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Abstract: In the last few years, induction motor fault detection has provoked great interest among
researchers because it is a fundamental element of the electric-power industry, manufacturing
enterprise, and services. Hence, considerable efforts have been carried out on developing reliable,
low-cost procedures for fault diagnosis in induction motors (IM) since the early detection of any failure
may prevent the machine from suffering a catastrophic damage. Therefore, many methodologies
based on the IM startup transient current analysis have been proposed whose major disadvantages
are the high mathematical complexity and demanding computational cost for their development.
In this study, a straightforward procedure was introduced for identifying and classifying faults in
IM. The proposed approach is based on the analysis of the startup transient current signal through
the current signal homogeneity and the fourth central moment (kurtosis) analysis. These features
are used for training a feed-forward, backpropagation artificial neural network used as a classifier.
From experimentally obtained results, it was demonstrated that the brought-in scheme attained high
certainty in recognizing and discriminating among five induction motor conditions, i.e., a motor
in good physical condition (HLT), a motor with one broken rotor bar (1BRB), a motor with two
broken rotor bars (2BRB), a motor with damage on the bearing outer race (BRN), and a motor with an
unbalanced mechanical load (UNB).

Keywords: artificial neural network; fourth central moment; homogeneity analysis; induction motors;
mechanical unbalance; one broken rotor bar; outer-race bearing fault; startup transient current; two
broken rotor bars

1. Introduction

Induction motors have stayed for many years as essential components of every elec-
trical and manufacturing process. Because of their low cost, stiffness, and quality of
performing consistently well, they are extensively used around the planet. The squirrel
cage induction motor (SCIM) provides the most common type of electromechanical drive
for commercial, domestic, and, the most important, industrial applications, corresponding
to around 85% of the electrical energy utilization in this area [1]. In the past decades,
profound efforts have been devoted to induction motor (IM) fault diagnosis due to the
economic and technical consequences of an unexpected downtime caused by a failure.
As any other electrical device, an IM is vulnerable to numerous kinds of failures that can
be classified as bearings’ faults, with 50% of incidence, rotor faults, with the 10%, and
stator-related faults, with the 40% [2]. Some of the symptoms produced by these failures
are excessive vibrations, unbalanced line currents and/or voltages, torque pulsations and
decreased average torque, and excessive heating, among others, aggravating efficiency
losses on any process. Stator faults have been lessened at present by improving the SCIM
design and its building quality. On the other hand, broken rotor bars (BRB), bearing faults
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(BRN), and rotor unbalance (UNB) constitute very common problems, particularly in heavy
duty systems [3]. Many efforts have been made to prevent catastrophic failures to occur
with the application of several techniques for fault detection; unfortunately, most of them
focus on detecting a single, specific fault separately, such as BRB [4], BRN [5], or UNB [6].
These techniques are usually based on monitoring and analyzing current and vibration
signals [7]. Motor current signature analysis (MCSA) is one of the most popular and
effective techniques for induction motor fault detection. It has the advantages of being
noninvasive and simple to carry out, coming out with good results during faulty condition
identification [8]. MCSA processes either the startup transient or the steady-state electric
current signal fed to the SCIM stator, which is gathered with a current clamp probe to carry
out early detection of these types of faults, trying to avoid unscheduled maintenance and
interruption of production lines, which yield to critical outcomes in produced merchandise
conditions, manufacturing prices, and security.

One of the most difficult faults to detect is broken rotor bars (BRB) because they usually
do not lead to an abrupt total motor failure but to a progressive deterioration that may not
be detected until the motor is severely damaged, causing a shutdown in the production
line. In [9], a new technique was developed using the fast Fourier transform (FFT), and
an index-based classifier was introduced for BRB diagnosis. Nevertheless, several studies
have shown that analyzing the steady-state signal might not be an effective approach for
identifying certain operational conditions such as voltage fluctuations, bearing failures,
noise, and mechanical load changes [10]. Therefore, non-stationary signal analysis for
SCIM fault detection has generated great interest in recent years. Some advantages of
analyzing and monitoring the induction motor (IM) current signals during its transient
state are related to the close relation between the signal noise and the rotor fast slip [7],
making it easier to identify BRB and other kinds of faults during this regime. However,
the greatest obstacle for this type of monitoring comes from the startup span, which is
very short; besides that, non-stationary signals represent a challenging task as they cannot
be analyzed separately in time or frequency domains. The short-time Fourier transform
(STFT) [11] and the Hilbert transform [4] are well-known techniques for identifying faulty
conditions in SCIM. On the other hand, the wavelet transform (WT) has attained great
interest among researchers for BRB fault detection, as well as the high-resolution technique
known as multiple signal classification (MUSIC) [12]. On the other hand, most of the
techniques utilized for identifying bearing faults (BRN) rely on the analysis of vibration
signals [5]. However, the STFT and the WT and its variations directly depend on the correct
selection of a suitable window size and a mother wavelet function, respectively, to perform
an effective signal analysis. Other works based on quadratic distributions (QD) [13–15]
provide a time–frequency representation for non-stationary signals. However, QD may
generate spurious frequencies called cross terms that compromise the correct identification
of the fault-related frequencies. In an equivalent way, mechanical unbalance fault (UNB)
diagnosis has been traditionally addressed by analyzing vibration signals [16–18], too.

Although the methods and techniques mentioned before are suitable for detecting
and diagnosing independent induction motor faults, most of them rely on the combination
of complex mathematical bases that demand specialized hardware and software for their
implementation in order to take the time-domain signals into the frequency domain and
back to the time domain. This requires a long execution time and computational resources
for the signal processing. Furthermore, some of these techniques involve the analysis of the
electric current from the three phases along with the multi-axis vibration signals from the
SCIM. Therefore, in this study, an approach based on the examination of just one phase
from the electrical current fed to the IM during its startup transient through homogeneity
and kurtosis computations was presented for detecting and classifying distinct induction
motor faults, i.e., one broken rotor bar (1BRB), two broken rotor bars (2BRB), a motor with
damage on the bearing outer race (BRN), and a motor with an unbalanced mechanical
load (UNB). The introduced methodology has a low computational complexity compared
to other methods in related literature for signal examination aimed to IM fault detection;
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hence, the proposed approach required a short processing time, making it feasible for being
utilized in online-processing applications.

The paper is organized as follows. Section 2 provides a theoretical background for fault
and indexes’ description. Section 3 describes the experimental setup. Section 4 presents the
obtained results, and, finally, some conclusions are provided in Section 5.

2. Theoretical Framework

This section provides a mathematical background about the induction motor faults
treated in this work, as well as the signal processing techniques utilized for analyzing the
startup electric current signal and the artificial neural network utilized for classifying the
IM operational condition.

2.1. Broken Rotor Bar Fault (BRB)

The BRB fault is the most common rotor-related failure that affects SCIM, and it is very
difficult to detect because, under this state, the motor operates apparently under normal
condition. BRB is mainly caused by overload and thermal imbalances, electromagnetic
forces and noise, vibrations, environmental damage, or by manufacturing processes.

An induction motor operating with BRB defects generates an opposing succession
of rotor currents caused by the asymmetries, which bring on a distinctive element in the
frequency spectrum of the stator current. The fault-related frequencies (fBRB) indicating the
presence of BRB are given by:

fBRBs = (1 − 2ks) fs, k = 1, 2, 3, . . . (1)

where k is an integer number, f s is the main frequency component of the electric power
supply, and the motor slip is represented by s, which takes values in the range from 0 to
1 [19].

2.2. Bearing Fault (BRN)

Characteristic frequency components are generated on the stator current when an
SCIM has a faulty bearing. These specific frequency components can be predicted since
they are related to both the power supply frequency and the mechanical system frequency.
When there is a fault in any component of a bearing, for instance, its inner raceway, outer
raceway, or rolling elements, specific components are induced in the vibration and current
signals of the machine. These characteristic frequencies associated to the bearing faults
depend directly on the bearing geometry and the machine rotating speed. A defect on the
outer race will cause an impulse every time the rolling elements make contact with the
defect. The outer raceway-related frequency can be theoretically determined by

fo =
n
2

fr

[
1 −

(
BD
PD

)
cos(β)

]
(2)

where n is the number of balls (rolling elements), fr is the shaft rotating frequency, BD is the
diameter of the balls, PD is the bearing race diameter, and β is the angle between the ball in
the race [20].

2.3. Mechanical Unbalance Fault (UNB)

When the mechanical load of the induction motor is not evenly disseminated, dis-
placing the center of mass out of the motor rotating axis, there is an unbalance fault. A
manufacturing defect is the principal cause of rotor unbalance; also, heating dilation has
an effect on the internal misalignment or the shaft deviation that produces an unbalanced
rotor. The unbalance state occurs when there is an uneven distribution of weight around
the rotor center of rotation, generating an unbalance force U, which is given by

U = m × r (3)
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where m is the mass and r is its eccentricity, which is the separation between the rotor center
of mass and its rotating axis. Unbalance force fluctuates with the rotating speed and drags
the rotor off from the stator center bore to a distinct position, which is known as the heavy
spot. Mutual inductances between stator and rotor loops get to be uneven because of the
rotor unbalance, which results in frequency components induced in the stator current that
are given by

funb = fs[1 ± k(1 − s)/p], k = 1, 2, 3, . . . (4)

where f s is the fundamental frequency of the electric current supply, k is an integer number,
s is the motor slip, and p is the number of pole pairs in the SCIM [21].

2.4. Homogeneity

In image classification, homogeneity is a textural attribute that estimates the variability
of the gray level in the pixels from an image. It is derived from the gray level co-occurrence
matrix (GLCM) [22], and it measures the closeness of the element distribution in the GLCM
regarding its diagonal. The GLCM shows how many times each gray level comes about at
a pixel situated at a predetermined geometric position regarding any other pixel through a
function of their gray levels. Homogeneity ranges from 0 to 1 and reaches its maximum
value when the diagonal elements have a value of 1. Homogeneity can be computed by

H = ∑
i

∑
j

1

1 + (i − j)2 p(i, j) (5)

where p(i, j) is the (i, j)th element of the normalized GLCM. Homogeneity can be used as an
index for fault detection and classification in SCIM since distinct fault-associated frequency
elements are induced in the electrical current signal, changing its uniformity [23].

2.5. Kurtosis

Kurtosis has the capability of measuring the deviation, i.e., tailedness, of a probability
distribution, and discriminating between distributions with different shapes; therefore, it
can be used as an efficient indicator for SCIM fault detection. Kurtosis is the fourth-order
moment that describes the shape of a probability distribution from a signal. If there is a
high impulsive component, with a sharp signal intensity distribution, then there is a high
kurtosis value. Kurtosis of a random event X is computed as

Kurt[X] =
1
N ∑N

i=1(xi − µ)4(
1
N ∑N

i=1(xi − µ)2
)2 =

µ4

σ4 (6)

where N is the number of samples, xi is the time raw-signal sample for i = 1, 2, . . . , N, and
µ is the mean of the random event X = [x1, x2, x3, . . . , xN].

2.6. Artificial Neural Networks

Artificial neural networks (ANN) provide a powerful and speedy tool for classification
problems. Figure 1 shows the basic design of ANN with two layers where each neuron
produces a unique number. Inputs are multiplied by corresponding weights and summed
up. The corresponding output is derived after adding a bias term to the in-between results.
The sum of the weighted inputs is transformed through a nonlinear activation function
to get the outcome of each corresponding neuron. Several triggering functions are viable;
however, in this work, from an empirical analysis, a hyperbolic tangent function was
used. The multilayer perceptron architecture is used in the ANN during experimentation.
It is made up of a feed-forward architecture composed of an input layer, one or more
inside layers, and one output layer. The number of inside layers and neurons on each
layer is determined by the dealt issue; in this case, the inputs correspond to the signal-
obtained features, i.e., homogeneity and kurtosis. The hidden layer is set heuristically
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by experimentation, whereas the number of output neurons is related to the distinct
categories being recognized. The ANN employed in this experimentation was trained
using a Levenberg–Marquardt backpropagation scheme [24].

Figure 1. (a) Typical scheme of an ANN, (b) operation of an artificial neuron in a layer.

3. Experimentation

The electrical current signal from the startup transient of a SCIM is used for identifying
and classifying a healthy motor (HLT) or a motor with a faulty condition from those
treated in this study, i.e., one broken rotor bar (1BRB), two broken rotor bars (2BRB),
outer-race faulty bearing (BRN), and mechanical unbalance (UNB). Figure 2 shows the
testbench configuration, which employs distinct 1-HP SCIM (model WEG 00136APE48T)
for assessing the feasibility of using the introduced procedure to identify and classify
distinct operational states.

Figure 2. Testbench used for assessing the proposed method for detecting and classifying distinct
faults in SCIM.

The motors under test received an electric power supply of 220 V ac at 60 Hz. They
had 28 bars in the rotor, two poles, and the used mechanical load was an ordinary alternator
that was equivalent to one-quarter of the SCIM nominal load. One phase of the three-phase
electric current supply signal was collected through an i200s, ac current clamp from Fluke.
The data acquisition system (DAS) used a 16-bit analog-to-digital converter (ADS7809). The
instrumentation system used a sampling frequency f 0 of 1.5 kHz, obtaining 4096 samples
in 2.7 s during the induction motor startup transient.
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For this study, one motor was kept in healthy condition, i.e., in good physical condition,
to be used as benchmark. The 1BRB and 2BRB conditions were generated in a synthetic
way by drilling one hole and two holes, respectively, with a diameter of 7.938 mm, without
damaging the rotor shaft, as shown in Figure 3a,b, respectively. On the other hand, the
bearing was synthetically harmed on its outer race by boring a 1.191-mm hole utilizing a
tungsten drill bit. Figure 3c displays the bearing model 6203-2ZNR that was synthetically
damaged to carry out the experimentation. The mechanical unbalance fault was generated
by adding a mass in one of the pulley arms. In a drilled hole with 8 mm of diameter, a
two-sided screw was placed and secured using female screws on both sides of the pulley
arm, as depicted in Figure 3d. A total of 100 trials were executed for each motor condition.

Figure 3. Artificially generated faults. (a) One broken rotor bar (1BRB); (b) two broken rotor bars
(2BRB); (c) bearing with outer race damaged (BRN), and (d) mechanical unbalance.

Figure 4 depicts the proposed methodology for multiple fault diagnosis and classifica-
tion. The electrical current signal of the startup transient was obtained by the current clamp;
then, it was adjusted and analog-to-digital transformed in the DAS. The resulting discrete
current signal was treated for obtaining the desired features, homogeneity and kurtosis,
which were used as entries to the artificial neural network, a multilayer perceptron with a
feed-forward architecture.

Figure 4. Proposed approach for distinct fault detection and classification.

Homogeneity and kurtosis values were obtained and normalized for each motor
condition by the definitions (5) and (6), respectively. For each motor condition, a statistical
analysis was performed. The mean (µ) and standard deviation (σ) of the homogeneity
and kurtosis values for a motor without harm (HLT), a motor with one separated rotor
bar (1BRB), a motor with two shattered rotor bars (2BRB), a motor with outer-race bearing
damage (BRN), and a motor with unbalance (UNB) show that the respective probability
density functions (PDF) partially cover each other in some degree, impeding a direct
classification. Figure 5 shows the PDF of homogeneity and kurtosis features where the
overlap among some of the treated conditions is evident. Therefore, a neural network
classification was used for refining the proper operation that allowed a precise identification
of multiple operational conditions.
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Figure 5. Homogeneity and kurtosis PDF values for the different motor states: HLT, healthy; 1BRB, one
broken rotor bar; 2BRB, two broken rotor bars; BRN, outer-race bearing damage; and UNB, unbalance.

The classification was carried out utilizing the homogeneity and kurtosis data as
entries to the ANN. The artificial neural network was a multilayer perceptron with a feed-
forward architecture with two inputs (kurtosis values and homogeneity values) only, one
hidden layer, and one output. A Levenberg–Marquardt backpropagation algorithm was
used for training the ANN and the mean-square-error index was used for performance
assessment. Inputs to the ANN were the feature vectors composed of the homogeneity and
kurtosis data, where each motor condition had a total of 20 values in its validation data set,
given as a result of feature vectors of length 100.

4. Obtained Results

The proposed technique efficacy was validated through 100 different trials under
each treated motor condition. A holdout-type data set was employed, where the first
70 experiments were employed for teaching the network and the remaining ones were
used for checking the proposed methodology efficacy. Table 1 shows the performance
results, through a confusion matrix, of the introduced technique during the identification
and classification of the IM operational condition as HLT, 1BRB, 2BRB, BRN, and UNB. The
right-most column in Table 1 displays the average success rate of the suggested procedure.

The results obtained experimentally are depicted in Table 1 and they show that the
introduced methodology reached 100% of effectiveness on identifying and discriminating
among a healthy motor (HLT), a motor with one broken rotor bar (1BRB), a motor with
two broken rotor bars (2BRB), a motor with outer-race bearing damage (BRN), and a motor
with an unbalanced mechanical load (UNB). The proposed technique was executed in a
2.20-GHz Intel Core i7-8750 processor, making use of the software MATLAB 2020a.

Table 1. Confusion matrix and overall effectiveness of using homogeneity and kurtosis features for
fault detection and classification in SCIM.

IM Condition HLT 1BRB 2BRB BRN UNB Overall
Effectiveness

HLT 20 0 0 0 0 100%
1BRB 0 20 0 0 0 100%
2BRB 0 0 20 0 0 100%
BRN 0 0 0 20 0 100%
UNB 0 0 0 0 20 100%

Discussion

The proposed methodology is compared against previous approaches used for detect-
ing SCIM faults in Table 2. The obtained results from real experimentation demonstrated
the usefulness of homogeneity and kurtosis as indexes for IM diagnosis and their high reli-
ability as indicators for multiple fault identification and classification [25,26]. The proposed
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approach can recognize and classify the operational condition of an induction motor as in
a good state (HLT), a motor with one split rotor bar (1BRB), a motor with two damaged
rotor bars (2BRB), a motor with outer race damage in the bearing (BRN), and a motor
with an unbalanced mechanical load (UNB) with high certainty, attaining up to 100% of
effectiveness, utilizing just two features of a single phase from the three-phase electrical
current supply to the SCIM, as inputs to a multilayer perceptron ANN. This is different
from other approaches reported in the reviewed literature that even require the signal
transformation from the time domain into the frequency domain and back to the time
domain to carry out the signal processing in order to extract up to 29 features of the current
signals from the three phases and the multi-axis vibration signals, in conjunction, in order
to be capable of performing the fault detection. In the proposed procedure, the electrical
current signal from the SCIM startup transient was analyzed just in time domain without
any pre-treatment, which is an evident convenience compared to the previous works in
Table 2, which require the combination of two or more processing techniques to carry out
a qualitative diagnosis or to perform it in a quantitative style by analyzing current and
vibration signals in time, frequency, and even time-frequency domains. Therefore, the
proposed methodology is a reliable tool that ensures high certainty during different fault
detections and classifications in induction motors through the analysis of just one phase
from startup electric current supply, outperforming previous approaches in the state of
the art.

Table 2. Comparison chart of the proposed methodology against the state of the art in related
literature for fault detection in IM.

Method Accuracy Rate Applied Techniques Detected Fault

Garcia-Bracamonte et al.
[8] From 90% to 99% Autocorrelation; FFT; independent component analysis; region-of-interest

segmentation; and 1-D, 2-D, and 3-D vector extraction.

BRB
only

Yang and Shi [27] Qualitative Wavelet packet, threshold optimization, Shannon entropy, wavelet packet
reconstruction, and FFT computation.

Haroun et al. [28] From 81.4% to 100%
Zero-crossing time, envelope extraction of the three phase currents,

frequency domain characterization, ReliefF algorithm, and self-organizing
map.

Li et al. [29] Qualitative
Fourier transform, power spectral density estimation, local characteristic

frequency bands’ synchronization, spectrum transformation, central point
computation, and kurtosis energy-based spectrum.

Gong et al. [30] Qualitative Wavelet packet transform and spectral kurtosis.

BRN
only

Gao and Xiang [31] Qualitative
Ensemble empirical mode decomposition, L-Kurtosis value, FFT,

clustering-based segmentation, inverse FFT, and Hilbert envelope
spectrum computation.

Navasari et al. [32] From 98% to 100% Wavelet decomposition, sampling of the decomposition streams, energy
computation, and ANN.

Ben Abid et al. [33] 100% Stationary wavelet packet transform, root mean square (RMS), aiNet
clustering algorithm, and directed acyclic graph support vector machine.

Rahman and Uddin [16] Qualitative
Standard deviation, crest factor, and kurtosis computation; FFT;

DWT-based frequency domain analysis; Hilbert transform; and envelope
detection.

UNB
onlyTahir et al. [17] 100% Multi-axis RMS value, variance, skewness, kurtosis, impulse factor, and

range computation; signed distance computation; and SVM.

Guo et al. [18] 86.87% DC part removal, signal resampling, continuous wavelet transform
scalogram (CWTS), cropping, and convolutional neural network.

Cunha Palacios et al. [34] From 99.7% to 100%
Signal segmentation, peak value, module computation, crossover detection,

normalization, input selection, classification through different intelligent
algorithms.

BRN, BRB, and
Stator Faults

Jigyasu et al. [35] From 99.7% to 100%
RMS, variance, kurtosis, peak value, skewness, median, crest factor, margin
factor, impulse factor, shape, and median range extraction; different neural

network structures.

BRN, BRB, and
Eccentricity

Proposed Approach 100% Homogeneity, kurtosis, and an ANN. 1BRB, 2BRB,
BRN, and UNB
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5. Conclusions

Recently proposed techniques can detect one single induction motor fault with an
adequate certainty; however, most of them rely on the combination of complex mathe-
matical operations that require specific hardware and software for their implementation.
Furthermore, they involve the monitoring and processing of different signals as electric
current supply and multi-axis vibration signals to obtain time, frequency, and even time–
frequency features that allow them to attain high certainty on the induction motor diagnosis.
Therefore, in this work, a straightforward technique for multiple IM fault detection, which
just requires the computation of homogeneity and kurtosis from a single phase of the
supplied electrical current signal during the SCIM startup transient, was introduced. The
obtained results from experimental studies demonstrated that the proposed methodology
provides highly reliable results on detecting and classifying distinct induction motor faults
by computing the homogeneity and kurtosis on the time domain, allowing the identifi-
cation of five different operational conditions, a motor in healthy state (HLT), a motor
with one broken bar (1BRB), a motor with two broken rotor bars (2BRB), a motor with
outer-race damage on its bearing (BRN), and a motor with an unbalanced mechanical load
(UNB), with remarkable certainty. A thorough comparison against the state of the art in the
subject of induction motor fault detection showed that the proposed method outperformed
previous approaches in the reviewed literature, which usually just detect one single type of
fault, by implementing a low-cost computational technique suitable for online applications.

Future work will focus on assessing the proposed technique for multiple IM fault
detection under different scenarios. It will contemplate incorporating additional faulty
conditions and signal examination techniques to recover other signal characteristics, as
well as assessing distinct kinds of classifications to carry out the fault identification and
sorting with high precision.
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