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The human brain is a complex system composed by several large scale intrinsic networks

with distinct functions. The low frequency oscillation (LFO) signal of blood oxygen

level dependent (BOLD), measured through resting-state fMRI, reflects the spontaneous

neural activity of these networks. We propose to characterize these networks by applying

the multiple frequency bands analysis (MFBA) to the LFO time courses (TCs) resulted

from the group independent component analysis (ICA). Specifically, seven networks,

including the default model network (DMN), dorsal attention network (DAN), control

executive network (CEN), salience network, sensorimotor network, visual network and

limbic network, are identified. After the power spectral density (PSD) analysis, the

amplitude of low frequency fluctuation (ALFF) and the fractional amplitude of low

frequency fluctuation (fALFF) is determined in three bands: <0.1 Hz; slow-5; and slow-4.

Moreover, the MFBA method is applied to reveal the frequency-dependent alternations of

fALFF for seven networks in schizotypal personality disorder (SPD). It is found that seven

networks can be divided into three categories: the advanced cognitive networks, primary

sensorimotor networks and limbic networks, and their fALFF successively decreases in

both slow-4 and slow-5 bands. Comparing to normal control group, the fALFF of DMN,

DAN and CEN in SPD tends to be higher in slow-5 band, but lower in slow-4. Higher

fALFF of sensorimotor and visual networks in slow-5, higher fALFF of limbic network in

both bands have been observed for SPD group. The results of ALFF are consistent with

those of fALFF. The proposed MFBA method may help distinguish networks or oscillators

in the human brain, reveal subtle alternations of networks through locating their dominant

frequency band, and present potential to interpret the neuropathology disruptions.

Keywords: intrinsic brain network, resting sate fMRI, power spectral density, low-frequency fluctuation,

schizotypal personality disorder

INTRODUCTION

Resting state functional MRI (rs-fMRI) has been considered as a powerful tool

in discovery science of human brain (Biswal et al., 2010; Buckner et al., 2013).

Spontaneous low-frequency oscillations (LFOs) in the resting state blood oxygen

level dependent (BOLD) signal can be acquired through rs-fMRI in vivo (Fox and

Raichle, 2007), and the signals are thought to reflect spontaneous neuronal activity.
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Since Biswal et al. (1995) demonstrated that the signals in

some spatially distributed brain regions were synchronized or

correlated significantly in the motor system, many other brain

systems have been discovered. These distributed brain regions

construct different large-scale intrinsic connectivity networks

(ICNs), each of which may correspond to one specific function

(van den Heuvel and Hulshoff Pol, 2010; Raichle, 2011). Some

representative, important and consistently reported ICNs include

the default mode network (DMN), the dorsal attention network

(DAN), the control executive network (CEN), the silence

network, the somatomotor, visual and auditory networks.

There are at least two categories of data-driven approaches

which have been widely employed to identify large-scale ICNs

from resting-state fMRI data for further functional connectome

analysis in time domain. The first category is the independent

component analysis (ICA; Calhoun et al., 2001). Through ICA,

fMRI data is decomposed into a summation of independent

components (ICs), and each component contains a weighted

set of voxels (i.e., the component’s spatial map) and a single

time course (TC) that is common to those identified voxels

(Beckmann and Smith, 2004). The second is to do clustering

analysis based on voxel-wised rs-fMRI signals (Bellec et al.,

2006; Lashkari et al., 2010; Blumensath et al., 2013; Thirion

et al., 2014). For example, Yeo et al. (2011) identified seven

coarse-grained ICNs and 17 fine-grained ICNs using clustering

algorithm based on 1000 subjects’ rs-fMRI data from Human

Connectome Project. Combination of these two methods (ICA

and clustering method) might be beneficial, but has not been

studied.

Analysis of rs-fMRI data in frequency domain is another

important alternative to the temporal-spatial analysis. Zang

et al. (2007) and Zou et al. (2008) proposed two Fast Fourier

Transform (FFT) based indices of LFO amplitude: (1) amplitude

of low frequency fluctuations (ALFF); (2) fractional amplitude

of low frequency fluctuations (fALFF). ALFF indicates the

power in the frequency band of 0.01–0.1 Hz, and fALFF is

the power in 0.01–0.1 Hz divided by the total power in the

entire detectable frequency range. Furthermore, Buzsaki and

colleagues proposed the model that the power spectrum of

neuronal oscillations forms a linear progression on the natural

logarithmic scale, indicating that the oscillations can be separated

into several independent frequency bands and each band might

correspond a distinct oscillator with specific property and

physiological function (Penttonen and Buzsaki, 2003; Buzsáki

and Draguhn, 2004). Inspired by these observation, spontaneous

LFOs in rs-fMRI have been decomposed into four frequency

bands, slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3

(0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz; Zuo et al., 2010).

It has been demonstrated that amplitudes of LFOs in slow-4

band were higher than that in slow-5 in some regions including

the basal ganglia, thalamus and precuneus, whereas the opposite

trend was found in lingual gyrus, middle temporal gyrus, inferior

frontal gyrus and ventromedial frontal gyrus (Zuo et al., 2010;

Han et al., 2011; Yu et al., 2014). Recently this approach

has been employed to reveal the frequency-dependent ALFF

alternation in neurological and psychiatry disorders, such as

mild cognitive impairment (Han et al., 2011), epilepsy (Wang Z.

et al., 2014; Wang L. et al., 2016), internet gaming disorder

(Lin et al., 2015), social anxiety disorder (Zhang et al., 2015),

depression (Yue et al., 2015) and insomnia (Zhou et al.,

2016).

In the present work, we proposed to do multiple frequency

band analysis (MFBA) of large scale intrinsic brain networks.

Specifically, the ALFF/fALFF in frequency band of <0.1 Hz,

slow-5 and slow-4 are characterized using the TCs of intrinsic

brain networks. It is different with previously introduced

MFBA which is based on the TCs of voxels or atlas-defined

regions. Interpretations of the altered ALFF in some regions

or clusters are hard because spatially distinct brain regions

might belong to the same intrinsic brain networks (Zuo

et al., 2010; Yeo et al., 2011). Moreover, the TC of intrinsic

brain network is more robust than that of single voxel or

regions to the disturbance of head motion, respiration and

vascular pulsatility (Zuo et al., 2010). Except one study on

power spectrum of TC of DMN in schizophrenia (Mingoia

et al., 2013), to our best of knowledge, MFBA of large

scale intrinsic brain networks has not been systemically

investigated.

Schizotypal personality disorder (SPD) is the prototypical

schizophrenia spectrum personality disorder, and shares

abnormalities of gene, phenomenology and cognition with

individuals with schizophrenia (Siever and Davis, 2004). SPD

is usually characterized by delusion, no obvious hallucinations,

peculiar thinking or behavior and lack of communication

between people (Hur et al., 2016). According to the Diagnostic

and Statistical Manual (DSM), the subjects with SPD are

always suspicious, arrogant, and easily produce a sense of

shame1. However, subjects with SPD have rarely been exposed

to antipsychotic medications and hospitalization, which are

inherent confounds to schizophrenia. These two features have

made SPD the ideal model to reveal the core processes of

schizophrenia (Rosell et al., 2014).

Comparing to numerous investigations using structural MRI

and task-related fMRI, few studies have been conducted using

rs-fMRI (Hazlett et al., 2012; Fervaha and Remington, 2013).

Among the few studies, we have previously demonstrated the

altered default mode network functional connectivity in SPD

(Zhang et al., 2014), and Gerretsen et al. (2014) have found

that increased connectivity in DMN, the self-referential network

(SNR) and DAN. Overall, MFBA of large scale intrinsic brain

networks in SPD has not been systemically investigated. Hence,

we propose a hypothesis that the ALFF/fALFF in three frequency

bands of <0.1 Hz, slow-5 and slow-4 in SPD are different with

those in normal control groups.

MATERIALS AND METHODS

Participants
Participants were 18 normal controls (NC; all male, average

age: 20.3 ± 0.9 years, 19–22 years) and 18 patients (all male,

average age: 19.7 ± 0.9 years, 18–21 years) who met the

criteria for SPD with a full diagnostic structured interview

1https://www.psychiatry.org
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for DSM-IV Personality Disorders (Millon and Davis, 1996).

They were screened from 3000 freshmen of one university. All

participants were evaluated by the Scale for the Assessment of

Negative Symptoms (SANS) and the Scale for the Assessment

of Positive Symptoms (SAPS; Andreasen, 1989). None of

the healthy controls has history of neurological diseases, any

substance dependance, or clinically significant head trauma.

None of the SPD patients was previously hospitalized or

prescribed antipsychotic medications. This study was approved

by the Medical Ethics Committee of Affiliated Zhongshan

Hospital of Dalian University and was in accordance with

the 1964 Helsinki Declaration and its later amendments

or comparable ethical standards. All subjects gave written

informed consent in accordance with the Declaration of

Helsinki.

MRI Data Acquisition
All participants underwent structural and functional MRI scan

using a three TMR scanner (Siemens, Verio, Germany) with

one 8-channel head coil. The foam pads were used to fix the

subjects’ head and prevent motion artifact. The T1-weighted

images were acquired using a magnetization prepared rapid

gradient echo (MPRAGE) sequence, and the protocol parameters

were as follows: repetition time (TR) = 2300 ms; echo time

(TE) = 3.0 ms; inversion time (TI) = 900 ms; flip angle = 9◦;

slice thickness = 1.0 mm; no interslice gap; 176 sagittal slices;

matrix size = 256 × 256. In addition, T2-weighted images

were also taken to exclude potential pathological alternations

of the brain. The resting state fMRI was performed with

a gradient-echo planar imaging (EPI) sequence. The specific

EPI parameters are TR = 2000 ms, TE = 30 ms, flip

angle = 90◦, slice thickness = 4.0 mm, 1.0 mm interslice gap,

32 contiguous axial slices, matrix size = 64 × 64, field of

view (FOV) = 240 × 240 mm2, 180 time points. Subjects were

asked to relax and think of nothing in particular with eyes

closed but were requested not to fall asleep. Wakefulness was

confirmed immediately after the scanning session. The datasets

generated for this study can be found in the repository of

FigShare2.

Multiple Frequency Band Analysis of Large
Scale Intrinsic Brain Networks
As illustrated in Figure 1A, the proposed MFBA of large scale

intrinsic brain networks mainly consists of five steps. First, the

rs-fMRI data is preprocessed through slice-timing correction,

motion correction, normalization and smoothing. Second, the

spatial mapping of independent components (ICs) and TCs are

obtained through group ICA. Third, the large scale intrinsic

brain networks are constructed through combining some ICs.

Forth, the TCs are transformed into frequency domain and

divided into three bands: <0.1 Hz; slow-5; slow-4. Fifth, the

fALFF is calculated for each IC in three frequency bands and

compared betweenNC group and SPD group. These five steps are

represented schematically in Figures 1B–F, respectively. Detailed

approaches are elucidated as follows.

2https://figshare.com/s/3e4f9be7266f61e6c74a

Image Preprocessing
The first 10 volumes of each functional time series were

removed, given that the initial MRI signals are unstable

and participants need time to adapt the circumstances. The

remaining 170 volumes (or time points) of images were

analyzed. Subsequently slice-timing correction and head-motion

correction (a least squares approach and a six-parameter

spatial transformation) were performed. After EPI images were

normalized to standard Montreal Neurological Institute space

and resampled to 3 × 3 × 3 mm3, an isotropic Gaussian filter

of 6 × 6 × 6 mm3 full width at half maximum (FWHM)

was used to realize spatial smoothing. The data with head

motion> 3.0 mm or 3.0◦ of maximal rotation were discarded.

All the preprocessing was completed using Data Processing

Assistant for Resting-State fMRI (DPARSF; Yan and Zang,

2010) based on Statistical Parametric Mapping (SPM8)3 and

Resting-state fMRI Data Analysis Toolkit (REST4; Song et al.,

2011).

Group Independent Component Analysis
The preprocessed data was decomposed into a set of independent

components characterizing by the TCs and associated spatial

maps, through the Infomax algorithm within the GIFT software5

(version 3.0a). Using minimum description length algorithm (Li

et al., 2007), the number of ICs is estimated to be 28 for NC group

and 29 for SPD group, respectively. Different numbers of ICs are

resulted from the observation that the visual network appearing

as one IC in NC group is divided into two ICs for SPD group.

Identification of Large Scale Intrinsic Brain Networks
For the IC selection, we first remove the ICs which have

high spatial overlap with the vascular, ventricular, motion,

and susceptibility artifacts (Allen et al., 2011). Second, to

help evaluate the IC further, we calculate two measures

from the spectra of TC of each IC: the dynamic range;

the spectral power ratio of low frequency (<0.1 Hz)

to high frequency (0.15–0.25 Hz; Rummel et al., 2013).

The IC with higher dynamic range and spectral power

ratio has high probability of being the one of large scale

intrinsic brain networks, according to the expectation that

TCs should be dominated by low frequency fluctuations.

Fourteen ICs are determined as certain components of

intrinsic networks and kept for further matching between

NC and SPD groups and being assigned to different

networks.

With the large scale intrinsic brain networks defined by Yeo

et al. (2011) as the reference, seven intrinsic brain networks are

constructed through combining some ICs identified by visual

inspection. The seven networks are the DMN, executive control

network, DAN, salience network, visual network, sensorimotor

network and limbic network. After setting the Z-score threshold

as 0.5 (i.e., the voxel with Z-score <0.5 is set a Z-score of

zero), the spatial overlap ratios between corresponding ICs in

3http://www.fil.ion.ucl.ac.uk/spm
4http://www.restfmri.net
5http://mialab.mrn.org/software/gift/index.html
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FIGURE 1 | The schematic diagram for the procedures of multiple frequency band analysis (MFBA) of large scale intrinsic brain networks. (A) The overview of MFBA.

(B) The rs-fMRI data is preprocessed through slice timing correction, motion correction, smoothing and normalization. (C) Spatial mapping of independent

components (ICs) and time courses (TCs) are obtained through group independent component analysis (ICA). (D) Various large scale intrinsic brain networks are

spatially constructed through combining some ICs. (E) The TCs are transformed into frequency domain using Welch method and divided into three bands: <0.1 Hz;

slow-5; slow-4. (F) The fractional amplitude of low frequency fluctuations (fALFF) is calculated for each IC in three frequency bands and compared between normal

control group and schizotypal personality disorder (SPD) group.

NC and SPD groups are calculated. Meanwhile, the Pearson

correlation coefficients between Z-scores of voxels within ICs

of NC group and those of voxels within corresponding ICs

of SPD group are obtained. According to the criteria of

the maximal overlap ratio and correlation coefficient, each

interested IC in NC group can find its counterpart in SPD

group.

Power Spectral Density Analysis
The TC associated with each individual’s component assigned

to various intrinsic brain networks is transformed from

the time domain to the frequency domain through Welch’s

(1967) method, as previously used by Mingoia et al. (2013).

Specifically, the power spectrum is obtained by pwelch, a Matlab

signal processing toolbox. Through dividing the input signal
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(170 points) into eight sections of equal length, each with

50% overlap, the power spectrum density with 129 bins of

0.0019 Hz, ranged from 0 Hz to 0.25 Hz, can be generated.

As the examples shown in Figure 1E, the distributions of

averaged power spectrum density in both NC and SPD groups

are produced for further analysis.

ALFF/fALFF in Multiple Frequency Bands
ALFF and fALFF are calculated for each IC in three

frequency bands, i.e., <0.1 Hz, slow-5 (0.01–0.027 Hz), slow-4

(0.027–0.073 Hz). Actually, fALFF is the power in corresponding

band divided by the total power in the entire detectable

frequency range (<0.25 Hz). Given the fALFFs of slow-3 band

(0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz) are very small and

unreliable, we have not analyzed them. The central frequency

and the width of the bands are defined according to the

formula given by Buzsáki and Draguhn (2004). Specifically, the

central frequencies of the bands follow a linear progression

on a natural logarithmic scale with a constant ratio between

neighboring frequencies, generating the separated frequency

bands. Two-sample t-test is performed to examine if there is

the significant difference between fALFF in NC and SPD groups

(p < 0.05). For multiple comparisons, the false discovery rate

(FDR) is controlled by the linear step-up procedure introduced

by Benjamini and Hochberg (1995).

RESULTS

Intrinsic Brain Network Constructed From
Combination of Independent Components
Spatial distributions of seven networks are given in Figure 2 for

NC and SPD groups. The details of how ICs combine to generate

networks, the spatial overlap ratio (rso) and Z-score Pearson

correlation coefficient (rz) between ICs in NC and SPD groups

are presented in Table 1. Several observations can be gained.

First, the spatial distributions of seven networks constructed

from combination of ICs are consistent with those generated

through the clustering analysis (Yeo et al., 2011). The quantitative

comparison of results from two approaches is not accessible

because one is volume-based and the other is surface-based.

Second, most patterns of networks are convergent between NC

and SPD groups. It origins from the fact that high rso and rz
between ICs in NC and SPD groups. For most ICs, rso ranges

from 0.6151 to 0.7726; for sensorimotor-b and limbic-b, rso,

not as high as other ICs, is only 0.4956 and 0.5638, partially

due to the small volume of these two ICs. Except limbic-b

and visual ICs, rz is larger than 0.5861. Smaller rz of visual

IC might be resulted from that one visual IC is generated for

NC group, however two ICs (left and right) are formed for

SPD group. Third, the combination of different number of ICs

or one single IC correspond to one large scale intrinsic brain

network, indicating the divergence of scales and constructing

approaches. The group ICA can generate fine-grained networks

as an alternative to clustering algorithm. Forth, seven large

scale intrinsic brain networks constructed from 14 ICs have

covered most cerebral cortex areas for both NC and SPD

TABLE 1 | The spatial overlap ratio (rso) and Z-score Pearson correlation

coefficient (rz) between independent components (ICs) in NC and SPD groups.

Name of IC Spatial overlap

ratio (z > 1.0; rso)

Z-score

Pearson correlation

coefficient (rz)

Default-a 0.6608 0.7372

Default-b 0.7656 0.9043

Default-c 0.6627 0.5861

Executive-a 0.7449 0.7570

Executive-b 0.7086 0.8479

Dorsal-Attention-a 0.6166 0.8503

Dorsal-Attention-b 0.7327 0.7236

Salience 0.6430 0.6758

Visual 0.7109 0.3517

Sensorimotor-a 0.6151 0.8395

Sensorimotor-b 0.4956 0.3369

Sensorimotor-c 0.7726 0.8160

Limbic-a 0.5638 0.7543

Limbic-b 0.7331 0.8367

groups. The generated atlas of each brain network can be used

for further studies of spatial z-score distribution of functional

connectivity, ReHo, and fALFF, functional network based on

average time-series, and structural brain network based on DWI

and tractography.

Power Spectral Density of Large Scale
Intrinsic Brain Networks
Power spectral density (PSD) of large scale intrinsic brain

networks has been given in Figures 3, 4 for NC and SPD

group, respectively. The shapes of PSD look similar across both

networks and groups though the extract amplitudes are different,

i.e., the value increases gradually from frequency near zero,

reaches a peak at about 0.02 Hz, and then decrease continuously

with the frequency. It is in agreement with study of Damoiseaux

et al. (2006). The peak of PSD decreases from the advanced

cognitive network to primary sensorimotor networks with the

maximum for the salience network. For limbic-b network, the

lowest peak makes the curve of PSD quite different with those

of the other networks. All the peaks are located in slow-5

band, which may partially explain the reason and necessity of

dividing the frequency band into slow-5 and slow-4. Though

the exact mechanism is unknown, the difference of PSD trend

observed here presents different neural manifestations of slow-4

and slow-5, in line with studies at regional, interregional and

network levels in time domain (Xue et al., 2014). The observation

on the default modal network is consistent with those byMingoia

et al. (2013). Boyacioglu et al. (2013) also reported the differences

of frequency spectra between advanced cognitive networks and

primary cortex networks.

fALFF in Multiple Frequency Bands
fALFF of three frequency bands for seven networks (14 ICs) and

their comparisons between NC and SPD groups have been given

in Figure 5. For the band of <0.1 Hz (Figure 5A), fALFF ranges

0.40–0.95 and 0.56–0.95 for NC and SPD groups, respectively.

The advanced cognitive networks show higher fALFF (>0.87 for

NC; >0.92 for SPD) than the primary sensorimotor networks
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FIGURE 2 | Seven large scale intrinsic brain networks constructed from spatial combination of 14 ICs for NC and SPD groups. (A) NC group. (B) SPD group.

and limbic networks for both groups. Thirteen of fourteen ICs

(except the salience network) presents higher mean of fALFF for

SPD group, five ICs have significant higher fALFF (p < 0.05) for

SPD group. However, no one IC passed the FDR correction.

In the band of slow-5 (Figure 5B), some common features

are found for the NC and SPD groups. First, the primary

sensory and motor networks own lower fALFF than advanced

cognitive networks (p < 0.05), which is in accordance with, but

more significant than, the result in the band <0.1 Hz. It can

be explained by the proposal that low frequency bands were

associated with the integration of large-scale neural networks

and long-distance connectivity, while high frequency bands

correspond to local neural activity and short connections

(Buzsáki and Draguhn, 2004). The cognitive networks belong to

the association networks defined by connectivity between widely

distributed regions, while sensorimotor networks are hallmarked

by dense local connectivity to nearby areas (Buckner et al., 2013).

Moreover, the salience network presents the highest fALFF in

both groups.

Comparison of fALFF between NC and SPD groups

demonstrates that all ICs in SPD have higher mean of fALFF

than that in NC in slow-5 band, 10 of 14 ICs present statistical

significance (p< 0.05, FDR corrected). It might suggest that there

is wide spread disruption of functional brain organization in

SPD, just as in early-onset Alzheimer’s disease (Adriaanse et al.,

2014). Specifically, the function of advanced cognitive networks

is overactive and the function of primary sensory networks is

inhabited or disrupted.

For the band of slow-4 shown in Figure 5C, opposite trend is

found. For SPD group, seven of eight ICs in advanced cognitive

networks (except IC of dorsal-attention-b) display lower mean

fALFF than that in NC, four presents statistic significant

(p < 0.05), but only Executive-b passes the FDR correction.

However, the mean of fALFF in sensorimotor network is still

higher for SPD group though no significance exists, and the

fALFF in SPD is significantly higher than that in NC. It might

suggest that fALFF in SPD will be lower than that in NC for

much higher frequency band (>0.073 Hz). Moreover, fALFF is

larger in slow-5 band than in slow-4 band in all studied networks.

It accords with previous observation of greater fALFF in slow-5

for the cortical areas but in slow-4 for the subcortical areas (Zuo

et al., 2010; Wang Z. et al., 2014).

ALFF in Multiple Frequency Bands
Figure 6 gives the results of ALFF. Comparing Figures 5, 6, one

can find that most results from ALFF and fALFF are consistent,

except three slight differences. As shown in Figure 6A, ALFF

in <0.1 Hz band has no significant difference between SPD

and NC groups for Dorsal-Attention-b, Sensorimotor-c and

Sensorimotor-b. For ALFF in slow-5 band (Figure 6B), Default-c

does not pass the FDR correction (p < 0.05). No significant

difference between SPD and NC is observed for ALFF of

Default-b in slow-4 band (Figure 6C). These observations are

supported by previous report that the measure of fALFF has

higher specificity for it suppresses the physiological noise, while

ALFF owns higher test-retest reliability (Zuo et al., 2010).

DISCUSSION

In the current study, we proposed a novel framework of

conducting multiple frequency bands analysis (MFBA) to

large scale intrinsic brain networks. Using this framework,

we identified the default, executive, salience, dorsal attention,

sensorimotor, visual and limbic networks in both NC and

SPD groups, and examined their similarities and differences

in spatial distributions, PSD, fALFF in three frequency

bands (<0.1 Hz, slow-5 and slow-4). Overall, the spatial

patterns and PSD distributions of networks are convergent

between NC and SPD groups. The PSD and fALFF are

different across networks, frequency bands and groups.

It is suggested that the proposed MFBA method is very

powerful to characterize the different networks and neurological

disorders. Neural activity in SPD has been disrupted globally,

indicated aberrant fALFF of various networks in different

frequency bands.
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FIGURE 3 | Power spectral density (PSD) of seven large scale intrinsic brain networks of NC group. There are seven large scale intrinsic brain networks spatially

constructed by 14 ICs, and the PSD of the TC of each IC is presented. The default network consists of three ICs named Default-a, Default-b and Default-c (the name

is just for convenience and does not indicate the order and meaning), the executive network includes two ICs (Executive-a and Executive-b), the dorsal attention

network (DAN) has two ICs (Dorsal-Attention-a and Dorsal-Attention-b), the sensorimotor network comprises three ICs (Sensorimotor-a, Sensorimotor-b,

Sensorimotor-c), the limbic network includes two ICs (Limbic-a and Limbic-b), both the salience and visual networks have one IC. The two vertical lines in each

sub-figure of the PSD vs. frequency indicate the locations of 0.027 Hz and 0.073 Hz. Therefore, the frequency bands of slow-5 (0.01–0.027 Hz) and slow-4

(0.027–0.073 Hz) are marked through these two lines.

The advanced cognitive networks display higher fALFF

than the primary sensorimotor networks in three frequency

bands. It might be explained by the connectivity hallmarks

of these two categories of networks. The advanced cognitive
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FIGURE 4 | PSD of seven large scale intrinsic brain networks of SPD group. As same as to the NC groups, 14 ICs spatially form seven large scale intrinsic brain

networks, and the PSD of the TC of each IC are given. The construction of each large scale intrinsic brain networks, the name and order of ICs are equal to those in

NC group. The frequency bands of slow-5 (0.01–0.027 Hz) and slow-4 (0.027–0.073 Hz) are marked by two vertical lines in each sub-figure of the PSD vs. frequency.

networks correspond to association networks which are

defined by long connectivity between widely distributed

areas, whereas the primary sensorimotor networks are

distinctively characterized as dense local connectivity to
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FIGURE 5 | Fractional amplitude of low frequency fluctuation (fALFF) of large scale intrinsic brain networks in multiple frequency bands. (A) The frequency band

of <0.1 Hz. (B) Slow-5 band. (C) Slow-4 band. One single asterisk indicates that there is a significant difference (p < 0.05) between SPD and NC groups, but it does

not pass the false discovery rate (FDR) correction. Two asterisks mean that there is an FDR-corrected significant difference.

nearby cortex (Power et al., 2011; Yeo et al., 2011; Buckner

et al., 2013; Glasser et al., 2016). Meanwhile, Buzsáki and

Draguhn (2004) suggested that lower frequency bands are

associated with the integration of large-scale neural networks,

while higher frequency bands correspond to local neural

activity.

We found greater fALFF in the slow-5 band than in the slow-4

for all investigated networks. This finding can still be explained

by the suggestion of Buzsáki and Draguhn (2004) given they are

located in cerebral cortex. It accords with previous observations,

and only subcortical regions contributing to local events present

great fALFF in slow-4 than in slow-5 (Yu et al., 2014).

Large Scale Intrinsic Brain Networks
It is worth noting that the combination of several components

into a network or assignment of one single component to

a specific network is based on visual inspection with the

reference of the coarse (7-network) parcellations by Yeo

et al. (2011). Therefore, neither may our estimated networks

exactly match with those in the previous literature, nor

the assigned name of network solely corresponds to its

functions.

For example, default network defined in current study is

composed of three ICs, and covers the medial prefrontal cortex

(PFC), the posterior cingulated/retrosplenial cortex, the inferior

parietal lobule (IPL) and the medial temporal lobes. However,

previous studies usually considered DMN to be separated into

anterior and posterior regions (Damoiseaux et al., 2006; Calhoun

et al., 2008; Zhang et al., 2014), though the main regions are

overlapped in previous and our studies. The heuristic reference

label of the salience network is adopted from Seeley et al.

(2007) and Buckner et al. (2013), it is referred as (or closely
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FIGURE 6 | Amplitude of low frequency fluctuation (ALFF) of large scale intrinsic brain networks in multiple frequency bands. (A) The frequency band of <0.1 Hz.

(B) Slow-5 band. (C) Slow-4 band. One single asterisk indicates that there is a significant difference (p < 0.05) between SPD and NC groups, but it does not pass

the FDR correction. Two asterisks mean that there is an FDR-corrected significant difference.

adjacent to) ventral attention network (Yeo et al., 2011) or

cingulo-opercular network (Dosenbach et al., 2007). It mainly

consists of anterior cingulate cortex (ACC) and dorsal anterior

insular cortex (dAIC; Seeley et al., 2007; Uddin, 2015). The

DAN includes dorsolateral PFC, FEFs, inferior precentral sulcus,

superior occipital gyrus, middle temporal motion complex, and

superior parietal lobule (Corbetta and Shulman, 2002; Fox

et al., 2005). The executive control network is also referred as

frontoparietal control network (Yeo et al., 2011), or control

network (Buckner et al., 2013), consisting of lateral PFC,

precuneus, the anterior extent of IPL, medial superior cortex

and the anterior insula (Vincent et al., 2008; Spreng et al.,

2010). Actually in previous studies, the frontoparietal control

network also includes anterior insula which is one part of

salience network. In the work by Seeley et al. (2007), it includes

dorsolateral PFC (DLPFC), lateral parietal cortex, dorsomedial

frontal/pre-SMA and ventrolateral PFC. To be consistent with

the results by Yeo et al. (2011), we combined three distinct

ICs into the sensorimotor network. Actually, it covers the

regions for the motor, somatosensory and auditory functions,

and the component-c corresponds to the auditory regions.

Limbic networks are not well defined in the present work. After

assigning several large ICs into above six networks, we put

the remaining comparatively large ICs into the so-called limbic

networks.

It is important to know the functions of DMN, CEN, DAN,

salience network and limbic system because it helps interpret the

disrupted brain functions in SPD from the altered fALFF/ALFF
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in multiple frequency bands (see ‘‘Methodology Advantage and

Significance’’ section). DMN is associated with self-oriented and

social cognition (Buckner et al., 2008; Sridharan et al., 2008;

Andrews-Hanna et al., 2014). The executive control network

is to operate on identified salience (Seeley et al., 2007), and is

involved in the maintenance and manipulation of information,

as well as decision making. The salience network takes central

role in the detection of behaviorally relevant stimuli and the

coordination of neural resources from DMN (internally directed

action) and CEN (externally directed action; Uddin, 2015). DAN

subserves externally directed cognition (Spreng et al., 2013).

Limbic system is involved in motivation, emotion, learning and

memory.

Methodology Advantage and Significance
In the proposed MFBA framework, the large scale intrinsic

brain networks are constructed from spatially ICs resulted from

group ICA at first. Second, the TC of each IC is transformed

into frequency domain to characterize its PSD. Third, the

fractional amplitude of LFO (i.e., fALFF) in multiple frequency

bands (<0.1 Hz, slow-5, and slow-4) can be determined. We

used Welch method to estimate PSD, which is more robust

than peroidogram methods employed in previous study (Zuo

et al., 2010). Other methods such as wavelet-based method and

Chronux spectral analysis are also possible (van Vugt et al., 2007;

Duff et al., 2008).

Only one ALFF measure is not enough to sensitively

distinguish the alteration of low and high frequency bands,

which correspond to different oscillators and connectivity (short

or long, local or global, for segregation or for integration).

Alternations of ALFF based spontaneous BOLD signal are

frequency dependent or specified (Zuo et al., 2010; Wang Z.

et al., 2014; Yu et al., 2014). MFBA is more sensitive than

ALFF analysis. For example, the schizophrenia group exhibited

significantly higher spectral power than controls at a frequency

bin 0.0797 Hz and 0.0858 Hz (Mingoia et al., 2013). Similar

to ALFF, functional connectivity and its alternations are also

frequency-specific (Salvador et al., 2008; Xue et al., 2014).

Actually, we do MFBA for TC resulted from the group

ICA, not for TC of each voxel. The advantage lies in the

ability of reducing the dimensionality of data, facilitating

comparisons, enhancing SNR and so on, similar to brain

parcellation based analysis (Glasser et al., 2016). Time series

after pre-processing of each voxel were input into PSD toolbox

to calculate amplitude of LFOs and fALFF. The resulting ALFF

and fALFF were converted into Z-scores and the corresponding

z-score map within gray matter mask is generated to further

group-level analysis. The voxel-wise analysis of time is local

and sensitive to motion (head, inspiration, etc.), the influence

of large vessels. After volume and artificial analysis based

on (LF to HF power ratio) vs. (Dynamic range) (Smith

et al., 2013) and visual inspection with known references,

ALFF and fALFF of TCs can avoid mentioned disturbances

to voxel-wise analysis. Using ICs to construct large-scale

intrinsic brain networks owns apparent advantages. ICs is

data-driven approach to obtain potential functional networks

with spatially distributed brain regions. To combine various

ICs into advanced cognitive networks is helpful to build up

hierarchical brain networks. It also helps understand architecture

of cognitive networks, their components (or sub-network) and

functions.

As per our previous study (Zhang et al., 2014), we performed

the group ICA in the segregate two groups. This method

originates from the hypothesis that the health controls and SPD

patients are two different groups, their combination will increase

the heterogeneity of data, and the group ICA results from this

combined group might not characterize the spatial and temporal

features of SPD. To evaluate the matching degree between the

same IC from two groups, the spatial overlap ratio (rso) and

Z-score Pearson correlation coefficient (rz) are analyzed (as

shown in Table 1). It is shown that most patterns of networks

are convergent between NC and SPD groups (high rso and rz).

However, the ICs from two groups are not completely overlapped

spatially, which might be related to the disturbance of BOLD

signal of SPD. The spatial difference of the same IC does not

influence their comparison of measures in temporal or frequency

domain (i.e., fALFF). In the study by Anderson and Cohen

(2013), the individualized ICA had been implemented, based

upon the hypothesis that the different networks operate between

schizophrenia patients and health controls. In summary, there is

no consensus regarding the way of ICA, in the segregate groups

or combined group.

Wu used the template by Yeo et al. (2011) generated from the

resting state fMRI data (or the intrinsic functional connectivity)

of 1000 subjects by a clustering approach. This template is

surface-based, which is thought to more accurate than the

volume-based templates in registration (Qi et al., 2015). The ICA

template generated from rs-fMRI data of 603 healthy subjects

(Allen et al., 2011) and another available template from FIND

laboratory (Shirer et al., 2012) containing 90 ROIs across the

14 Independent Component Networks (ICNs) can also be used

in future.

Recently, the low frequency steady-state brain response has

been studied by the MFBA (Wang Y. et al., 2014; Wang et al.,

2015, 2018; Wang Y. et al., 2016). It is demonstrated that the

cognitive activities can change the power at different frequencies.

In our study, we use the MFBA to reveal alternations of fALFF in

different networks in SPD patients in a ‘‘resting’’ state. Compared

with the case of cognitive activity, the ‘‘resting’’ state can be

considered as a baseline.

To the best of our knowledge, multi-band fALFF of large-scale

intrinsic brain networks constructed through group ICA has not

been studied, for both the healthy control and SPD.

Disruptive Large Scale Intrinsic Networks
in SPD
Our new finding on SPD is that higher fALFF in the frequency

bands of <0.1 Hz in SPD group for most networks compared

with NC group, and this trend becomes more pronounced in

slow-5 band. This finding indicates there is a global disruption

in the organization of SPD brain networks, similar to the

observation that all three networks (SN, DMN, CAN) of patients

with schizophrenia show structural and functional deficits
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(Palaniyappan et al., 2011). It can be explained by the interaction

of networks which result in the spreading from the primary

deficit (Menon, 2011). In line with our results, Yu et al. (2014)

also reported altered fALFF in widespread brain areas. However,

which network or brain region is the primary deficit is unknown

and worthy of further study. Causality analysis of connectivity

between these networks might be a promising avenue (Friston,

2009) as what have been done in schizophrenia (Palaniyappan

et al., 2013).

Higher fALFF is the manifestation of abnormal spontaneous

neural activity. In different networks, it may show distinct

representations and give rise to different symptoms for SPD.

Higher fALFF in DMN means there might be a DMN

suppression deficit in SPD. Lack of DMN suppression has

been reported in a growing body of work in schizophrenia

patients and their first-degree relatives (Pomarol-Clotet et al.,

2008; Whitfield-Gabrieli et al., 2009; Gerretsen et al., 2014).

Given the idea that DMN suppression functionally correlates

to goal-directed cognition (Menon, 2011; Anticevic et al.,

2012), lack of suppression will result in bad performance in

cognitively demanding task, explaining the symptom of cognitive

impairment associated with SPD. Moreover, aberrant neural

activity in DMN in SPD might lead to deviant functional

connectivity, and then positive symptoms like hallucination and

delusions as observed in schizophrenia patients (Rotarskajagiela

et al., 2010; Woodward et al., 2011).

In CEN andDAN, higher fALFF in slow-5 and lower fALFF in

slow-4 for SPD suggest that local connectivity in these networks

corresponding to fALFF in slow-4 is impaired or certain region is

broken. In other words, functional segregation in these networks

is reduced, whereas the functional integration is enhanced.

Though this hypothesis needs the more direct evidences from

graph theory analysis on intrinsic connectivity network (in

preparation), the decreased network connectivity and efficiency

of CEN networks have also been reported in schizophrenia

(Bassett et al., 2008). Considering the function of CEN, the

current finding appears to be associated with the SPD symptoms

of the working memory deficits and disorganization, similar to

the finding in schizophrenia (Menon, 2011; Woodward et al.,

2011). The abnormal fALFF in CEN might be associated with

deficits of attention in SPD (Luck and Gold, 2008).

For the salience network, no significant difference of fALFF

is observed in band of <0.1 Hz and slow-4 band. However, we

observed the functional connectivity between salience network

and three DMN components, one CEN component, and one

dorsal attention component significantly decreases in SPD (in

preparation). It is in agreement with the observations that the

causal influence from the salience network (right AIC) on the

DMN and CEN in schizophrenia turns weak (Palaniyappan

et al., 2013; Manoliu et al., 2014). A growing body of literature

has indicated that the structural and functional abnormality

of salience network is a key neuropathological component

in schizophrenia. The increased fALFF in frontal regions is

because these regions are dysregulated in the context of working

memory task performance. Dysregulation of medial frontal

regions is associated with self-directed thoughts, with the

consequence that the source of internal and external stimuli

could become confused, whichmay provide a neurophysiological

basis for hallucinations (Palaniyappan et al., 2013; Manoliu et al.,

2014).

In primary cortex, the visual, sensorimotor and auditory

networks present higher fALFF in slow-5 band for SPD group.

In slow-4 band, the statistical significance does not exist for three

sensorimotor networks, even the visual network in SPD group

displays lower mean fALFF. Given the primary networks are

characterized as the local connectivity and specialized function,

fALFF in high frequency band was to be dominated. The

reduced fALFF in high frequency might partially explain the

disruptions of these networks. Compatible with the present

finding, the reduced activation in visual networks in SPD has

been observed in several previous studies (Camchong et al., 2008;

Aichert et al., 2012; Meyhöfer et al., 2015), and lower activation

in sensorimotor networks has been reported (Hong et al., 2005;

Keedy et al., 2006).

In limbic system, the increased fALFF in low frequency band

(slow-5 and slow-4) becomes more significant, corresponding to

the reduced fALFF (>0.1 Hz) in high frequency. Since limbic

system includes some subcortical structures of the hippocampus,

anterior groups of thalamic nuclei, hypothalamus, mammillary

body, it is supposed to be oscillation of high frequency (Salvador

et al., 2008; Zuo et al., 2010). Deficits in limbic system

characterized as reduced fALFF in high frequency might be

implicated in symptoms of SPD. For example, dysfunction in the

frontal-striatal-thalamic circuitry, the neural circuitry involved in

rewarding has been reported in SPD (Hazlett et al., 2008; Hur

et al., 2016) and schizophrenia (Hoptman et al., 2010). Deficits in

reward processing and/or stimulus saliency, dulling of emotional

expression might relate to the alternation in the right striated

region. Moreover, the volume of subcortical structures seems to

be reduced in SPD, hippocampus is the key node of pathology

(Fervaha and Remington, 2013).

The signal from lower frequency bands is associated with

the integration of large-scale neural networks and long-distance

connectivity, which may be primarily mediated by cortical

regions, especially the brain’ hub nodes, such as the mPFC and

IPL. Conversely, higher frequency signals have been linked with

more local neural activity and short connections, which maybe

largely constituted by the more primitive subcortical regions.

That phenomenon may provide an explanation for our findings

of greater LFO amplitudes in the cortical areas in slow-5 band

but greater amplitudes in the subcortical areas in relatively higher

slow-4 band (Wang Z. et al., 2014).

Limitations and Future Works
While determining spatial locations of each IC, one threshold

of Z > 0.5 is employed to the Z-map of IC, indicating that the

voxels with Z < 0.5 will be set zero and excluded from the IC.

This threshold is roughly decided according to the tradeoff that

overlapped regions between different ICs are minimized and the

sum of ICs occupymost gray matter volume. It is unknown if this

threshold is applicable to other studies. To increase this threshold

will make rso and rz increase.

According to the theoretical scale-free model, the peak of

curve between the power and frequency should be located in
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the lower frequency bands. Our results and previous studies

(Mingoia et al., 2013) showed the peak is located in slow-5 band

for the data is not long enough (only 170 points). This issue can

be addressed in the future study through extending the rs-fMRI

scanning time.

The TC of intrinsic brain network is more robust than that

of single voxel or regions to various noises (Zuo et al., 2010). TC

of each individual’s IC will suppress high-frequency components

for the neural activity of the short-range connections. However,

if one region has a good homogeneity of neural activity, the

suppression to high-frequency components will be limited. That

is the reasonwhy the group ICA is performance twice (for healthy

control and SPD patients). The final goal is to extract the IC with

homogeneous neural activity.

Intrinsic functional connectivity provides a powerful and

unique tool to provide insight into human brain organization.

However, fcMRI is based on an inherently ambiguous measure

that reflects constraints both from static anatomical connectivity

and from poorly understood functional coupling changes that

are dynamic. For this reason, fcMRI is best used to a tool for

generating hypothesis about brain organization that will require

further study with external methods (Buckner et al., 2013).

Actually, the generated volume-based atlas or parcellations

of each brain network is consistent with previous studies (Allen

et al., 2011; Yeo et al., 2011; Shirer et al., 2012) by visual

inspection. We are confident of using this atlas in the current

SPD data to study the ReHo and fALFF of these large-scale

intrinsic brain networks, to construct the functional whole brain

network using time-series of independent components, and to

build up the structural brain network using DWI data (we had

scanned) and tractography algorithms.

The neural mechanism of several frequency bands such

as Alpha, Beta, Theta and Gamma might be known (Buzsáki

et al., 2013). For example, the Theta oscillations (4–10 Hz)

are supported by intracellular and circuit characteristics

of the septo-hippocampal-entorhinal system. The LFOs

(0.01–0.1 Hz) reflect the periodic modulation of gross

cortical excitability and the long-distance synchronization

of neurons. However, the neural mechanism of slow-5 and

slow-4 is not clear, though we know the principle that

low frequency bands are associated with the integration of

large-scale networks and high frequency bands correspond

to local neural activity (Buzsáki and Draguhn, 2004). To use

the steady-state BOLD responses to modulate low frequency

neural oscillations and perform MFBA might help clarify

the neural mechanism in the future study (Wang Y. et al.,

2014).

CONCLUSION

The present work has demonstrated that the proposed MFBA

method can characterize the large scale intrinsic brain networks

through calculating the PSD and ALFF/fALFF of TC resulted

from group ICA of rs-fMRI data. The PSD and ALFF/fALFF are

different across networks, frequency bands and subject groups

(NC or SPD). Intrinsic brain networks with different connectivity

(short or long) and functions (segregation or integration)

might correspond to oscillators with different frequencies and

therefore present different characteristics in each frequency

band. The proposed MFBA methods are proved to enable

revealing the frequency-dependent alternation of ALFF/fALFF

for seven networks in SPD, which may help interpret the

neuropathology disruptions in SPD and correlate them with

behavioral symptoms.
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