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Abstract: The existence of Fano resonances in dynamic resonant tunneling (RT) systems has been
investigated. Fano resonances are characterized by the appearance of a 100% reflection coefficient
in proximity to a high transmission coefficient. For a Fano resonance to appear, a bound state must
exist. On the other hand, a resonant tunneling process is characterized by a high transmission and the
existence of a quasi-bound state (QBS) instead of a bound one. It has been shown that, by narrowing
the width of the barrier, the resonance energy of the QBS gradually decreases and eventually turns
into a bound state. Consequently, in a dynamic RT process, there are two scenarios: either a bound
state exists, in which case, Fano resonances exist for any barrier width, or a QBS exists, and the barrier
should be narrow enough for the Fano resonance to appear. In both cases, the incoming particle’s
frequency must be lower than the oscillating well’s frequency. In this work, these resonances are
investigated in detail, and both exactly numerically and approximated analytical expressions are
derived for both the weak and strong oscillating amplitude regimes. One of the conclusions is that,
when the oscillating frequency is low enough, multiple Fano resonances can appear by varying the
barrier’s width. Since these resonances are very sharp and zero transmission can easily be detected,
this property can be used as a very accurate method for measuring the barrier’s width, even when
the particle’s de-Broglie wavelength is much larger than the barrier’s width.

Keywords: resonant tunneling; quantum dynamics; dynamic resonant tunneling; suppression of
tunneling; coherent destruction of tunneling; total reflection; Fano resonance; quasi-bound state

1. Introduction

Tunneling and Resonant Tunneling are quantum processes that are extremely sensitive
to a particle’s energy. Consequently, when a system incorporates dynamic structures, its
behavior can become much more complex. In general, perturbations, which are introduced
into the system, usually tend to increase the tunneling current. This behavior manifests
in activation [1–9] and the elevator effect [8,9]. However, in some cases, for some specific
energies, the tunneling current can be substantially suppressed [10–20]. In particular, it has
been shown that 100% reflection occurs in certain cases. This conduct is related to Fano
resonances [21–28].

Recently, a different presentation of current suppression and activation was demon-
strated. It was shown that, when a particle penetrates an opaque barrier via a varying
well, the process can be regarded as if the particle is trapped in a Quasi-Bound Super State
(QBSS) [14], in a similar fashion to a Resonant Tunneling process, in which the particle is
trapped in a Quasi-Bound State [29–32]. The difference between these two scenarios is that
the QBSS consists of multiple sub-quasi-states. Consequently, when an incoming particle’s
energy matches a high-amplitude spectral component of the QBSS, a high transmission
occurs, and similarly, when no match occurs, the current is suppressed. It was noted that,
at these energies, a destructive interference occurs in the well, which prevents particles
from dwelling in this well, therefore preventing a high transmission. In these cases, the
current decreases drastically; however, it is not necessarily reduced to zero, i.e., it does not

Appl. Sci. 2023, 13, 6767. https://doi.org/10.3390/app13116767 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116767
https://doi.org/10.3390/app13116767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5313-3486
https://doi.org/10.3390/app13116767
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116767?type=check_update&version=1


Appl. Sci. 2023, 13, 6767 2 of 18

necessarily show Fano behavior. In fact, the same system may exhibit both behaviors for
different energies in different cases.

A Fano resonance occurs due to interference between a bound state and a continuum
state. It is, therefore, not straightforwardly clear how a Fano resonance appears in a system
that exhibits RT behavior. After all, an RT requires a quasi-bound state and not a bound one.

The width of the barrier affects the resonance energy; however, in most research, this
phenomenon has received little attention, mainly due to two reasons: first, in a resonant
tunneling process, the barrier is usually opaque, and therefore its specific width has a
negligible effect on the resonance energy (which predominantly depends on the shape of
the potential well), and second, by narrowing the barrier, the resonance’s spectral width
increases (i.e., the particle’s dwelling time in the well decreases); therefore, the resonance
nature of the process fades away. Therefore, when the barrier is too narrow, it is fruitless
to analyze the process as an RT one. This is indeed true in the stationary case, but in the
dynamic case, the situation is much more complicated. Some of these effects have been
observed in recent research [21,27].

We will show, in the following sections, that, by narrowing the barrier, not only does
the resonance energy decrease drastically, but it can also be negative. Therefore, the barrier’s
width shrinkage can turn a resonance state into a bound one. Clearly, in a stationary
scattering case, the bound state cannot be reached; however, in a dynamic case, the quasi-
bound state generates a Fano resonance, which causes 100% reflection. Moreover, since the
particle can lose/gain any number of energy quanta, then, if the oscillating frequency is
low enough, by changing the barrier’s width, multiple Fano resonances can occur for the
same incoming particle’s energy.

2. The Transition from a Resonant State to a Bound State and Its Dependence on the
Barrier’s Width

In a stationary Resonant Tunneling process, particles tunnel through an opaque barrier
via a quasi-bound state (QBS). A QBS can be formed by locating a potential well within
a barrier, as described by the following stationary Schrödinger equation:[

− ∂2

∂x2 + U(x)−Ω + αδ(x)
]
ψ(x) = 0 (1)

where U(x) =
{

U
0
−L < x < L

else
is the potential barrier and the potential well is described

by a delta function potential. Hereinafter, we use, for simplicity, but without a loss
of generality, the units } = 1 and 2m = 1 for the Planck constant and the electron’s
mass, respectively.

The system schematic is presented in Figure 1.
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Figure 1. Particles with energy Ω propagate through a rectangular potential barrier with a delta
function potential well at its center. The barrier height is U and its width is 2L.
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It should be noted that a delta function potential is an excellent approximation for a
narrow well, as long as the width of the well is narrower than the De-Broglie wavelength
of the QBS [32].

The solution of Equation (1) is:

ψ(x) = ψh(x) +
αψh(0)

1− αG+
Ω(0)

G+
Ω(x > L) (2)

where ψh(x) is the homogeneous solution (without the well) and G+
Ω(x) is the outgoing

Green function of Equation (1) without the well. For a rectangular barrier, the Green
function at x = 0 is [11,33]:

G+
Ω(0) = − 1

2ρ
coth

(
ρL− iarctan

(
k
ρ

))
(3)

where k ≡
√

Ω and ρ ≡
√

U −Ω.
In the case of an extremely opaque barrier, i.e., L

√
U � 1, the Green function at x = 0

is approximately G+
Ω(0) ∼= −1/2ρ and the Resonance Energy of the Opaque Barrier (REOB)

is simply:

ΩR(L→ ∞) ≡ U − α
2

4
(4)

When the incoming particle’s energy is equal to this resonance energy, the particle will
tunnel through the barrier via the QBS with a high probability. Equation (4) is derived for
a completely opaque barrier. In general, the resonance energy is a function of the barrier’s
parameters (potential height U and width L). In particular, the resonance energy decreases
when the barrier becomes narrower.

The relation between the resonance energy and the barrier’s width can be derived from
the denominator of Equation (2) (the real part determines the energy and the imaginary part
determines its spectral width), i.e., the energy that solves 1− αG+

Ω(0) = 0 is the resonance
energy. In solving for L(ΩR) to obtain a generic expression for the barrier’s width as
a function of the resonance energy, we find:

L(ΩR) = −
1
ρR

(
arctanh

[
α

2ρR

]
+ arctanh

(
−i

kR
ρR

))
(5)

where kR ≡
√

ΩR and ρR ≡
√

U −ΩR.
Equation (5) shows that, for ΩR = U − α2/4, the barrier’s width is infinite; however,

for any ΩR < U − α2/4, there is a barrier with a certain width, which supports this
resonance energy, and the lower the resonance energy, the narrower the barrier must be. In
particular, at a certain width, the barrier’s resonance energy is zero:

L0 ≡ L(ΩR = 0) = U−1/2arctanh
(
|α|/2

√
U
)

(6)

Below this value, i.e., for L < L0, the resonance energy becomes negative and the
resonance state turns into a bound state.

In Figure 2, the transmission probability (a contour presentation) is presented as
a function of both the width of the barrier L and the particle’s energy Ω. Equation (5) is
represented by a red dashed curve. As can be seen, the resonance energy presented by
Equation (5) agrees with a high transmission coefficient.
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Figure 2. Contour plot of the transmission coefficient of the barrier as a function of both the particle’s
energy Ω and the barrier’s width L (for the case αU−1/2 = −1.9). The darker the color, the higher
the transmission coefficient. The dashed red curve represents Equation (5). In the positive energy
regime it represents a resonant state and in the negative energy regime it represents a bound state.

When the barrier gets narrower, the spectral width of the resonance gets wider and
the center of the spectrum shifts to a lower energy. This behavior is seen in the black area
in Figure 2. Eventually, for a width smaller than L0 (Equation (6)), this energy becomes
negative and the resonance state turns into a bound state. Therefore, although the well is
elevated by the barrier’s presence and despite the fact that only the width of the barrier
has changed (and not its height), the resonance energy drastically decreases and can even
be negative. Consequently, if the barrier is narrow enough, the resonant state becomes
a bound state, despite the fact that the well’s energy is lower than the barrier’s height
(α2/4 < U).

3. Total Reflection via Narrow Barriers

From the stationary problem above, we learn that barrier narrowing shifts the reso-
nance to lower energies and even negative ones. Clearly, in this stationary scenario, it is
not very useful, since there is no access to the bound state and the resonance states are too
spectrally wide. However, when the well oscillates, the particle can lose oscillation quanta
and be transferred, at least temporally, to the bound state. Consequently, a Fano resonance
can be generated.

In the dynamic scenario, an oscillating component is added, and the Schrödinger
equation reads:

− ∂2

∂x2ψ+ U(x)ψ+ (α+ β cosωt)δ(x)ψ = i
∂ψ

∂t
(7)

The dynamic system is illustrated in Figure 3.
The solution of Equation (7) can be written as a superposition of discrete energy

expressions:

ψ(x, t) =


ϕ+

0 exp(−iΩ0t) +
∞
∑

n=−∞
rnϕ

−
n exp(−iΩnt) x < 0

∞
∑

n=−∞
tnϕ

+
n exp(−iΩnt) x > 0

(8)
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where ϕ±n are the homogeneous solutions of waves that propagate from left to right (ϕ+
n )

and from right to left (ϕ−n ), i.e.,

ϕ+
n → τΩn exp[iknx− iΩnt] ( f or x→ ∞) (9)

ϕ−n → τΩn exp[−iknx− iΩnt] ( f or x→ −∞) (10)

where kn =
√

Ωn, Ωn ≡ Ω + nω. |τΩ|2 is the probability of penetrating the stationary
barrier with energy Ω, and finally, rn and tn are the modes’ coefficients. It is worth noting
the difference between the coefficients of the modes, i.e., rn and tn, which need to be found,
and the transmission coefficient of a single mode τΩn , which is obtained by solving the
stationary case.
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Figure 3. Incoming particles propagate through a potential barrier with an oscillating part at its
center. Upper panel: the particles are transmitted through the barrier, where the spectrum is split
into multiple discrete energies. Lower panel: when the barrier is narrower, then for specific barrier
widths, Fano resonances appear and the particles are totally reflected (with 100% probability).

Using the boundary conditions at x = 0:

ψl(0) = ψr(0) (11)

ψ′ l(0)−ψ′r(0) = −(α+ β cos(ωt))ψr(0) (12)

where the tags stand for spatial derivations.
The problem reduces to the following difference equation:

−χnδ(n) = (α− χn)sn +
β

2
(sn+1 + sn−1) (13)

where sn ≡ tn
(
ϕ+

n /ϕ+
0
)
,

χn ≡
ϕ+

n
′

ϕ+
n
− ϕ

−
n
′

ϕ−n
=

1
G+

n (0)
≡ −2ρntanh[ρnL− iarctan(kn/ρn)] (14)

G+
n (0) ≡ G+

Ωn
(0) is the outgoing Green function of Equation (7) at x = 0 and

ρn =
√

U −Ωn.
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Finally, the current through the barrier is:

j = 2<
∞

∑
n=−∞

|tn|2|τn|2kn (15)

where < represents the real part.
The current Equation (15), as a function of the barrier’s width L, is presented in

Figure 4 for a given incoming energy Ω.
In Figure 5, the current is presented as a function of the particle’s incoming energy Ω

and the barrier’s width L for the same parameters as in Figure 4 (except Ω). The red color
represents a high current, while the blue color represents a low current.

As can be seen in Figures 4 and 5, when the incident particle’s energy is lower than
the oscillating energy Ω < ω, multiple solutions of zero current exist, i.e., several Fano
resonances appear for different values of L.
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Figure 4. The current (Equation (15)) as a function of the barrier’s width L is presented for
Ω/U = 0.04. The vertical red lines represent the analytical solution of Equation (27) for m = 2,
3 . . . 8. The other parameters are: αU−1/2 = −1.8, βU−1/2 = 0.4, andω/U = 0.1. This simulation
is within the regime ΩR < 0 (Equation (16)).

When the current is presented as a function of both L and Ω, the full structure of these
Fano resonances appears. The narrower the barrier, the thinner the Fano resonances, and
the lower the oscillation amplitude, the narrower the Fano resonances. Therefore, high-
order resonances are very narrow and hard to detect. The zero currents are presented by
the multiple curved lines. The zero-current curve (ZCC) on the right, i.e., for LU1/2 >> 1,
approximately agrees with Equation (5) for L(Ω− 3ω). It should be noted that, since during
the dynamic process, the instantaneous resonance energy varies in time, the resonance
energy (Equation (4)) should be replaced with the minimum resonance energy, i.e.,

ΩR ∼= U − (|α|+ β)2/4 (16)
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Figure 5. The current (in logarithmic scale) as a function of the particle’s incoming energy Ω and the
barrier’s width L. Red color represents high current while blue represents low current. The analytical
results are presented on the lower panel. The black dashed curves are the analytical solutions of
Equation (27) for m = 2, 3 . . . 8, and the dotted black curve is the solution of Equation (17) for m = 3
and ΩR, according to Equation (16). The simulation was based on the same parameters as in Figure 4.

Moreover, the other curves approximately agree with L(Ω−mω) for m = 3, 4 . . ..
That is, these ZCCs can be regarded approximately as a folded curve. The curves cannot
exceed the oscillating frequency Ω < ω. The number of ZCCs (N) is finite, which can be
evaluated by dividing the bare well’s (i.e., without the barrier) depth by the oscillating
frequencyω, i.e., N ∼= α2/4ω. In the case presented in Figures 4 and 5, indeed, N ∼= 8.

Equation (5) can be used to distinguish between two scenarios. There are two
regimes in which L has a real value. In the first scenario, the REOB is negative, ΩR < 0
(Equation (16)), in which case, a real solution exists, provided ΩR −U < Ω− nω < ΩR.
In this scenario, the Fano resonance exists even for very opaque barriers, i.e., L can be
arbitrarily large. In the second scenario, the REOB is positive, 0 < ΩR < U, in which case,
a real solution exists, provided ΩR −U < Ω− nω < 0. In this scenario, Fano resonance
exists only for finite-width barriers. Specifically, L must be narrower than L0 (Equation (6)).

The second scenario is presented in Figures 6 and 7. It can clearly be shown that,
unless the barrier’s width is narrower than a certain cut-off value, no Fano resonances
appear. In particular, this scenario does not support a Fano resonance (and hence no zero
transmission) in the opaque barrier regime. The discrepancy between the cut-off value of
the barrier’s width and L0 (Equation (6)) is due to the fact that Equation (6) was calculated
assuming β = 0. It will be shown that, when β is weak, there is an excellent agreement
with Equation (6).
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Figure 6. Same as Figure 4 but for the amplitude βU−1/2 = 0.19, i.e., for the second scenario
(0 < ΩR < U). The vertical dashed red lines represent the analytical solution of Equation (27) for
m = 1, 2, 3, and 4.
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The multiple solutions of Ln can be derived qualitatively by replacing Ω with Ω− nω
in Equation (5), yielding:

Ln ∼=
arctanh

(√
U−ΩR

U−Ω+nω

)
− arctanh

(√
−Ω+nω

U−Ω+nω

)
√

U −Ω + nω
(17)
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These solutions are plotted in Figure 8 for 0 < Ω < ω for two scenarios. It is
worth noting the qualitative similarity between the upper/lower panels of Figure 8, and
Figure 5/Figure 7, respectively. The folding nature of Equation (17) can be presented by
the following relation:

Ln(Ω) = L0(Ω− nω) (18)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19 
 

arctanh arctanhR

n

U n
U n U n

L
U n

     
          

 
 

(17)

These solutions are plotted in Figure 8 for 0      for two scenarios. It is worth 
noting the qualitative similarity between the upper/lower panels of Figure 8, and Figure 
5/ Figure 7, respectively. The folding nature of Equation (17) can be presented by the fol-
lowing relation: 

   0nL L n     (18)

 
Figure 8. Multiple solutions of Equation (17) for two cases. In the upper panel, Equation (17) is 
presented for m = 3, 4…10 for the parameter 1 2 2.2U     ( 0R  ). In this scenario, the Fano res-
onance exists even for very opaque barriers, where L can be arbitrarily large. In the lower panel, 
Equation (17) is presented for m = 1, 2…5 and for the parameter 1 2 1.8U     ( 0R  ). In this 
scenario, the Fano resonance exists only for finite-width barriers. In both cases, 0    with the 
parameter 1.0/  U . 

4. Exact Numerical Solution and Approximate Analytical Solution for the  
Zero-Transmission Solution 

Equation (13) can be rewritten in a matrix form M t v , where  

2

1

0

1

2

/ 2
/ 2 / 2

/ 2 / 2
/ 2 / 2

/ 2

M





 
     
     
 

      
    
 

    
 
 

 



 

 and 0

0
0

0
0

 
 
 
 
 

  
 
 
 
 
 

v





 (19)

and  2 tanh arctan /n n n n nL i k          (Equation (14)). 
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Figure 8. Multiple solutions of Equation (17) for two cases. In the upper panel, Equation (17) is
presented for m = 3, 4 . . . 10 for the parameter αU−1/2 = −2.2 (ΩR < 0). In this scenario, the Fano
resonance exists even for very opaque barriers, where L can be arbitrarily large. In the lower panel,
Equation (17) is presented for m = 1, 2 . . . 5 and for the parameter αU−1/2 = −1.8 (ΩR > 0). In this
scenario, the Fano resonance exists only for finite-width barriers. In both cases, 0 < Ω < ω with the
parameterω/U = 0.1.

4. Exact Numerical Solution and Approximate Analytical Solution for the
Zero-Transmission Solution

Equation (13) can be rewritten in a matrix form Mt = v, where

M =



. . . . . .

. . . α− χ−2 β/2
β/2 α− χ−1 β/2

β/2 α− χ0 β/2
β/2 α− χ1 β/2

β/2 α− χ2
. . .

. . . . . .


and v =



...
0
0
−χ0

0
0
...


(19)

and χn ≡ −2ρntanh[ρnL− iarctan(kn/ρn)] (Equation (14)).
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Let us further define

M(−N)
(−1) =



α− χ−N β/2

β/2
. . . . . .
. . . β/2

β/2 α− χ−2 β/2
β/2 α− χ−1

 (20)

and

M(1)
(N)

=



α− χ1 β/2
β/2 α− χ2 β/2

β/2
. . . . . .
. . . β/2

β/2 α− χN

 (21)

Then, the solution of the zero mode t0 reads (for details see ref. [34]),

t0 = −χ0 lim
N→∞

∣∣∣M(−N)
(−1)

∣∣∣∣∣∣M(1)
(N)

∣∣∣∣∣∣M(N)
0

∣∣∣ (22)

Therefore, zero transmission is reached when∣∣∣M(−N)
(−1)

∣∣∣ = 0 (23)

It follows from Equation (11) and current conservation that, when Equation (22) van-
ishes, the current must vanish as well. Therefore, the solution of Equation (23) corresponds
to the multiple solutions for which the current vanishes.

For any given energy, several solutions exist for different values of L. Nevertheless,
we can straightforwardly deduce that Equation (23) is valid, provided that the incoming
particle’s energy is lower than the oscillating frequency, i.e., Ω < ω. Otherwise, some of
the k−m (for 1 < m < N) are real, and if this is the case, then the term

χ−m = −2ρ−mtanh[ρ−mL− iarctan(k−m/ρ−m)] (Equation (14)) (which are the only
elements in the matrix (20) that can have imaginary components) is not necessarily real
(noting that all the ρ−m terms are real). Consequently, the determinant is not real and
cannot vanish. This fact is consistent with the fact that the Fano resonances are limited by
Ω < ω, and with the folding nature of the periodicity, a 2D map structure qualitatively
similar to Figure 8 appears.

5. Weak Modulation Regime

In the weak modulation amplitude (β) regime at the vicinity of α ∼= χ−m, the determi-
nant of (20) can be written as approximately:∣∣∣M(−N)

(−1)

∣∣∣ = (α− χ−m)
∣∣∣M(−N)

(−m−1)

∣∣∣∣∣∣M(−m+1)
(−1)

∣∣∣− β2

4

(∣∣∣M(−N)
(−m−1)

∣∣∣∣∣∣M(−m+2)
(−1)

∣∣∣+ ∣∣∣M(−N)
(−m−2)

∣∣∣∣∣∣M(−m+1)
(−1)

∣∣∣)+ O
(
β4
)

(24)

which can also be rewritten as:

∣∣∣M(−N)
(−1)

∣∣∣ ∼= N

∏
m′=1

(α− χ−m′)

[
1− β

2

4
1

(α− χ−m)

(
1

(α− χ−m−1)
+

1
(α− χ−m+1)

)
+ O

(
β4
)]

(25)
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Therefore, the transmission vanishes (Equation (23) is valid) up to the second order in
β, provided that:

1 ∼=
β2

4
1

(α− χ−m)

(
1

(α− χ−m−1)
+

1
(α− χ−m+1)

)
(26)

Since χn is a function of L, one can find an expression for the relation between the
zero-transmission energy Ω and the width of the barrier L:

Lm(Ω) ∼=
arctanh

{
1

2ρ−m

[
β2

8i

(
1

(k−m−k−m−1)
+ 1

(k−m−k−m+1)

)
− α

]}
+ iarctan

(
k−m
ρ−m

)
ρ−m

(27)

In the regime where the barrier is opaque, i.e., LU1/2 >> 1, Equation (27) can be
approximated by:

(α+ 2ρ−1) ∼= 1
(α+2ρ−2)

(
β
2

)2
, and when β << α, it can be solved for the energy:

Ωc ∼= U +ω− 1
4

[
α− (β/2)2

α+ 2
√
ω+ α2/4

]2

(28)

Expression (27) is presented in Figures 4–7. The discrepancy between this expression
and the numerical results, which is larger for low orders, is due to the fact that Equation (27)
is derived for a weak β. In the following Figures 9–12, since β is smaller, there is a better
agreement with Equation (27).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

     
2

1 1

1 1 11
4 m m m    

 
          

 (26)

Since n  is a function of L , one can find an expression for the relation between the 
zero-transmission energy   and the width of the barrier L : 

 
   

2

1 1

1 1 1arctanh arctan
2 8

m

m m m m m m
m

m

ki
i k k k k

L



       



                         


 
(27)

In the regime where the barrier is opaque, i.e., 1/2 1LU  , Equation (27) can be ap-
proximated by: 

   

2

1
2

12
2 2



          
, and when    , it can be solved for the energy: 

 
22

2

/ 21
4 2 / 4

c U
 

     
    

 (28)

Expression (27) is presented in Figures 4–7. The discrepancy between this expression 
and the numerical results, which is larger for low orders, is due to the fact that Equation 
(27) is derived for a weak  . In the following Figures 9–12, since   is smaller, there is a 
better agreement with Equation (27). 

 
Figure 9. The current as a function of the barrier’s width L  for / 0.04U   in the second scenario 
regime ( 0 R U   ). The dashed red vertical lines are the solutions for zero transmission (Equation 
(27) for m = 1, 2). The other parameters are: 1 2 1.8U    , 1 2 0.03U   , and / 0.1U  . 

j/2
k 0

Figure 9. The current as a function of the barrier’s width L for Ω/U = 0.04 in the second sce-
nario regime (0 < ΩR < U). The dashed red vertical lines are the solutions for zero transmission
(Equation (27) for m = 1, 2). The other parameters are: αU−1/2 = −1.8, βU−1/2 = 0.03, and
ω/U = 0.1.
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Figure 10. The current as a function of the particle’s incoming energy Ω and the barrier’s width L in
the second scenario regime (0 < ΩR < U). The lower panel is an enlargement of the upper one. The
white dashed curve is the solution of Equation (5), where L0 is Equation (6). The dashed black curves
are the solution for zero transmission (Equation (27)). The parameters are the same as in Figure 9.
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Figure 11. The current as a function of the barrier’s width L is presented for Ω/U = 0.04. The vertical
dashed red lines represent the analytical solution of Equation (27) for m = 2, 3. The other parameters
are: αU−1/2 = −2.1, βU−1/2 = 0.08, andω/U = 0.1, i.e., ΩR < 0.
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Figure 12. The current as a function of the particle’s incoming energy Ω and the barrier’s width L.
The black dashed curves on the lower panel are the analytical solutions of Equation (27) for m = 2, 3.
These are the same parameters as in Figure 11.

In Figures 9 and 10, the second scenario (i.e., 0 < ΩR < U) is presented for a weak β.
In Figures 11 and 12, the first scenario (i.e., ΩR < 0) is presented for a weak β. As can be
seen in both cases, the agreement with the theoretical prediction (Equation (27)) is excellent.

6. Narrow Barrier Regime

In the narrow barrier regime, i.e., when the width of the barrier is considerably
narrower than the incoming particle’s wavelength, Equation (26) can be rewritten as:

1 ∼=
β2

4
1

(α0 − χ−m)

(
1

(α0 − χ−m−1)
+

1
(α0 − χ−m+1)

)
(29)

where α0 = α+ UL. In which case, Ω ∼= mω− α2
0

4 −
β2

8 , or equivalently:

Ω ∼= mω− (α+ ULm)
2

4
− β

2

8
(30)

This expression relates the different barrier widths Lm, which yield Fano resonances,
to the same energy Ω. In what follows, we will investigate the implications of this.

7. Strong Oscillations and Opaque Barrier Regime

In the wide barrier regime, i.e., when the barrier is opaque, the dependence of the
resonance energy on the barrier’s width L is exponentially small and can therefore be
neglected. Furthermore, in this regime, the particle is approximately trapped in the well and
the QBSS is well defined. It has been shown that the transmission via this state is extremely
sensitive to the incoming particle’s energy (Ω). For some values of Ω, which are consistent
with the spectral component of the QBSS, the QBSS is highly excited and, consequently, the
tunneling current is very high. Similarly, for other energy values, which are inconsistent
with the spectral components of the QBSS, the particle cannot be trapped and the tunneling
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current is highly suppressed. These scenarios have been well investigated [10,14,18]. In
particular, it has been found that current suppression occurs for the energies:

t2∫
t1

(
Ω−ΩR

(
t′
))

dt′ =
(

m− 1
4

)
π (31)

where, for the case under study, i.e., Equation (7),

ΩR(t) = U − (α+ β cos(ωt))2

4
(32)

is the instantaneous resonance energy of the well and t1 and t2 are the solutions of
Ω = ΩR(t) [10,14,18], i.e., these are the instances in which the incoming particle’s en-
ergy coincides with the instantaneous resonant state’s energy. The solutions of (31) for the
case (32) are:

Ωm ∼= U −
(
α2

4
+
β2

8

)
−
[
|α|β

π
− 2ω

(
m− 1

4

)]
(33)

Similarly, for a given incoming energy, the oscillating amplitudes, which correspond
to the current suppression, are:

βm = −4|α|
π

+

√
16α2

π2 + 8
(

U −Ω− α
2

4
+ 2ω

(
m− 1

4

))
(34)

However, although this expression has been found to be in good agreement with
numerical simulations, it only predicts current suppression. It does not predict zero current.
The reason for this is that, as has been explained in refs. [10,11], at the suppression energies,
only the upper half of the spectrum (Ωout ≥ Ωin) is suppressed. Therefore, in a case where
the incoming energy is higher than the oscillating frequency Ω > ω, the lower part of the
spectrum still includes propagating modes, since the particle can lose a quantum ω and
still escape from the well. To prevent this, the existence of a Fano resonance (and zero
transmission) requires the additional condition (additional to (31)) that Ω < ω, in which
case, the output spectrum consists of only negative energies. Therefore, positive energies
cannot propagate and the incoming particles are completely reflected. This required
additional condition is consistent with the explanation that follows Equation (23). The
difference between these two kinds of suppressions (low current vs. zero current) is
illustrated in Figure 13, where the current, as a function of the incoming energy Ω and a
function of the oscillation amplitude β, is presented. When the incoming energies are lower
than the oscillation frequency Ω < ω, a total reflection appears for appropriate amplitudes.
In the lower panel, the analytical results of Equation (33) are presented by dashed black
curves above the numerical results. The analytical results represent suppression scenarios;
however, the suppressions’ characteristics are fundamentally different in the regions Ω < ω

and Ω > ω. In the region Ω < ω, the suppression manifests in 100% reflection, whereas in
the region Ω > ω, the current suppression is substantial, albeit not entirely zero.

Figure 14 illustrates the difference between the two regimes. The current is plotted
as a function of the oscillation amplitudes for two adjacent incoming energies. One of the
energies is slightly lower than the oscillation frequencyω and the other is slightly higher
than the oscillation frequency. Although the two plots look alike, they are fundamentally
different. When Ω/ω = 0.99, the minima are exactly zero, while, when Ω/ω = 1.01, the
suppression is indeed substantial, but does not go to zero. Moreover, as can be seen with the
vertical red lines, the analytical expression of the suppression amplitude βm (Equation (34))
agrees with the numerical results.
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Figure 13. The current as a function of the incoming energy and the oscillation amplitudes. On the
lower panel, the black dashed curves represent the analytical expressions (Equation (33)) and the
horizontal line represents the Ω = ω boundary. The parameters are LU1/2 = 5, αU−1/2 = −1.9 and
ω/U = 0.1.
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Figure 14. Comparison between the two types of suppressions: the current as a function of the
oscillation amplitude is presented for two adjacent incoming energies, Ω/ω = 1.01 with a thick
blue dotted curve and Ω/ω = 0.99 with a black curve. The vertical red lines are the solution of βm
(Equation (34)) for m = 1, 2 . . . 12. These are the same parameters as in Figure 13.

8. High Precision Interferometry

When an object is measured with a wave beam, then usually, the shorter the wave-
length, the better the resolution. In the case of a simple rectangular barrier, the interference
between the reflections from its boundaries determines the dynamic range of the measure-
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ment. Therefore, if a small object with dimensions ∼ ∆L is measured, then, unless the
particle’s frequency is of the order ∼ ∆L−2, the dynamic range would be minuscule and of
the order of (∆L/λ)2 � 1, where λ is the particle’s de-Broglie wavelength.

Ref. [18] suggested fabricating a quantum device like the one presented in Equation (7)
and Figure 3 as a frequency-controlled quantum transistor. The oscillations can be confined
in space using well-known technology (see, for example, ref. [35]). The present work
teaches that the dynamic range of these devices can be increased substantially.

The Fano nature of these resonances shows that the dynamic range is almost 100%,
regardless of the barrier’s width and oscillating frequency.

In the case where the oscillating part (width ε and height V) and measured object
(width L and height U) are very narrow in comparison to the incoming particle’s wave-
length, Equation (30) can be simplified to (since now α0 ∼= Vε):

Ω ∼= mω− (Vε+ ULm)
2

4
− β

2

8
(35)

This equation can be rewritten as:

Ω ∼=
[
− (Vε+ ULm)

2

4
− β

2

8

]
modω (36)

where mod represents the modulo operation.
In the case where α0 >> ULm, then the widths Lm, for which zero transmission is

reached, must maintain:

Ω ∼= mω−
α2

0 + 2α0ULm

4
− β

2

8
(37)

Therefore, the difference between the adjacent widths is Lm − Lm+1 = ∆L ∼= 2ω
α0U .

Or, equivalently, a change δL in the barrier’s width will change the zero-transmission
energy by:

∆Ω ∼=
VεU

2
δL (38)

In real physical units, Equation (38) can be written as ∆Ω ∼= m
}3 VUεδL, where m

represents the effective mass in the material, which, for GaAs (where the effective mass is
0.067 times the mass of the free electron [35]), Equation (38) can therefore be written as:

∆Ω[Hz] ∼= 1.5× 1015VUεδL (39)

In Equation (39), the potential heights V and U are measured in eV and their widths ε
and δL are measured in nanometers. The change in the frequency is measured in Hz.

Therefore, if the oscillating part and measured object have a potential of ~0.01 eV
and a width of ~1 nm, then every change of 0.01 nm (0.1 A ˙) varies the zero-transmission
frequency by more than 1.5 GHz. Clearly, this result is valid, provided that the oscillating
frequency is higher than this value. These values are easily achievable using contemporary
electronics. Since the frequency can be measured with great accuracy, this device can
exhibit an extremely high precision. Furthermore, unlike ordinary measurements, as was
described at the beginning of this section, where high energy is required to achieve a high
precision, such a requirement is not necessary and does not limit the performance of this
device, which can operate in low energies.

Furthermore, since the measurement is taken where the current is zero, this device
is highly resilient against different kinds of noises, especially shot noise, which should
vanish at these points, thus having a negligible effect on the measurement. The presence of
thermal noise (which can be reduced by lowering the temperature) would require more
extended measurement periods (for averaging), in which case, a minimum current should
be sought instead of a zero current, but Equation (39) should still be valid.
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Such a device can be applied in several configurations. It can be used as a highly
sensitive frequency-controlled transistor, where minuscule variations in the frequency can
change the current drastically, or alternatively, it can be used as a high-precision measure-
ment device for measuring nanostructures’ dimensions with sub-nanometer precision.

9. Conclusions and Summary

The tunneling current through a barrier via an oscillating well was investigated
both numerically and analytically. While previous works have focused on the difference
between high transmission (activation) and low transmission (current suppression), this
work focused on the difference between current suppression and zero transmission. Since
zero transmission is equivalent to a Fano resonance, it requires interference with a bound
state. The following are the main conclusions:

(A) A bound state can exist even when the well’s bound state is smaller (in absolute terms)
than the height of the barrier (α2/4 < U), and an analytical expression was derived
to relate the resonance state to the barrier’s width L(ΩR). It was shown that the
resonance state decreases when the barrier’s width shrinks. Therefore, if the barrier is
narrow enough, the resonance state would eventually turn into a bound state.

(B) When an oscillating term is introduced, it was shown that zero transmission (and
therefore zero current) requires the incoming particle’s energy to be lower than the
oscillating energy, i.e., Ω < ω.

(C) Since the particle can gain/lose oscillating quanta, for any given incoming energy,
multiple solutions of the barrier’s width exist, and from (A) and (B), it follows that
the solution curve is folded. Therefore, the solutions can be retrieved qualitatively:
Ln(Ω) = L0(Ω− nω).

(D) It was found that there are two different scenarios:

(1) When the Resonance Energy of the Opaque Barrier (REOB) is negative. In this
scenario, the Fano resonance (zero transmission) occurs even for an infinitely
wide barrier.

(2) When the REOB is positive, the barrier must be narrower than a certain value
for a Fano resonance to appear.

(E) An analytical expression was derived for the barrier’s width, which supports Fano
resonances Lm(Ω) up to the second order in the oscillation amplitude β2, and it was
found to be in high agreement with exact numerical results.

(F) In the case where the oscillation amplitude is large, one can use the method that was
applied to the Sisyphus effect and the QBSS method [14,17], along with the additional
requirement of Ω < ω, calculating the Fano criteria with a high agreement with
numerical simulations.

(G) Finally, it was shown that, in the case of a very narrow barrier, a simple analytical
expression relates the zero-transmission energy to the multiple barrier widths Ln(Ω),
which support the Fano resonance. This expression shows that the energy, which can
easily be measured, is extremely sensitive to the barrier’s width, and can therefore be
used for high-precision measurements.
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