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Multiple-frequency DBIM-TwIST algorithm for

microwave breast imaging
Zhenzhuang Miao and Panagiotis Kosmas, Senior Member, IEEE

Abstract—A novel DBIM algorithm is proposed for microwave
breast imaging based on the TwIST method. We show that this
implementation is more flexible and robust than using traditional
Krylov subspace methods such as the CGLS as solvers of the ill-
posed linear problem. The paper presents several strategies to
increase the algorithm’s robustness: a hybrid multi-frequency
approach to achieve an optimal trade-off between imaging
accuracy and reconstruction stability; a new approach to estimate
the average breast tissues properties, based on sampling along
their range of possible values and running a few DBIM iterations
to find the minimum error; and finally, a new regularization
strategy for the DBIM method based on the L

1 norm and
the Pareto curve. We present reconstruction examples which
illustrate the benefits of these optimization strategies, which have
resulted in a DBIM algorithm that outperforms our previous
implementations for microwave breast imaging.

Index Terms—Microwave breast imaging, DBIM, TwIST,
multiple-frequency, hybrid frequency, multiple-resolution, initial
guess, L1 norm regularization method.

I. INTRODUCTION

Microwave tomographic methods for medical imaging esti-

mate the spatial distribution of dielectric properties in a tissue

region by solving an electromagnetic (EM) inverse scattering

problem [1], [2]. Various EM inverse scattering methods

have been proposed in recent years for this purpose, such as

conjugate gradient techniques [3], [4] and Gauss-Newton (GN)

optimization algorithms [5]. In our previous work, we have

applied a Gauss-Newton (GN) algorithm based on the distorted

Born iterative method (DBIM), which approximates the non-

linear inverse scattering problem by an under-determined set of

linear equations [6], [7]. Moreover, we have applied adaptive

thresholding methods to solve this set of linear equations

thereby improving reconstructions in DBIM-based microwave

breast imaging [8].

More recently, we have shown that the use of the two-

step iterative shrinkage/thresholding method (TwIST) [9] can

further improve the solution of the ill-posed linear system in

microwave breast imaging [10]. By using two previous iterates

to compute the current update of the iterative linear solver,

the TwIST algorithm can lead to faster convergence and more

accurate reconstructions compared to conventional adaptive

thresholding methods [10]. In addition, the algorithm provides

a set of flexible parameters that can increase robustness relative

to one-step iterative methods.

This paper presents new strategies which improve further

the performance of the DBIM-TwIST algorithm for microwave

breast imaging. First, we present a two-step reconstruction

approach, where the first step considers a homogeneous breast

interior and uses the DBIM to obtain an initial guess which

reflects the true breast tissue composition. This step is critical

for the DBIM to converge to an optimal solution (global

minimum), as GN algorithms can be very sensitive to the

initial guess in applications such as medical imaging, where

very little a priori information may be available [11], [12]. In

particular, an initial guess provides the starting point for these

convex optimization algorithms, and inaccurate information

can lead to false solutions that fit the data but are completely

different from the ground truth [13]. Our approach adds low

computational cost to the final breast reconstructions, and

improves significantly the reconstruction quality for different

breast phantoms.

Moreover, we improve the performance of the DBIM-

TwIST further by refining our previous work on multiple-

frequency reconstructions using a single-pole Debye model

[8], [10]. Reconstructing the single-pole Debye parameters

allows multiple frequency data to be used for the inversion

at each DBIM iteration [2], [6], [8]. Multiple-frequency ap-

proaches can combine the stabilizing effects of lower frequen-

cies with enhanced resolution of higher frequencies, thereby

overcoming stability and resolution limitations of single-

frequency algorithms which tend to be very dependent upon

the chosen frequency [14].

Our analysis provides insight on how to utilize multiple-

frequency information to enhance the accuracy of recon-

struction and robustness of the DBIM-TwIST algorithm. Our

adopted hybrid frequency approach provides better stability

and reconstruction accuracy at lower computational cost rela-

tive to frequency-hopping techniques [4]. We also confirm the

intuitive result that the optimal initial guess obtained in the

first step of our algorithm requires only low-frequency data,

which can be obtained using a low resolution grid.

Finally, we present a new method for regularizing the

unconstrained optimization problem based on L1 norm mini-

mization and the TwIST method. This is motivated by recent

work in medical applications, where regularization methods

based on the L1 norm or total variation (TV) principle have

become popular instead of L2 norm regularization approaches

[15]. These methods impose less smoothing on the reconstruc-

tion image. In this paper we implement the Pareto curve for

finding the L1 norm regularization parameter of the TwIST

algorithm, which defines the optimal trade-off between the

L2 norm of the residual and the L1 norm of the solution

[16]. The non-stationary convergence of the TwIST method

does not ensure differentiability and continuity of the Pareto

curve, as in stationary iterative methods such as conjugate

gradient method. We therefore employ curve fitting of cubic

polynomials to smooth the Pareto curve. Moreover, we apply
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an exponential distribution sampling of the regularization

parameter to reduce computation cost.

These new strategies, which are presented in a unified

framework within the DBIM, provide some unique capabilities

of our algorithm relative to recently proposed alternative

methods. For example, Nikolova et al in [17], [18], presented

an interesting and effective holography method for recon-

structing targets in the near-field range, which relies on an

alternative formulation of the problem. Similarly, theoretical

and experimental work by LoVetri et al has also focused on

two-dimensional (2-D) wideband microwave imaging using

various approaches including the DBIM [19], but the employed

optimization and regularization strategies are very different

from this work. Moreover, the importance of the initial guess

in the convergence of the algorithm has been demonstrated

in numerous papers (see for example [11]), but the approach

presented here to tackle this problem has not been considered

previously, to the best of our knowledge.

The remainder of this paper is structured as follows. Section

II presents several implementation aspects of our DBIM-

TwIST algorithm for microwave breast imaging, while Section

III introduces our new inversion strategies to enhance inver-

sion. Section IV presents simulation results to illustrate the

advantages of our algorithm, and some final conclusions are

given in Section V.

II. IMPLEMENTATION OF THE DBIM-TWIST ALGORITHM

A. Review of the DBIM-TwIST algorithm

The DBIM is an iterative inverse scattering algorithm which

is commonly used to estimate the spatial distribution of

dielectric properties within a region V [20]. Under the Born

approximation, a linear integral equation at each iteration can

be discretized for all transmit-receive pairs, leading to a linear

system that can be solved by various methods including the

TwIST method, as presented in our previous work [10].

In particular, the TwIST algorithm [9] can be introduced

by considering the linear system at each DBIM iteration as

an inverse problem where the goal is to estimate an unknown

original image vector x from an observation vector y, described

by the linear equation Ax = y. Many approaches to this Lin-

ear Inverse Problem (LIP) define a solution x̂ as a minimizer

of a convex objective function f : χ → R = [−∞,+∞],
given by

f(x) =
1

2
‖y −Ax‖22 + λΦ(x) (1)

where Φ(x) is a regularization function for the convex opti-

mization problem and λ ∈ [0,+∞] is a weighting parameter.

Note that we use a standard definition for the norm through

the paper given by ‖ · ‖p =
√

(
∑

n | · |
p).

In recent years, iterative algorithms were independently

proposed by many authors within different frameworks, e.g.

[9], [21]–[24]. Our implementation is based on [9], which

presents a method of splitting the matrix to structure a two-

step iterative equation shown below:

xt+1 = (1− α)xt−1 + (α− β)xt + βΓλ(xt)

Γλ(x) = Ψλ(x+AT (y −Ax))
(2)

where α and β are the parameters of the TwIST algorithm,

and Ψλ is the denoising function corresponding to the reg-

ularization function Φ [3]. The designation two-step stems

from the fact that the next estimate xt+1 depends on both the

current solution xt and the previous solution xt−1, rather than

only on xt, as in conventional iterative shrinkage thresholding

algorithms.

In our previous paper [10], we have presented a methodol-

ogy to increase the robustness of the DBIM-TwIST algorithm,

as well as ways to optimise its parameters for a particular

application such as microwave breast imaging. This robustness

is an important advantage of the TwIST method relative to

other iterative solvers such as CGLS, as suggested by our

comparison results in Section IV-A.

B. Testbeds

We consider a 2-D microwave breast imaging simulation

scenario that has been used in previous work to evaluate

imaging performance with different inversion approaches [8],

[25]. Simulation data is produced with the FDTD method with

a CPML boundary condition. Our tests include all four types

of numerical breast phantoms taken from the UWCEM repos-

itory [26]. In particular, we have considered 2-D axial slices

representative of the phantoms classified as ‘mostly fatty’

(ID:071904), ‘scattered fibroglandular’ (ID:010204), ‘hetero-

geneously dense’ (ID:062204) and ‘very dense’ (ID:010204).

The single-pole Debye model is employed to describe the

frequency-dependence for all breast tissues in the computation

model,

ǫr(ω) = ǫ∞ +
ǫs − ǫ∞
1 + jωτ

− j
σs

ωǫ0
(3)

where τ is assumed constant for all tissues (with a value

of 17.125 ps). As in previous work [2], [8], [10], we as-

sume a lossless background medium with ǫr = 2.6 in our

simulations, but we examine the impact of losses for some

realistic background coupling media in Section IV-D. Our

setup considers sixteen antennas surrounding the 2-D breast

phantom, representing point sources excited with a wideband

Gaussian pulse in a TM configuration (i.e. the electric field is

perpendicular to the breast phantom). Six sampling frequencies

are selected at 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 GHz.

We note that the choice for the number of antennas is based

on the analysis in [27]. In the 2-D scalar case, the essential

number of the antennas is defined as,

M = 2βα (4)

where α is the radius of the reconstruction domain and β is

the wave number. Considering our first operating frequency of

1 GHz, M is approximately equal to 15.

The shape of breast model is the only prior information

assumed known for the reconstruction, while the relative di-

electric permittivity of the skin and its thickness are unknown.

To compare image reconstruction quality, we define a rela-

tive reconstruction error as,

“Relative error” =
‖ǫt

∞original − ǫt
∞reconstructed‖

2

‖ǫt
∞orginal‖

2
, (5)
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where t is the iteration number and ‖ · ‖ denotes the L2 norm

in this paper. In (5), ǫ∞ is chosen as the representative of

reconstructed Debye parameter, but similar metrics can be

calculated for any of the parameters of the Debye (or an

Ohmic) model.

As we cannot know the true ǫ∞ in a realistic application,

we must also define a “Residual” error as,

Residual = ‖ME
t −MS

t ‖ (6)

where ME
t and MS

t denote complex vectors of the ”exper-

imental” and ”model” data at the tth iteration respectively,

recorded at the antenna locations. The “Residual” difference

can be computed at each DBIM iteration, and can be used as

a stopping criterion for the DBIM iterative algorithm.

C. FDTD implementation in multiple grid resolutions

Our work investigates imaging performance for different

voxel sizes, in order to assess our DBIM-TwIST algorithm’s

resolution limitations. The resolution of our original breast

models is 0.5 mm, so we propose to reconstruct images in

four different grid resolutions, i.e. 2 mm, 1.5 mm, 1 mm,

and 0.5 mm. We note that the maximum resolution must be

smaller than the thickness of the skin. Consequently, 2 mm is

the maximum for the multi-resolution implementation based

on our original breast model.

Naturally, the choice of the grid resolution affects the

numerical data mismatch error of our FDTD forward solver.

In particular, the FDTD simulation data sampling frequency

depends on the inverse of the FDTD time-step ∆t which is

fixed relative to the spatial increment ∆x = ∆y according to

Courrant’s criterion to avoid numerical instability, e.g.,

∆t = ∆x/(2 ∗ c) (7)

where c denotes the speed of light in vacuum. We apply a soft

source excitation, which commonly uses a current source as a

drive to produce a required field, such as

En+1 = En + source(n) (8)

where source(n) is a discrete series of the voltage source.

This soft source causes successive accumulations of energy

for different time-step ∆t. To tackle the problem, we must

amend the relationship between ∆x and ∆t and modify the

amplitude of simulated source to compensate for this error as

we move from the 0.5 mm grid to its multiple increments 1.0,

1.5, and 2.0. We therefore define a parameter mul as the ratio

of the multiple resolution to the ‘original’ resolution grid of

0.5 mm, as shown below,

mul = rc/0.5mm

∆t = ∆x/(2 ∗ c)/mul

sourcem = sourceo/mul2
(9)

where rc denotes the targeted resolution, and sourceo and

sourcem are the original excitation signal and the modified

source respectively.

Fig. 1 plots the relative errors of received signals from 120

antenna pairs (for the 16 antenna system) in 2.0, 1.5, and
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2 mm (Average is 0.0725)

1.5 mm (Average is 0.0422)

1 mm (Average is 0.0251)

Fig. 1. Errors of FDTD-calculated signals at the receiver points for multiple
grid resolutions against the 0.5 mm resolution of the original phantom.

1.0 mm grid resolutions against the received signal in 0.5

mm. The average of relative errors are 0.0725, 0.0422, and

0.0251 respectively. It is evident that the targeted resolution

closer to the fine original model in 0.5 mm results in the

least relative error. In all cases, our compensation method

results in a data mismatch under 8% relative to the original

numerical phantom. This data mismatch due to the forward

solver’s numerical discretization is negligible relative to the

model mismatch between the true numerical phantom and our

initial guess of a homogeneous breast interior with unknown

skin properties.

III. TECHNIQUES TO OPTIMIZE CONVERGENCE

This section discusses implementation strategies to improve

the DBIM-TwIST algorithm in terms of robustness and res-

olution. First, we propose a simple method to estimate the

optimal average Debye parameters of the breast, which are

then used as the initial guess for the the second step of

our reconstruction process. We argue that this optimal initial

guess can be obtained from a reconstruction in low resolution,

which implies lower computational cost. We then discuss how

to best use multi-frequency data to enhance the algorithm’s

performance. Finally, we propose an L1 norm regularization

of the TwIST method based on the Pareto curve.

A. Optimized initial guess of the breast average dielectric

properties

Iterative local optimization methods such as the DBIM

method are sensitive to the adopted ‘initial guess’ of the

reconstruction domain [11], which can result in the convex

optimization algorithm converging to a false solution. In addi-

tion to increasing stability, a good initial guess can speed up

convergence, and thus reduce computational time. Obtaining

an accurate initial guess can be challenging in applications

such as breast imaging, where very little information (e.g. the

breast surface) may be known a priori. To this end, we propose

a very simple process to estimate the average breast dielectric

properties, which relies on the following: 1) assume the breast

is homogeneous and filled with normal tissue, and run the
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Fig. 2. Illustration of the proposed method to select an optimal initial guess
for microwave breast imaging. Here we consider 5 samples from the normal
breast tissue range shown in Table I. Each sample is used as the starting point
of DBIM-TwIST, which is run for 5 iterations for a fixed a homogeneous
breast with unknown skin properties. The residual and relative reconstruction
errors vs. iteration number are plotted in (a) and (c) for 2 mm resolution, and
in (b) and (d) for 0.5 mm.

DBIM-TwIST algorithm for a fixed number of iterations; 2)

apply this process to a number of samples (which we term

‘Cases’) within a well-known range of values for normal

breast tissue to determine the optimal initial guess of the

average breast dielectric properties, based on minimizing the

data residual.

TABLE I
FIVE CASES OF ESTIMATED INITIAL GUESSES BASED ON THE

SINGLE-POLE DEBYE MODEL

Sampling ǫ∞ ∆ǫ σs(S/m) τ(ps)
Case 1 4.68 3.21 0.088 17.125
Case 2 7.835 7.26 0.2 17.125
Case 3 10.99 11.3 0.311 17.125
Case 4 14.145 15.35 0.423 17.125
Case 5 17.3 19.4 0.535 17.125

As an example of implementing this approach, we choose

5 samples of the three Debye parameters which are evenly

spaced within the range used to model normal breast tissue

shown in Table I (‘Cases’ 1-5), where the parameters of the

Case 1 and 5 represent the mean of adipose breast tissue and

fibroglandular breast tissue respectively [6]. Then we run 5

iterations of the DBIM-TwIST for each of the 5 cases to

select the initial guess with the smallest data residual. This

process yields the three Debye parameters of the homogeneous

breast interior which reflect the closest estimate to its average

dielectric properties and are used as the optimal initial guess

in the second step of the DBIM algorithm, to estimate the

inhomogeneous breast structure.

Fig. 2 illustrates the evolution of this process for a het-

erogeneously dense phantom based on a single-frequency

reconstruction at 1 GHz. The data residuals and relative

TABLE II
SEVEN RECIPES OF HYBRID FREQUENCY APPROACHES

Name Hopping method (iteration No.)

Freq hopping approach 1→1.5→2→2.5→3→3.5 GHz
Hybrid freq approach 1 1 (20)→ 1.5 + 2 + 2.5 + 3 + 3.5 GHz
Hybrid freq approach 2 1 + 1.5 (20)→ 2 + 2.5 + 3 + 3.5 GHz
Hybrid freq approach 3 1 + 1.5 + 2 (20)→ 2.5 + 3 + 3.5 GHz
Hybrid freq approach 4 1 + 1.5 + 2 + 2.5 (20)→ 3 + 3.5 GHz
Hybrid freq approach 5 1 + 1.5 + 2 + 2.5 + 3 (20)→ 3.5 GHz

Multi-freq approach 1 + 1.5 + 2 + 2.5 + 3 + 3.5 GHz (90)

reconstruction errors against the original model are plotted

at each DBIM iteration for reconstruction resolution of 2 mm

in (a) and (c), and 0.5 mm in (b) and (d). The residual and

relative errors exhibit similar trends for all cases. Moreover,

the similarity of the results in 2 mm and 0.5 mm confirm that

it is sufficient to use a 2 mm resolution grid for optimizing

the initial guess in this first step of the algorithm even if

the final (heterogeneous) images are reconstructed in higher

resolutions.

B. Multiple-frequency optimization

Our recent DBIM-based work has demonstrated that the

combination of multi-frequency information can enhance per-

formance in terms of both robustness and resolution [8],

[10]. A multi-frequency approach requires a proper dispersion

model which should be chosen carefully to reflect true breast

tissue dependencies within a frequency range of interest. This

work adopts the previously well-established assumption that

the single-pole Debye model in (3) can cover the range of 1.0-

3.5 GHz [2], [6], [26], thereby allowing us to combine multi-

frequency data to estimate the unknown Debye parameters in

this entire range.

An alternative method for the use of multi-frequency data

is based on the frequency hopping approach, where single-

frequency reconstructions are performed successively from

low to high frequencies [20]. With this approach, the use

of low frequencies in the initial inversion stages reduces

the nonlinearity of the problem and increases robustness.

However, we have argued in previous work that the method

may not take full advantage of high frequency data due to a

possibly low rank of the monochromatic linear equation [25].

To balance between these two approaches, we have tested

a variety of hybrid frequency approaches with the DBIM-

TwIST algorithm, which are listed in Table II. The hybrid

approaches rely on using first one or more of the lowest

frequencies from our set to provide a crude initial estimate of

the breast distribution, which is then used as the starting point

for a second DBIM inversion using multi-frequency data from

the remaining frequencies. Note here that the low frequency

reconstruction is initialized with the output of the algorithm’s

first step, which provides the optimized initial guess in terms

of the breast average dielectric properties (see Section III-A).

Relative reconstruction errors for all seven approaches and

the four breast phantoms are shown in Fig. 3. Here we used 15

iterations per frequency for the frequency hopping approach

while the hybrid approaches processes the low frequencies in

the first 20 iterations, followed by 70 iterations using data
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Fig. 3. Relative reconstruction errors for seven multi-frequency approaches
in the DBIM-TwIST applied to four breast phantoms with unknown skin
properties; (a) in Class 1 for ‘mostly fatty’; (b) in Class 2 ‘scattered
fibroglandular’; (c) in Class 3 for ‘heterogeneously dense’; (d) in Class 4
for ‘very dense’.

from the rest of frequencies. It is evident that the frequency

hopping approach and the first hybrid frequency approach

are the most stable, while other hybrid frequency approaches

are not guaranteed to converge to a minimum. Moreover,

the hybrid frequency method is much faster than frequency

hopping, requiring between 40 and 60 iterations to converge

in all cases.

C. L1 norm regularization with the TwIST method

Thresholding algorithms such as the TwIST promote sparse

solutions of the LIP. We can therefore regularize the TwIST

using tools employed by other sparse-promoting algorithms,

such as the basis pursuit (BP) problem. BP aims to find a

sparse solution of the under-determined system of equations

Ax = b, where A is an m-by-n matrix and b is m-by-1 vector.

Again, if m << n, this problem is ill-posed. The approach

introduced by Chen, Donoho, and Saunders [28], is to solve

the convex optimization problem,

min
x

‖x‖1 subject to Ax = b. (10)

However, it is undesirable to fit exactly the linear system

because of noisy or imperfect data. Therefore, other possible

formulations of the L1 norm regularized least-squares problem

have been proposed based on the penalized least-squares

problem

min
x

‖Ax− b‖22 + λ‖x‖1, (11)

||A
x
-b
|| 2

||x||1

max

min

(a)

L
o
g
(|
|A
x
-b
|| 2
)

Log(||x||1)

opt

max

min

(b)

Fig. 4. A typical Pareto curve (a) and Pareto curve in log-log scale (b), which
is used to choose the optimal value of the L1-regularization parameter λ

which is proposed by Chen, Donoho, and Saunders [28], and

an explicit L1 norm constraint problem known as the Lasso

problem,

min
x

‖Ax− b‖2 subject to ‖x‖1 ≤ τ. (12)

The formulation of (11) is well suited to the TwIST method

because of its close connection to convex quadratic program-

ming, for which we can obtain an explicit expression of the

denoising function in closed form. Let xλ denote the optimal

solution of (11). The residual function

φ(λ) = ‖Ax
λ
− b‖2 (13)

gives the minimal residual of (11) for each λ ≥ 0.

To obtain the optimal value of λ for Φ(λ), we employ the

Pareto curve, which can yield the optimal trade-off between

minimizing the L2 norm of the residual r and the L1 norm

of the solution x, as shown in Fig. 4 for a typical LIP. As the

TwIST method is a non-stationary method, the function of (13)

is not strictly non-increasing and not smooth. We therefore

apply curve fitting using cubic polynomials to approximate

the function and its derivative. The curve then becomes

continuously differentiable and convex, and the residual φ will

decrease as λ increases.

Subsequently, we use a log-log scale to plot the norm of

residual φ on the abscissa against the L1 norm of solution

x for the parameter λ. Then, we can localize a point λopt

corresponding to the maximum of the curve slope. As shown

in Fig. 4b, the smallest increase in ‖x‖ leads to the greatest

decrease in φ(λ) around this point. This process is similar to

using the L-curve method for L2 norm regularization problems

[29]. However, the L-curve in log-log scale is a convex

downward, but the Pareto curve in log-log scale is a convex

upward (even if the original Pareto curve is convex downward).

To reduce the computation cost, we choose the value of λ
based on an exponentially decreasing function from ‖AT b‖∞
to zero, which is defined as,

λ(n) = ‖AT b‖∞ · δn n ∈ Z
+ (14)

where δ denotes a decreasing factor with 0.1 < δ < 1, (·)T

denotes a transpose operator, and ‖ · ‖∞ denotes the infinity

norm. In (14), we use δ to control the number of samples for

the parameter λ. When δ tends to 1, a more accurate Pareto

curve is obtained at the expense of very high computational

cost. Conversely, the number of samples becomes insufficient

as δ approaches 0.1. In our numerical experiment, a reliable
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Fig. 5. Flow chart of the multi-frequency DBIM-TwIST algorithm

range of δ is found between 0.3 and 0.5, and any choice in

this range comes with a low computational cost.

Finally, it is important to emphasize that, contrary to com-

monly used L1 norm approaches, our method combines the

Pareto curve with an adaptive strategy to optimize the L1

regularization based on the residuals of the TwIST iterations

at each DBIM iteration, which has been detailed in [10].

IV. RECONSTRUCTION RESULTS

For all our results, our reconstruction approach employed

the DBIM-TwIST algorithm in conjunction with the optimiza-

tion strategies presented in Section III as illustrated in Fig. 5.

The DBIM-TwIST algorithm is invoked both in the first step

of finding the optimal initial guess (average breast properties)

as well as in the main reconstruction of the inhomogeneous

breast structure. A single frequency approach at 1 GHz is

used in the first step, and its outcome initializes the optimal

multi-frequency approach (hybrid freq. approach 1 in Table II)

employed in the second step of the process.

A. Comparison between TwIST and CGLS

First, we demonstrate that using the TwIST method to solve

the LIP can increase the robustness of the DBIM algorithm

relative to commonly used CGLS solvers [2], [6]. To this

end, we have tested the DBIM with the TwIST and the

CGLS in various resolutions, using the frequency hopping

approach (in order to examine the impact of each frequency

separately). Results are shown in Fig. 6, where it is evident

that the TwIST and CGLS methods can provide very similar

reconstruction results in resolution of 2 mm, with an almost

identical convergence rate. However, for higher resolutions

of 1 mm where ill-posedness increases, the CGLS algorithm

becomes unstable and converges to a false solution, as shown

in Fig. 6 (a) and (c).
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Fig. 6. Comparison between the TwIST algorithm and CGLS algorithm
in different resolutions. (a) Relative error of reconstructions based on the
frequency hopping approach in 1 mm and 2 mm; (b) Reconstructed image of
ǫ∞ by the TwIST algorithm in 1 mm; (c) Reconstructed image of ǫ∞ by the
CGLS algorithm in 1 mm.

TABLE III
RELATIVE ERROR OF RECONSTRUCTIONS OF ǫ∞

Model
Default initial guess / Optimized initial guess

2 mm 1.5 mm 1 mm 0.5 mm

Class 1 0.264/0.272 0.289/0.301 0.332/0.335 0.429/0.417

Class 2 0.233/0.241 0.266/0.265 0.320/0.297 0.554/0.373

Class 3 0.306/0.312 0.342/0.319 0.380/0.298 0.682/0.361

Class 4 0.473/0.235 0.504/0.261 0.694/0.268 0.707/0.332

This is based on the default initial guess and the optimal initial guess for 4 breast

phantoms, including mostly fatty, scattered fibroglandular, heterogeneously dense and

very dense breasts from Class 1 to Class 4.

B. Effect of optimizing the initial guess by estimating the

breast average dielectric properties

To illustrate the advantage of optimizing the initial guess for

the breast average dielectric properties in the DBIM, we have

reconstructed axial slices from four UWCEM breast phantoms

in resolutions of 2 mm, 1.5 mm, 1 mm, and 0.5 mm. The

reconstructed images of ǫ∞ using a fixed initial guess versus

an optimized initial guess in 2 mm and 0.5 mm are shown in

Fig. 7 and Fig. 8, respectively. Relative errors computed for

the same parameter are given in Table III. Note that the fixed

initial guess values are chosen in the middle of the range for

the Debye parameters of normal breast tissue.

These images and error values suggest that optimizing

the initial guess leads to sufficiently accurate distribution

estimates for all resolution ranges, while omitting this step can

compromise imaging performance. This is particularly true in

all resolution grids for the very dense breast phantom, where
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Fig. 7. Reconstructed images of ǫ∞ without and with optimization of initial guess for 4 phantoms in 2 mm. (a)-(d) Reconstructions with a fixed initial guess
representative of normal breast tissue average properties (ǫ∞ = 11.27,∆ǫ = 5.51, σs = 0.0802); (e)-(h) Reconstructions with an optimized initial guess;
(i)-(l) original 2-D images of 4 breast phantoms (mostly Fatty, scattered fibroglandular, heterogeneously dense and very dense from left to right).
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Fig. 8. Reconstructed images of ǫ∞ without and with an optimized initial guess for 4 phantoms in 0.5 mm. (a)-(d) Reconstructions with a fixed initial guess
representative of normal breast tissue average properties (ǫ∞ = 11.27,∆ǫ = 5.51, σs = 0.0802); (e)-(h) Reconstruction with an optimized initial guess.
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Fig. 9. Comparison of reconstruction quality for different SNR levels of noise
and phantom ‘062204’.

the difference in the Debye parameters of the fixed initial guess

from the true average Debye parameters is the most significant.

It is also true for three of the four phantoms in the highest 0.5

mm resolution grid, where the number of unknowns (and thus

the degree of ill-posedness of the LIP) increases dramatically

relative to the low 2 mm resolution grid. Therefore, optimizing

the initial guess can increase the algorithm’s robustness and

enhance the accuracy of reconstruction in high resolution.

C. L1 norm regularization effect

In all our previous reconstructions, stability in the DBIM-

TwIST algorithm has been achieved by terminating the TwIST

iterations based on an adaptive strategy presented in our

previous work [10]. Although noise has not been added to

the simulated data, this implicit regularization strategy can

ensure stability in cases of noise or measurement uncertainties,

similar to previous implementations using the CGLS method

[6]–[8]. To illustrate this, we have repeated the reconstructions

of Section IV-B with an increasing level of noise in the data,

and plotted the relative errors to the experimental phantom

‘062204’ in Fig. 9. The plot confirms that convergence is not

affected by noise levels with signal to noise ratios (SNRs)

as low as 20 dB, but for lower SNRs there is noticeable

degradation in the reconstruction quality.

It is important to note that these low SNRs would not

correspond to thermal noise in an experimental MWI system,

but rather to errors due to measurement uncertainties, envi-

ronmental factors, and mismatch errors between our model

and true experiment. These errors depend on the signal level

at each antenna. We have modelled this measurement noise

as additive Gaussian in the absence of a better model, with

power level dependent on the signal at each antenna. Noise of

the same power at each antenna would correspond to thermal

noise, which would be well below the level of the signals that

are processed by our algorithm and would therefore have a

negligible effect in our reconstructions.

To deal with cases of very low SNR where the TwIST

termination criterion is not sufficient to guarantee optimal
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Fig. 10. Reconstructed images of ǫ∞ and σs in 2 mm under 5 dB noise.
Top: Estimates of ǫ∞ without (a) and with (b) L1 regularization. Bottom:
Images of σs without (c) and with (d) L1 regularization.

convergence, (10 dB or below in Fig. 9), we can employ

the L1 regularization strategy based on the Pareto curve

analysis presented in Section III-C. To illustrate the effect

of L1-regularization approach, we compare in Fig. 10 the

reconstructed images of ǫ∞ and σs without and with our L1

regularization for an SNR of 5 dB. These images demonstrate

that our L1 regularization approach can assist in recovering

the true breast composition, while very strong noise artefacts

occur when the DBIM-TwIST is implemented without the

L1-regularization correction. As expected, noise artefacts are

stronger in the fatty tissue, and affect the σs images more than

ǫ∞.

D. Impact of uncertainties in prior information and losses in

coupling medium

Our previous reconstructions have assumed prior knowledge

of the outer outline of the breast model and a fixed relaxation

time for all Debye parameters. Moreover, a hypothetical

lossless coupling medium with low dielectric constant has

been considered, motivated by the use of low-loss coupling

media such as safflower oil. In this section, we consider the

impact on the reconstruction due to losses in the coupling

medium, as well as the effect of uncertainties in the knowledge

of the breast outline and the relaxation constant.

The impact of the coupling medium in microwave breast

imaging has been considered in various previous studies, both

in radar-based as well as tomographic approaches. For example

its effect in terms of signal level has been studied in [30], while

the use of losses to reduce unwanted signals in microwave

tomography has been demonstrated in [31]. It is evident that

a lossy coupling medium will reduce the level of signals

scattered by the breast, and this loss of information can affect

the quality of reconstructions.
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TABLE IV
RELATIVE RECONSTRUCTION ERRORS FOR VARIOUS COUPLING MEDIA

AND PHANTOM ‘062204’

coupling medium ǫ∞ ∆ǫ σs τ Relative error

Ideal lossless 2.6 0 0 17.1 0.322
Corn syrup 18.7 0 0.64 13.6 0.698

Triton X-100 3.51 2.58 0.066 41.6 0.415
80% Glycerine 5.73 16.7 0.415 111.1 0.621

Table IV quantifies the effect of considering some com-

monly used lossy coupling media, such as corn syrup, Triton

X-100, and 80% glycerine. We employ corn syrup Sample 1

from [32], and the data of the Triton X-100, and 80% glycerine

are based on our own measurements. It is evident that a higher

conductivity in the coupling medium leads to less accurate

reconstructed images due to the additional signal loss. This

was confirmed by performing additional reconstructions for

hypothetical media with the same dielectric constants as in

Table IV but without losses, where no degradation in quality

was observed.

As it may be impossible to have exact knowledge of the

outer outline of the breast model in a practical experiment,

we performed an error level analysis for uncertainties in the

position and size of the breast structure, presented in Table V.

Reconstructions with uncertainties in the assumed breast size

and position have been analysed separately and their errors

are calculated in this table. The relative reconstruction error

is not affected significantly by uncertainties in the breast size,

but misalignments of the assumed breast outline from the true

position affect the reconstruction quality only for over a 8%

error. These results suggest that the algorithm is robust with

respect to uncertainties in the knowledge of the breast shape.

Finally, we also examined the impact of performing recon-

structions with a relaxation time τ , which is different from the

assumed value of 17.125 ps for the breast tissue Debye models

by a variation of up to 10%. Our results in Table V remain

unaffected by this mismatch in the assumed model, producing

visually similar images and relative error with a maximum

variation of 1%.

V. CONCLUSION

We presented a novel multiple frequency DBIM algorithm

for microwave breast imaging based on the TwIST method.

We have argued that this implementation is more flexible

and robust than the CGLS method as a solver of the ill-

posed linear problem. By using a hybrid multi-frequency

approach, we have achieved an optimal trade-off between

imaging accuracy and reconstruction stability for this method.

We also proposed a new approach to obtain an optimized initial

guess of the average breast tissues properties by sampling

along the range of possible values and running a few DBIM

iterations to find the minimum error. We have also performed

reconstructions in multiple resolutions to examine the benefits

of our optimization strategies. This allowed us to argue that the

optimized initial guess can be obtained in low resolution grids,

and that this step prior to estimating the true distributions is

essential in order to minimize relative reconstruction errors,

TABLE V
RELATIVE RECONSTRUCTION ERRORS FOR PHANTOM ‘062204’ DUE TO

UNCERTAINTIES IN THE BREAST OUTLINE

Error of model’s dimension Error of model’s position

model error Relative error model error Relative error

2.67% 0.376 5.65% 0.450
8.40% 0.450 8.84% 0.544

15.97% 0.430 16.05% 0.597

TABLE VI
RELATIVE RECONSTRUCTION ERRORS FOR PHANTOM ‘062204’ DUE TO

VARIOUS BIASES OF τ

Precise relaxation time Relative error

coupling medium τ(ps) 1% 5% 10%

Ideal lossless 17.1 0.3776 0.3789 0.377

especially in high resolutions grids where the number of

unknowns increases dramatically.

Moreover, we proposed a new regularization strategy for

the TwIST method based on the L1 norm and the Pareto

curve. This optimized regularization approach can guarantee

the stability of the imaging system in cases of very high

mismatch between our forward model and the experimental

system. Finally, we have presented reconstructions for four

phantoms of different breast composition, and demonstrated

the algorithms robustness with respect to uncertainties in the

assumed prior information, namely the breast outline and the

value of the relaxation parameter in the tissue Debye models.

Future work will focus on extending this study for three-

dimensional geometries, as well as validating the algorithm

with experimental data.
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