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Abstract. The nonlinear problem of the multiple Fourier analysis of the output
from a cut-off power-law rectifier responding to a two-frequency input, reviewed in
general in Part I of this study [1], is further scrutinized here for the special case of a
zero-power-law device; i.e., a bang-bang device or a total limiter. Solutions for the
modulation product amplitudes or multiple Fourier coefficients as in Part I appear as
Bennett functions, and line graphs of the first fifteen basic functions for the problem
are given. The new functions Amnw(h, 7c) studied, being based on a discontinuous device,
then, together with the functions Amnn)(h, k) studied in Part I, provide approximate
solutions to the two-frequency modulation product problem for an arbitrary piecewise
continuous nonlinear modulator, and the solution for this general problem is outlined.
Finally, numerical tables of the zeroth-kind functions Amnm (h, k) graphed have been
prepared and arc available separately in the United States and Great Britain. As before,
the entire theory is based on the original multiple Fourier methods introduced by
Bennett in 1933 and 1947.

1. Introduction and formulation of the problem. In Part I of this paper by
Sternberg et al. [1], the much-studied problem in theoretical electronics of the multiple
Fourier analysis of the output from a cut-off power-law rectifier responding to a several-
frequency input was studied in general, and the multiple Fourier coefficients or Bennett
functions

t <">*- mn (h, k) = [[ (cos u + k cos v — h)" cos mu du cos nv dv,
TV J J («

(R : cos u -f- k cos v > h, 0 < u < 7r, 0 < y < 7r, (i.i)

where the indices m, n take all integral values m, n > 0, and where v > 0, were examined
in some detail for the case in which v = 1. Here we study the zeroth-kind functions (1.1),
that- is to say the case v = 0, an apparently simple but actually quite complicated problem.

* Received May 8, 1973. The authors are indebted to the Computation Centers of the University of
Rhode Island, the University of Connecticut, and the Naval Underwater Systems Center in New London,
Connecticut for the computational and graphical work that went into the project. These computational
services were provided the authors by the several institutions named over a continuing period of time
without charge of any kind, and the authors wish to express their sincere thanks for this help.
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For a cut-off power-law rectifier with output versus input characteristic Y = Y"(X; X0)
of the form F"(X; X0) = (X — X0)" if X > X0 and zero otherwise, the functions (1.1)
are the coefficients A±mn("\h, k) = Amn("\h, k) in the double Fourier series expansion

y(t) = \P"A00w{h, k) + P" X)* A±mJ"\h, lc) cos (co±mnt + <j>±mn) (1.2)
m ,n = 0

of the output y(t) = Y"[x(t)] X0] when the input X = x(t) has the form

x(t) = P cos (pt + d„) + Q cos (qt + dQ), P > Q > 0. (1.3)

In (1.1) we have h = X0/P and k = Q/P > 0, while in (1.2) the modulation product
frequencies and phase angles, co±„„ and <j>±mn, are given by the relations u±mn = mp ± nq
and <t>±mn = mdp ± ndQ . Finally, in (1.2) the asterisk on the summation sign indicates
that we sum only on all distinct arrangements of plus and minus signs, equivalent
arrangements being taken only with the plus signs and with the zero-order term, partic-
ularly, having been removed from the sum.

The nonlinear device in the problem is a biased linear rectifier when v = 1 and may
be described as a biased zero-one bang-bang device or total limiter when v = 0, as in
Bennett [2, 3], If we use appropriate linear combinations of functional values AmnU) (hi , k)
summed up with suitable coefficients for suitable choices of the h's, the corresponding
multiple Fourier coefficients B±mn in the double Fourier series expansion of the output
of a general nonlinear device with input (1.3) may be approximated to within an arbi-
trary e > 0 for all m, n when the output versus input characteristic Y = Y(X) is con-
tinuous; similarly, the B±m„ for a general device may be expressed exactly as linear sums
of functional values Amn(1' (/i,- , k) in the form

NU)

B±mn = P J2 giAmnw(hi , k) (1.4)
1 = 1

for suitable choices of the numbers <7, and hi when the device characteristic Y = Y(X)
is not only continuous, but also polygonal. Similarly, by a simple extension of the basic
technique both of these results can be extended, with the aid of the functions /lm„(0) (h, k),
to the case of an arbitrary nonlinear device with a piecewise continuous characteristic
Y = Y(X), approximate linear results being obtained in the one case and exact linear
expressions for the B±mn in terms of functional values Amnw(h*, k) and Amnw(hi , k)
in the form

N'U)

B±mn = P Z g*Aj"\h*, k)+P Z g,Ajl)(h, , k) (1.5)
t-i ,=1

being obtained in the other case, i.e. when the device characteristic Y = Y(X) is not
merely piecewise continuous but piecewise polygonal as well. The method is described
in detail by Sternberg and Kaufman [4, 5, 6] for the continuous case and is readily
extended to the piecewise continuous case without difficulty. Thus, the functions (1.1)
have very broad applicability in all cross-talk problems in communications and control
theory.

In addition to the foregoing, the functions ^4m„<1)(/(, k) occur also in various related
statistical information-processing problems as discussed, for example, by Shipman [7],
and the functions Amnw(h, k) have been independently applied to some unrelated
problems in crystallography by Montroll [8]. Similarly, if Feuerstein's results [9] and
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Bennett's earlier results [1] are turned around, the Bennett functions AmnM(h, fc) may be
viewed generally as new special functions of mathematical physics in terms of which
many otherwise difficult generalized Weber-Schafheitlin integrals and Schlomilch series
or infinite integrals and sums involving Bessel function products may be directly eval-
uated.

Finally, since the appearance of Part I of this paper, a very interesting review article
by .Hsu [10] has appeared, and related problems in transistor circuits were studied in a
similar manner by Penfield [11[.

The interest and utility of Bennett functions thus appear to be gradually growing
and the basic case of the functions Amn'"' (//, fc) has been found to have special significance
of its own. Hence, we study these latter functions in some detail in the following.

Line graphs of the first fifteen functions Amn"" (h, k) are given in Figs. 1 through 15,
and six decimal tables with h and k varying in steps of one-tenth unit and with error
generally less than 1 X 10 ~6 units have been deposited in the Unpublished Mathematical
Tables file in the editorial offices of the journal Mathematics of Computation, in the
United States and in the Tables Collections of the Grace Library of the University
of Liverpool in Great Britain and with the authors.

2. Basic formulas and expansions for the zeroth-kind functions. In addition to
satisfying the numerous relations described in Part I for the Bennett functions Amn'"} (h, k)
in general, the zeroth-kind functions AmnW)(h, k) satisfy several special relationships and
have a few properties that are more or less unique. As usual, the variable h takes all real
values while the variable k ranges over the interval 0 < k < 1, and again, it is con-
venient to discuss the functions in terms of three cases defined, as in Part I, by the
conditions: (0) h > 1 + fc, (a) |/(| < 1 + k, and (°°) h < —1 — k where again, as before,
case (0) is trivial, the rectifier then being biased so strongly that Amn"" (h, fc) = 0 for
all m and n.

To begin with, since for v = 0 the kernel function in the integrals (1.1) defining the
functions AmnM (h, fc) reduces to unity, a first integration can always be carried out.
This leads, then, for the first several functions Amnf0>(h, fc) with h > 0, graphs of which
are shown in Figs. 1 through 15, to the formulas

2 ra
A0nw(h, fc) = ~2 / cos-1 (h — k cosv) cos nvdv,

TT J o

Alnm(h, k) = -2 [ [1 — (h — k cosw)2]1/2 cos nvdv,
IT J0

Aj°\h, k) = \ f [1 — (h — k cos v)2]1/2(h — fc cosv) cos nvdv, (2.1)
TT J o

Aj°\h, k) =-2 ( [1 -Qi-k cos y)T/2[!(/i - k cosy)2 - f] cos nvdv,
7T J o

A4n<0\h, fc) = -2 f [1 — (h — k cosv)2]W2m — k cosv)3 — (h — fc cosi>)] cos nvdv,
TT J o

where o = it if \h\ + fc < 1 and a = cos-1 [(h — 1)/fc] if 1 — fc < h < 1 + fc, and where
n takes all integral values n > 0. Except for the restrictions on h, these formulas hold
quite generally.
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For h = 0 the integrals (2.1) can be further reduced in terms of tabulated complete
elliptic integrals. We obtain, thus, the formulas

A00<0,(0, k) = 1,

Ao<0>(0, k) = -2E(k),
IT

4o.(o,(0, k) = 4r [E(k) - (1 - k2)K(k)],
7T /C

^2O<o,(0, k) = 4„<0,(0, k) = ^O2(o)(0, k) = 0,

^30<0>(0, k) = m2 - 7)E(k) + 4(1 - k2)K(k)], (2 2)

A21(0)(0, k) = ^ [(1 - 2k2)E(k) - (1 - &«)],

-412(0>(0, k) = [(k2 - 2)E(k) + 2(1 - k2)K(k)},

^os<0)(°, k) = ^ [(8 - 7k2)E{k) - (8 - 3fc2)(l - k2)K(k)],

^4o(o)(0, k) = A31(O)(0, k) = A22(0,(0, 4) = ^3(>, fc) = A04{0)(0, k) = 0.

For h = 0 these formulas then yield at once the power-series expansions

Alo<0)(0, k) = - [2 - P2 - Afc4 - •••],
7r

^oi<0,(o, fc) = - [i + ifc2 +
7r

^30<0)(0, fc) = - [-1 + p2 - Mfc4 -

^2i<0)(0, A;) — - 1 + ffc2 + eik* + ■ • •]
7r

^12<0)(0, k) = — [-1 - ^fc2 - ThW - ■
7T

^o3<0)(0, k) = - [A + rfsfc2 + raii' +
7T

(2.3)

each of which converges for all k, 0 < k < 1. The series expansions (2.3) are, of course,
special cases of double series for the functions AmJ0' (/<, k) analogous to the double series
expansions given for the functions A„a,(/t, k) in Part I and convergent for \h\ + k < 1.

For h = 1 the integrals (2.1) can also be expressed with great efficiency in terms of
polynomial approximations and power-series expansions of the forms
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„ <o)/i ~ kl/2 r r(3/4) , r(5/4) r(17/4) 7"|
A00 (1, fc) = ^3/2 |j*0 + «1 r(7/4) + 7 r(19/4) J '

, (O)/, k1/2[ r(5/4) . r(7/4) , r(19/4) ,7~]
401 (1, k) = ^3/2 [ao p(7/4) + "1 r(9/4) k + " ' + 017 r(21/4) J '

4 <oVl M ~ U 1(3/4) 3«i r(5/4) j. , ... I 15«7 1X17/4) 7]
A02 U, k) =7r3/2 [_5 r(5/4) + 7 r(7/4) ^ 19 r(19/4) J '

A (0>n + ...+13^1X19/4)^1A03 (!,*) = ^3/2 7 r(7/4) -f- 9 r(9/4) « t- f 21 r(2i/4) J '

4 <0,n n ~. fc1/2 f a« r(3/4) 3«! r(5/4) 165«7 r(17/4) 71
A„4 U, *J-twL 15 r(5/4) 77 T(7/4) 437 T(19/4) J'

and the form

A C0)/1 21/2fc1/2 rr(3/4) 1 r(5/4) 1 r(7/4) 2 1
k) _ „-3/2 Lr(5/4) 4 r(7/4) 32 r(9/4) J '

, <0,n w fr(5/4) _ 1 1X7/4) _ J_ r(9/4)_ 2 1
An Lr(7/4) 4 T(9/4) 32 r(ll/4) J'

, (0)/t ,,, _ 2^! [l 1(3/4) _ ^ 1X5/4) _ _5_ 1X7/4) 2 _ ]
U' tt3/2 L5 r(5/4) 28 r(7/4) 288 r(9/4) J '

1 r(5/4) _ J_ r(7/4) _ _3_ r(9/4) 2 _ 1
L 7 r(7/4) 36 r(9/4) 352 r(ll/4) J

01/2J.1/2

A13(0>(1, k) = — r/—
7r

7T3/2 Lr(7/4) 4 r(9/4) 1 32 r(ll/4)

9l/2,1/2

AM<0>(1, *) = ^Z37—
7T

1 1X3/4) _ 15 r(f)/4) _35^ r(7/4) 2
_5 r(5/4) 28 r(7/4) ^ 288 r(9/4)

■].

and, finally,
9l/2,1/2

A3„<0)(1, A) = —
X

?1/2,,1/

A31<0>(1, fc) = ^372"
7r

1/27,1/2

~~a
7T

91/zh
A40<0)( 1, fc) =

(2.4)

(2.5)

Similarly,

, (0,n i.\ = 21/2fc1/2 fr(3/4) _ 5 1X5/4) X £(7/4) 2 , . . 1
20 <■' ' Lr(5/4) 4 T(7/4) 32 T(9/4) J'

, 2l/2k1/2 TT(5/4) 5 T(7/4) 7 r(9/4) 2 1 , .
(1, fc) = -^372- | ^77^ - I Tvrwvn k + w TV11 u\ k + "'' J ' (2'6)

r(3/4) _ 35 r(5/4) 63 r(7/4) 2 _
r(5/4) 12 r(7/4) ^ 32 r(9/4) v

r(5/4) _ 35 r(7/4) 63 r(9/4) ,2 _ 1 ~
J(7/4) 12 r(9/4) 32 r(ll/4) J ' K ' '

r(3/4) _ 21 r(5/4) 231 r(7/4) 2 _ 1
r(5/4) 4 r(7/4) 32 T(9/4) v J

In (2.4) the coefficients a0 to a7 are the quantities
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«o 0,0 + 0*1 + a2 + 0-3 + Q>i + «5 + Cta + &7 ,

oci ~ @i 2a2 3a3 4:0/4 5(z5 6ceg 7ct7 ,

H~ 3a3 -(- 6K4 -|- 10c^5 -(- 15a6 -(- 21a7 , ^ ^

a3 = — a3 — 4a4 — 10a5 — 20a6 — 35a7 ,

a4 = a4 ~h 5a5 + 15a6 + 35a7 , a5 = — a5 — 6a6 — 21a7 ,

CXq — Oq ~1~ 7O7 J (X7 — O7 ,

where here a0 to a7 are Hastings' coefficients [12] in the polynomial approximation

cos-1 x = [1 — x\l/2[a0 + diX + • • • + a7x7] (2.9)

which is accurate to about 2 X 10~8 units uniformly on 0 < x < 1; see also Abramowitz
and Stegun [13]. The expansions (2.5), (2.6), and (2.7) are based on a comparable ex-
pansion of the form

sin (cos-1 x) = [1 — a;]1/2[l + x]1/2 = [1 — x]l/2 (^V"- (2-10)
n = 0 W/

In each case, x in (2.9) and (2.10) is put equal to 1 — k cos v, so that
[1 — x]1/2 = k1/2 cos'/2 v, the results are substituted in the integral expressions (2.1), and
the resulting finite or infinite series expansions are then integrated with the help of
the formula

I , . t" r[(7 + i)/2]
, °« '*-YnM + ir (-u>

A factor kU2 can then be factored out and the results, (2.4), (2.5), (2.6), and (2.7), follow.
The polynomial approximations (2.4) are clearly extremely accurate and in use check

other results to better than 1 X 10~8 units generally. The series expansions (2.5), (2.6),
and (2.7) converge for all k, 0 < k < 1, and yield accuracy of about 1 X lO-6 units even
for k = 1 when about 12 terms in each series are carried. These expansions are therefore
highly efficient.

Finally, it should be remarked that the functions Amn(0)( — h, k) can be computed in
terms of the functions Amnw){h, k) using the reflection relations

^""(-A, k) = 2- Aj°\h, k),
k) = (-1 )m+"+1Amnw(h, k),

similarly as in the case of the first-kind Bennett functions AmnU)(h, k) and that the
functions reduce to rational expressions in ir for h = 0 and k = 1.

3. Computation of the zeroth-kind functions. The computation of the zeroth-kind
Bennett functions Amnm(h, k) tabulated in this work and graphed in Figs. 1 through 15
was based mainly on numerical integration of the functions AmJ0)(h, k) when expressed
in the integral forms (2.1) using a modified Simpson's-rule method with stepped-down
intervals of integration in critical regions of the domain of integration. In addition, the
eleven higher-order functions A20w(h, k), A02(0)(h, k), ■ ■ ■ , ^404<0)(^, k) were computed
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separately from values of the four basic functions A00w(h, ft), A10(0)(h, k), A0l{O)(h, k),
and An (h, k) using the recurrence relations

A20(0\h, k) = hAl0 <0)(h, k) - kAu <>, k), }

A02m(h, k) = h'A0l(0\h, k) - k'Alxm(h, k),
and

A30m(h, k) = mh2 + U2 - l)A10l0'(h, k) - tkA0l(0)(h, ft) - -2/hkAum(h, k)],

Anm(h, k) = *[2hAnw(h, ft) - 2kA10m(h, k) + Aor(h, k)], (g g)

A12i0\h, k) = Wh'A^Qi, k) - 2k'Anl0\h, k) + Al0m(h, k)],

A03w(h, k) = i[(4/!'2 + Ifc'2 - l)A0l(O)(h, k) - WA10w(h, k) - -2lh'k'Axlw(h, k) ],

and

440<0>(/i, ft) = J[(27c - - 6ft3)Au(0)(fc, ft)

+ (8h3 + ^hk2 - 4h)A10w(h, ft) - vhkAnm{h, k)},

A3r(h, k) ee iKf/t2 + 4fc2)ylu(0)(A, ft) - -2/hkA10m(h, k) + %hA0lw(h, k)},

A22(0\h, k) = -2k- 2k')A11m(h, k) + fhA10i0\h, k) + §h'A01m(h, k)], (3.3)

A13m(h, k) = J[(#A'a + 4k'^A^ih, k) - ^h'k'A01m(h, k) + WA10m(h, k)],

Aoil0\h, k) = |[(2k' - ¥h'2k' - <5k'3)Ani0\h, k)

+ (8h'3 + *£h'k'2 - Ah')A0lm{h, k) - ¥h'k'A10m(h, ft)],

where in these formulas h' = h/k and ft' = 1/fc; for derivations see formula (4.4) in
Part I. Each of these computational procedures was carried out to several more decimal
places than the six decimals finally tabulated; agreement between the values computed
using Simpson's rule and those computed using the recurrence relations (3.1), (3.2),
and (3.3), to better than 1 X 10~6 units was obtained in about 95 percent of the table.
Round-off errors inherent in the use of the last of formulas (3.2) and (3.3), i.e., those for
A03°\h, ft), Al3(0\h, ft), and A0iW)(h, ft), for small ft values, resulted in a check of the
numerical integration to somewhat less than six decimal places in the remaining part
of the table.

To provide a further independent check on the computation, therefore, almost all
of the functional values for h = 0 and for h = 1 were recomputed to at least six-decimal
accuracy using the formulas (2.2), (2.3), (2.4), (2.5), (2.6), and (2.7), and finally, a few
values of the particularly difficult function Aol{0)(h, ft) near h = 0.9 and ft = 0.1 were
computed in an entirely separate fashion using the special double series

03/2j.l/2 4

A0i(0\h, ft) = g v

~5 + ——I — fa +1 01 HO S nr roa * '2048 ' 8192 65,536'
— 63 7

v oo v £

+ ...

32,768 ' 32,768
-3003

(3.4)

2,097,152
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where here £ = 1 — h and rj = k/(l — h) and the expansion is valid near h = 1 with
h 1 and fc small in the region |/i| + k < 1.

This then completed the basic computation and check calculations.
Formula (3.4) is based on the expansion of cos-1 (1 — x) in powers of x with x = 1 —

h + fc cos v. We omit the details.

4. Power computations and concluding remarks. As noted in Part I, when the
input (1.3) to the rectifier is non-periodic, i.e., when p/q is irrational, and assuming the
average output power (P0 to be one-half of the sum of the squares of the Fourier coeffi-
cients, we have, by the Parseval theorem [14, 15] or Bessel equality for double Fourier
series, the result that

(Po = Moow\h, k) + i E* A±mnw\h, k) = Moo(>, k) (4.1)
m,n = 0

where we have used the fact that for v = 0 we have Aoo'2*' (h, fc) = Aoo'"' (h, k) to simplify
the right-hand side; see also (6.2) in Part I. Finally, note that although (4.1) holds here,
the limiting relations discussed in the concluding section of Part I do not necessarily
follow, as here v = 0.
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