 3.10 1.47
c3540 1741 350 7.80 1.30 5.97
c5315 2608 264 7.80 13.70 4.34
c6288 2480 46 7.90 16.30 23.81
c7552 3827 450 8.00 5.56 23.11

ber of vectors used in the diagnosis, average number of logic
changes introduced in the circuit, average rank of the topo-
logical Xlist consisting of all the nodes at which the logic
changes were introduced and the time taken in seconds for
the topological Xlist-based diagnosis.

Errors with a topological bound of 8 were introduced into
the circuit. The topological region where the error was in-
troduced and the types of logic changes introduced were all
chosen randomly. Ten different topological error sets were
diagnosed for each benchmark circuit and the average re-
sults reported. The Xlists generated were with a topological
bound of 20, i.e., each Xlist had a cardinality of 20 nodes.
A topological bound of 16 would have also sufficed (accord-
ing to our result from Theorem 1). However, we chose a
bound of 20 in order to illustrate the case where confidence
in the type of the error may not be exact; thus forcing a safer
Xlist generation strategy. The small average ranks of the cor-
rect Xlists and the small run-times demonstrate the ability to
diagnose topologically bounded multiple errors rapidly and
accurately.

6 Conclusions

Our experiments demonstrate the ability of Xlists to effi-
ciently diagnose errors of large multitude. The only assump-
tion on the error types is one of locality i.e., they are either
topologically bounded or are in some region. If there is rea-
son to believe in any alternative multiple error model, then
Xlists may be designed even there to capture the effects of
arbitrary errors on those sets of nodes. The efficiency of our
diagnosis algorithms results from the fact that they are based
on a simple application of logic simulation, using 3-valued
and symbolic logic to model arbitrary errors by single Xlists
(without enumeration). Although not covered in this paper,
an important advantage of the analysis based on Xlists lies
in the simple extensions they offer to diagnose sequential
circuits based on logic simulation. Extensive experimenta-
tion with the design and use of Xlists for RTL circuits is also

currently being performed.
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