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Abstract—This paper presents a maximum likelihood approach
to multiple fundamental frequency (F0) estimation for a mixture
of harmonic sound sources, where the power spectrum of a time
frame is the observation and the F0s are the parameters to be esti-
mated. When defining the likelihood model, the proposed method
models both spectral peaks and non-peak regions (frequencies
further than a musical quarter tone from all observed peaks). It is
shown that the peak likelihood and the non-peak region likelihood
act as a complementary pair. The former helps find F0s that have
harmonics that explain peaks, while the latter helps avoid F0s
that have harmonics in non-peak regions. Parameters of these
models are learned from monophonic and polyphonic training
data. This paper proposes an iterative greedy search strategy to
estimate F0s one by one, to avoid the combinatorial problem of
concurrent F0 estimation. It also proposes a polyphony estimation
method to terminate the iterative process. Finally, this paper
proposes a post-processing method to refine polyphony and F0
estimates using neighboring frames. This paper also analyzes the
relative contributions of different components of the proposed
method. It is shown that the refinement component eliminates
many inconsistent estimation errors. Evaluations are done on
ten recorded four-part J. S. Bach chorales. Results show that the
proposed method shows superior F0 estimation and polyphony
estimation compared to two state-of-the-art algorithms.

Index Terms—fundamental frequency, pitch estimation, spec-
tral peaks, maximum likelihood.

I. INTRODUCTION

MULTIPLE FUNDAMENTAL frequency (F0) estimation

in polyphonic music signals, including estimating the

number of concurrent sounds (polyphony), is of great interest

to researchers working in music audio and is useful for

many applications, including automatic music transcription

[1], source separation [2] and score following [3]. The task,

however, remains challenging and existing methods do not

match human ability in either accuracy or flexibility.

All those who develop multiple F0 estimation systems must

make certain design choices. The first of these is how to

preprocess the audio data and represent it. Some researchers

do not employ any preprocessing of the signal and represent it

with the full time domain signal or frequency spectrum. In this

category, discriminative model-based [1], generative model-

based [4], [5], graphical model-based [6], spectrum modeling-

based [7]–[11] and genetic algorithm-based [12] methods have

been proposed.
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Because of the high dimensionality of the original signal,

researchers often preprocess the audio with some method to

retain salient information, while abstracting away irrelevant

details. One popular data reduction technique has been to use

an auditory model to preprocess the audio. Meddis and Mard

[13] proposed a unitary model of pitch perception for single F0

estimation. Tolonen and Karjalainen [14] simplified this model

and applied it to multiple F0 estimation of musical sounds. de

Cheveigné and Kawahara [15] integrated the auditory model

and used a temporal cancelation method for F0 estimation.

Klapuri [16], [17] used auditory filterbanks as a front end,

and estimated F0s in an iterative spectral subtraction fashion.

It was reported that [17] achieves the best performance among

methods in this category.

Another more compact data reduction technique is to reduce

the full signal (complex spectrum) to observed power spectral

peaks [18]–[24]. The rationale is that peaks are very important

in terms of human perception. For example, re-synthesizing

a harmonic sound using only peaks causes relatively little

perceived distortion [25]. In addition, peaks contain important

information for pitch estimation because, for harmonic sounds,

they typically appear near integer multiples of the fundamental

frequency. Finally, this representation makes it easy to math-

ematically model the signal and F0 estimation process. Given

these observations, we believe this representation can be used

to achieve good results.

The following subsection reviews the methods that focus on

estimating F0s from detected peaks, which are closely related

to our proposed method.

A. Related Work

Goldstein [18] proposed a method of probabilistic modeling

of peak frequencies for single F0 estimation. Given an F0,

energy is assumed to be present around integer multiples

of the F0 (the harmonics). The likelihood of each spectral

peak, given the F0, is modeled with a Gaussian distribution

of the frequency deviation from the corresponding harmonic.

The best F0 is presumed to be the one that maximizes the

likelihood of generating the set of peak frequencies in the

observed data. This model does not take into account observed

peak amplitudes.

Thornburg and Leistikow [20] furthered Goldstein’s idea of

probabilistic modeling of spectral peaks. Given an assumed

F0 and the amplitude of its first harmonic, a template of ideal

harmonics with exponentially decaying amplitudes is formed.

Then, each ideal harmonic is uniquely associated with at

most one observed spectral peak. This divides peaks into two
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groups: normal peaks (peaks associated with some harmonics)

and spurious peaks (peaks not associated with harmonics).

The probability of every possible peak-harmonic association

is modeled. All possible associations are marginalized to get

the total likelihood, given an F0. They account for spurious

peaks in this formulation to improve robustness. Leistikow et

al. [21] extended the above work to the polyphonic scenario.

The modeling and estimating methods remain the same, except

that when forming the ideal harmonic template, overlapping

harmonics are merged as one harmonic.

The methods in [20] and [21] achieve good results. How-

ever, the computational cost can be heavy, since the association

between harmonics and peaks is subject to a combinatorial

explosion problem. They deal with this by approximating

the exact enumeration with a Markov Chain Monte Carlo

(MCMC) algorithm. Furthermore, both papers assume known-

good values for a number of important parameters (the de-

cay rate of harmonic amplitudes, the standard deviation of

Gaussian models, the parameters in the probability of the

association, etc.). The approach in [21] also assumes the

polyphony of the signal is known. This can be problematic

if the polyphony is unknown or changes as time goes by.

The above methods output the F0 estimate(s) whose pre-

dicted harmonics best explain spectral peaks. This, however,

may tend to overfit the peaks. An F0 estimate which is one

octave lower of the true F0 may explain the peaks well, but

many of its odd harmonics may not find peaks to explain.

Maher and Beauchamp [19] noticed this problem and pro-

posed a method for single F0 estimation for quasi-harmonic

signals. Under the assumption that the measured partials

(spectral peaks) have a one-to-one correspondence with the

harmonics of the true F0, a two-way mismatch (TWM) be-

tween measured partials and predicted harmonics of a F0

hypothesis is calculated. The F0 hypothesis with the smallest

mismatch between predicted and measured partials is selected.

Recently, this idea was also adopted by Emiya et al. [11] in

multiple F0 estimation for polyphonic piano signals. In [11],

each spectrum is decomposed into the sinusoidal part and the

noise part. A weighted maximum likelihood model combines

these two parts, with the objective of simultaneously whitening

the sinusoidal sub-spectrum and the noise sub-spectrum.

B. Advances of Proposed Method

In our work, we address the multiple F0 estimation problem

in a Maximum Likelihood fashion, similar to [18], [20], [21],

adopting the idea in [11], [19] and building on previous results

in [22]. We model the observed power spectrum as a set of

peaks and the non-peak region. We define the peak region

as the set of all frequencies within d of an observed peak.

The non-peak region is defined as the complement of the

peak region (see Section III for detailed definitions). We then

define a likelihood on both the peak region and the non-peak

region, and the total likelihood function as their product. The

peak region likelihood helps find F0s that have harmonics

that explain peaks, while the non-peak region likelihood helps

avoid F0s that have harmonics in the non-peak region. They

act as a complementary pair. We adopt an iterative way to

estimate F0s one by one to avoid the combinatorial problem

of concurrent F0 estimation.

Our method is an advance over related work in several

ways. First, our likelihood model avoids the issue of finding

the correct associations between every possible harmonic of a

set of F0s and each observed peak as in [20], [21]. Instead,

each peak is considered independently. The independence

assumption is reasonable, since a stronger assumption that all

the spectral bins are conditionally independent, given F0s, is

commonly used in literature [4]. Because of this, the likelihood

computational cost is reduced from O(2K) to O(K2), where

K is the number of spectral peaks. Therefore, our method

can be evaluated on a relatively large data set of real music

recordings, while [18], [20], [21] are all tested on a small

number of samples.

Second, we adopt a data-driven approach and parameters

are all learned from monophonic and polyphonic training data

(summarized in Table II), while model parameters are all

manually specified in [11], [18], [20], [21].

Third, we use a simple polyphony estimation method that

shows superior performance compared to an existing method

[17]. Recall that the most closely related method [21] to our

system requires the polyphony of the audio as an input.

Finally, our method uses a post-processing technique to

refine F0 estimates in each frame using neighboring frames,

while related methods do not use local context information.

Experimental results show our use of local context greatly

reduces errors.

The remainder of this paper is arranged as follows: Section

II gives an overview of the system; Section III presents the

model to estimate F0s when the polyphony is given; Section IV

describes how to estimate the polyphony; Section V describes

the postprocessing technique. Section VI presents an analysis

of computational complexity; Experiments are presented in

Section VII, and the paper is concluded in Section VIII.

II. SYSTEM OVERVIEW

Table I shows the overview of our approach. We assume an

audio file has been normalized to a fixed root mean square

energy and segmented into a series of (possibly overlapping)

time windows called frames. For each frame, a Short Time

Fourier Transform (STFT) is performed with a hamming

window and 4 times zero-padding to get a power spectrum.

Spectral peaks are then detected by the peak detector de-

scribed in [26]. Basically, there are two criteria that determine

whether a power spectrum local maximum is labeled a peak.

The first criterion is global: the local maximum should not

be less than some threshold (e.g. 50dB) lower than the global

maximum of the spectrum. The second criterion is local: the

local maximum should be locally higher than a smoothed

version of the spectrum by at least some threshold (e.g. 4dB).

Finally, the peak amplitudes and frequencies are refined by

quadratic interpolation [25].

Given this set of peaks, a set C of candidate F0s is

generated. To facilitate computation, we do not consider the

“missing fundamental” situation in this paper. Candidate F0

values are restricted to a range of ± 6% in Hz (one semitone)
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TABLE I
PROPOSED MULTI-F0 ESTIMATION ALGORITHM.

1. For each frame of audio
2. find peak frequencies and amplitudes with [26]
3. C = a finite set of frequencies within d of peak freqs
4. θ = ∅
5. For N = 1 to MaxPolyphony

6. For each F0 in C
7. Evaluate Eq. (2) on θ

⋃

{F0} (Section III)

8. Add to θ the F0 that maximized Eq. (2)
9. Estimate actual polyphony N with Eq. (18) (Section IV)

10. Return the first N estimates in θ = {F 1

0
, · · · , F N

0
}

11. For each frame of the audio
12. Refine F0 estimates using neighboring frames (Section V)

of the frequency of an observed peak. We consider increments

with a step size of 1% in Hz of the peak frequency. Thus, for

each observed peak we have 13 candidate F0 values. In imple-

mentation, we can further reduce the search space by assuming

F0s only occur around the 5 lowest frequency peaks, 5 highest

amplitude peaks and 5 locally highest amplitude peaks (peak

amplitudes minus the smoothed spectral envelope). This gives

at most 15 · 13 = 195 candidate F0s for each frame.

A naive approach to finding the best set of F0s would

have to consider the power set of these candidates: 2195 sets.

To deal with this issue, we use a greedy search strategy,

which estimates F0s one by one. This greatly reduces the time

complexity (for a complexity analysis see Section VI).

At each iteration, a newly estimated F0 is added to the

existing F0 estimates until the maximum allowed polyphony

is reached. Then, a post processor (Section IV) determines the

best polyphony using a threshold base on the likelihood im-

provement as each F0 estimate is added. Finally, each frame’s

F0 estimates are refined using information from estimates in

neighboring frames (see Section V).

III. ESTIMATING F0S

This section describes how we approach steps 6 and 7 of the

algorithm in Table I. Given a time frame presumed to contain

N monophonic harmonic sound sources, we view the problem

of estimating the fundamental frequency (F0) of each source

as a Maximum Likelihood parameter estimation problem in

the frequency domain,

θ̂ = arg max
θ∈Θ

L (O|θ) (1)

where θ = {F 1
0 , · · · , FN

0 } is a set of N fundamental frequen-

cies to be estimated, Θ is the space of possible sets θ , and

O represents our observation from the power spectrum.

We assume that the spectrum is analyzed by a peak detector,

which returns a set of peaks. The observation to be explained

is the set of peaks and the non-peak region of the spectrum.

We define the peak region as the set of all frequencies within

d of an observed peak. The non-peak region is defined as

the complement of the peak region. We currently define d

as a musical quarter tone, which will be explained in Section

III-B. Then, similar to [20], [21], peaks are further categorized

into normal peaks and spurious peaks. From the generative

model point of view, a normal peak is defined as a peak that

TABLE II
PARAMETERS LEARNED FROM TRAINING DATA. THE FIRST FOUR

PROBABILITIES ARE LEARNED FROM THE POLYPHONIC TRAINING DATA.
THE LAST ONE IS LEARNED FROM THE MONOPHONIC TRAINING DATA.

P (sk) Prob. a peak k is normal or spurious
p (fk, ak|sk = 1) Prob. a spurious peak has frequency fk and

amplitude ak

p (ak|fk, hk) Prob. a normal peak has amplitude ak , given its
frequency fk and it is harmonic hk of an F0

p (dk) Prob. a normal peak deviates from its
corresponding ideal harmonic frequency by dk

P (eh|F0) Prob. the h-th harmonic of F0 is detected

is generated by a harmonic of an F0. Other peaks are defined

as spurious peaks, which may be generated by peak detection

errors, noise, sidelobes, etc.

The peak region likelihood is defined as the probability of

occurrence of the peaks, given an assumed set of F0s. The

non-peak region likelihood is defined as the probability of not

observing peaks in the non-peak region, given an assumed set

of F0s. The peak region likelihood and the non-peak region

likelihood act as a complementary pair. The former helps find

F0s that have harmonics that explain peaks, while the latter

helps avoid F0s that have harmonics in the non-peak region.

We wish to find the set θ of F0s that maximizes the prob-

ability of having harmonics that could explain the observed

peaks, and minimizes the probability of having harmonics

where no peaks were observed. To simplify calculation, we

assume independence between peaks and the non-peak region.

Correspondingly, the likelihood is defined as the multiplication

of two parts: the peak region likelihood and the non-peak

region likelihood:

L(θ) = Lpeak region(θ) · Lnon-peak region(θ) (2)

The parameters of the models are learned from training data,

which are summarized in Table II and will be described in

detail in the following.

A. Peak Region Likelihood

Each detected peak k in the power spectrum is represented

by its frequency fk and amplitude ak. Given K peaks in the

spectrum, we define the peak region likelihood as

Lpeak region(θ) = p (f1, a1, · · · , fK , aK |θ) (3)

≈
K
∏

k=1

p (fk, ak|θ) (4)

Note that fk, ak and all other frequencies and amplitudes

in this paper are measured on a logarithmic scale (musical

semitones and dB, respectively)1. This is done for ease of

manipulation and accordance with human perception. Because

frequency is calculated in the semitone scale, the distance

between any two frequencies related by an octave is always

12 units. We adopt the general MIDI convention of assigning

the value 60 to Middle C (C4, 262Hz) and use a reference

1FREQUENCY: MIDI number = 69+12× log2(Hz/440); AMPLITUDE: dB
= 20× log10(Linear amplitude).
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frequency of A=440Hz. The MIDI number for A=440Hz is

69, since it is 9 semitones above Middle C.

From Eq. (3) to Eq. (4), we assume2 conditional indepen-

dence between observed peaks, given a set of F0s. Given a

harmonic sound, observed peaks ideally represent harmonics

and are at integer multiples of F0s. In practice, some peaks are

caused by inherent limitations of the peak detection method,

non-harmonic resonances, interference between overlapping

sound sources and noise. Following the practice of [20], we

call peaks caused by harmonics normal peaks, and the others

spurious peaks. We need different models for normal and

spurious peaks.

For monophonic signal, there are several methods to dis-

criminate normal and spurious peaks according to their shapes

[27], [28]. For polyphonic signal, however, peaks from one

source may overlap peaks from another. The resulting compos-

ite peaks cannot be reliably categorized using these methods.

Therefore, we introduce a binary random variable sk for each

peak to represent that it is normal (sk = 0) or spurious

(sk = 1), and consider both cases in a probabilistic way:

p (fk, ak|θ) =
∑

sk

p (fk, ak|sk,θ) P (sk|θ) (5)

P (sk|θ) in Eq. (5) represents the prior probability of a

detected peak being normal or spurious, given a set of F0s3.

We would like to learn it from training data. However, the

size of the space for θ prohibits a creating data set with

sufficient coverage. Instead, we neglect the effects of F0s on

this probability and learn P (sk) to approximate P (sk|θ).
This approximation is not only necessary, but also reasonable.

Although P (sk|θ) is influenced by factors related to F0s,

it is much more influenced by the limitations of the peak

detector, nonharmonic resonances and noise, all of which are

independent of F0s.

We estimate P (sk) from randomly mixed chords, which

are created using recordings of individual notes performed by

a variety of instruments (See Section VII-A for details). For

each frame of a chord, spectral peaks are detected using the

peak detector described in [26]. Ground-truth values for F0s

are obtained by running YIN [29], a robust single F0 detection

algorithm, on the recording of each individual note, prior to

combining them to form the chord.

We need to classify normal and spurious peaks and collect

their corresponding statistics in the training data. In the train-

ing data, we have the ground-truth F0s, hence the classification

becomes possible. We calculate the frequency deviation of

each peak from the nearest harmonic position of the reported

ground-truth F0s. If the deviation d is less than a musical

quarter tone (half a semitone), the peak is labeled normal,

otherwise spurious. The justification for this value is: YIN is

a robust F0 estimator. Hence, its reported ground-truth F0 is

within a quarter tone range of the unknown true F0, and its

reported harmonic positions are within a quarter tone range

of the true harmonic positions. As a normal peak appears at

a harmonic position of the unknown true F0, the frequency

2In this paper, we use ≈ to denote “assumption”.
3Here P (·) denotes probability mass function of discrete variables; p(·)

denotes probability density of continuous variables.

TABLE III
CORRELATION COEFFICIENTS BETWEEN SEVERAL VARIABLES OF

NORMAL PEAKS OF THE POLYPHONIC TRAINING DATA

a f F0 h d
a 1.00 -0.78 -0.11 -0.60 -0.01
f – 1.00 0.40 0.56 0.01
F0 – – 1.00 -0.41 -0.01
h – – – 1.00 0.02
d – – – – 1.00

deviation of the normal peak defined above will be smaller

than a quarter tone. In our training data, the proportion of

normal peaks is 99.3% and is used as P (sk = 0).
In Eq. (5), there are two probabilities to be

modeled, i.e. the conditional probability of the normal

peaks p (fk, ak|sk = 0,θ) and the spurious peaks

p (fk, ak|sk = 1,θ). We now address them in turn.

1) Normal Peaks: A normal peak may be a harmonic of

only one F0, or several F0s when they all have a harmonic

at the peak position. In the former case, p (fk, ak|sk = 0,θ)
needs only consider one F0. However, in the second case, this

probability is conditioned on multiple F0s. This leads to a

combinatorial problem we wish to avoid.

To do this, we adopt the assumption of binary masking [30],

[31] used in some source separation methods. They assume the

energy in each frequency bin of the mixture spectrum is caused

by only one source signal. Here we use a similar assumption

that each peak is generated by only one F0, the one having

the largest likelihood to generate the peak.

p (fk, ak|sk = 0,θ) ≈ max
F0∈θ

p (fk, ak|F0) (6)

Now let us consider how to model p (fk, ak|F0). Since the

k-th peak is supposed to represent some harmonic of F0, it is

reasonable to calculate the harmonic number hk as the nearest

harmonic position of F0 from fk.

Given this, we find the harmonic number of the nearest

harmonic of an F0 to an observed peak as follows:

hk = [2
fk−F0

12 ] (7)

where [·] denotes rounding to the nearest integer. Now the

frequency deviation dk of the k-th peak from the nearest

harmonic position of the given F0 can be calculated as:

dk = fk − F0 − 12 log2 hk (8)

To gain a feel for how reasonable various independence

assumptions between our variables might be, we collected

statistics on the randomly mixed chord data described in

Section VII-A. Normal peaks and their corresponding F0s

are detected as described before. Their harmonic numbers and

frequency deviations from corresponding ideal harmonics are

also calculated. Then the correlation coefficient is calculated

for each pair of these variables. Table III illustrates the

correlation coefficients between fk, ak, hk, dk and F0 on this

data.

We can factorize p (fk, ak|F0) as:

p (fk, ak|F0) = p (fk|F0) p (ak|fk, F0) (9)
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To model p (fk|F0), we note from Eq. (8) that the relation-

ship between the frequency of a peak fk and its deviation from

a harmonic dk is linear, given a fixed harmonic number hk.

Therefore, in each segment of fk where hk remains constant,

we have

p (fk|F0) = p (dk|F0) (10)

≈ p (dk) (11)

where in Eq. (11), p (dk|F0) is approximated by p(dk). This

approximation is supported by the statistics in Table III, as the

correlation coefficients between d and F0 is very small, i.e.

they are statistically independent.

Since we characterize p (dk) in relation to a harmonic, and

we measure frequency in a log scale, we build a standard

normalized histogram for dk in relation to the nearest harmonic

and use the same distribution, regardless of the harmonic

number. In this work, we estimate the distribution from the

randomly mixed chords data set described in Section VII-A.

The resulting distribution is plotted in Figure 1.
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Fig. 1. Illustration of modeling the frequency deviation of normal peaks.
The probability density (bold curve) is estimated using a Gaussian Mixture
Model with four kernels (thin curves) on the histogram (gray area).

It can be seen that this distribution is symmetric about zero,

a little long tailed, but not very spiky. Previous methods [18],

[20], [21] model this distribution with a single Gaussian. We

found a Gaussian Mixture Model (GMM) with four kernels

to be a better approximation. The probability density of the

kernels and the mixture is also plotted in Figure 1.

To model p (ak|fk, F0), we observe from Table III that ak

is much more correlated with hk than F0 on our data set. Also,

knowing two of fk, hk and F0 lets one derive the third value

(as in Eq. 8). Therefore, we can replace F0 with hk in the

condition.

p (ak|fk, F0) = p (ak|fk, hk) =
p (ak, fk, hk)

p (fk, hk)
(12)

We then estimate p (ak, fk, hk) using the Parzen window

method [32], because it is hard to characterize this probability

distribution with a parametric representation. An 11 (dB)

× 11 (semitone) × 5 Gaussian window with variance 4 in

each dimension is used to smooth the estimate. The size of

the window is not optimized but just chosen to make the

probability density look smooth.

We now turn to modeling those peaks that were not asso-

ciated with a harmonic of any F0.

2) Spurious Peaks: By definition, a spurious peak is de-

tected by the peak detector, but is not a harmonic of any F0

in θ, the set of F0s. The likelihood of a spurious peak from

Eq. (4) can be written as:

p (fk, ak|sk = 1,θ) = p (fk, ak|sk = 1) (13)

The statistics of spurious peaks in the training data are used

to model Eq. (13). The shape of this probability density is

plotted in Figure 2, where a 11 (semitone) × 9 (dB) Gaussian

window is used to smooth it. Again, the size of the window is

not optimized but just chosen to make the probability density

look smooth. It is a multi-modal distribution, however, since

the prior probability of spurious peaks is rather small (0.007

for our training data), there is no need to model this density

very precisely. Here a 2-D Gaussian distribution is used, whose

means and covariance are calculated to be (82.1, 23.0) and
(

481.6 −89.5
−89.5 86.8

)

.

Fig. 2. Illustration of the probability density of p (fk, ak|sk = 1), which
is calculated from the spurious peaks of the polyphonic training data. The
contours of the density is plotted at the bottom of the figure.

We have now shown how to estimate probability distri-

butions for all the random variables used to calculate the

likelihood of an observed peak region, given a set of F0s,

using Eq. (3). We now turn to the non-peak region likelihood.

B. Non-peak Region Likelihood

As stated in the start of Section III, the non-peak region also

contains useful information for F0 estimation. However, how is

it related to F0s or their predicted harmonics? Instead of telling

us where F0s or their predicted harmonics should be, the non-

peak region tells us where they should not be. A good set of

F0s would predict as few harmonics as possible in the non-

peak region. This is because if there is a predicted harmonic in

the non-peak region, then clearly it was not detected. From the

generative model point of view, there is a probability for each

harmonic being or not being detected. Therefore, we define

the non-peak region likelihood in terms of the probability of

not detecting any harmonic in the non-peak region, given an

assumed set of F0s.

We assume that the probability of detecting a harmonic

in the non-peak region is independent of whether or not

other harmonics are detected. Therefore, the probability can
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be written as the multiplication of the probability for each

harmonic of each F0, as in Eq. (14).

Lnon-peak region(θ) ≈
∏

F0∈θ

∏

h∈{1···H}

Fh∈Fnp

1 − P (eh = 1|F0) (14)

where Fh = F0 + 12 logh
2 is the frequency (in semitones) of

the predicted h-th harmonic of F0; eh is the binary variable

that indicates whether this harmonic is detected; Fnp is the set

of frequencies in the non-peak region; and H is the largest

harmonic number we consider.

In the definition of the non-peak region in Section I-B, there

is a parameter d controlling the size of the peak region and

the non-peak region. It is noted that this parameter does not

affect the peak-region likelihood, but only affects the non-peak

region likelihood. This is because the smaller d is, the larger

the non-peak region is and the higher the probability that the

set of F0 estimates predicts harmonics in the non-peak region.

Although the power spectrum is calculated with a STFT

and the peak widths (main lobe width) are the same in terms

of Hz for peaks with different frequencies, d should not be

defined as constant in Hz. Instead, d should vary linearly with

the frequency (in Hz) of a peak. This is because d does not

represent the width of each peak, but rather the possible range

of frequencies in which a harmonic of a hypothesized F0 may

appear. This possible range increases as frequency increases.

In this paper, d is set to a musical quarter tone, which is 3% of

the peak frequency in Hz. This is also in accordance with the

standard tolerance of measuring correctness of F0 estimation.

Now, to model P (eh = 1|F0). There are two reasons that

a harmonic may not be detected in the non-peak region: First,

the corresponding peak in the source signal was too weak to be

detected (e.g. high frequency harmonics of many instruments).

In this case, the probability that it is not detected can be

learned from monophonic training samples.

Second, there is a strong corresponding peak in the source

signal, but an even stronger nearby peak of another source

signal prevents its detection. We call this situation masking.

As we are modeling the non-peak region likelihood, we only

care about the masking that happens in the non-peak region.

To determine when masking may occur with our system, we

generated 100,000 pairs of sinusoids with random amplitude

differences from 0 to 50dB, frequency differences from 0 to

100Hz and initial phase difference from 0 to 2π. We found

that as long as the amplitude difference between two peaks

is less than 50dB, neither peak is masked if their frequency

difference is over a certain threshold; otherwise the weaker

one is always masked. The threshold is 30Hz for a 46ms frame

with a 44.1kHz sampling rate. These are the values for frame

size and sample rate used in our experiments.

For frequencies higher than 1030Hz, a musical quarter tone

is larger than 1030×21/24 = 30.2Hz. The peak region contains

frequencies within a quarter tone of a peak, Therefore, if

masking takes place, it will be in the peak region. In order

to account for the fact that the masking region due to the

FFT bin size (30Hz) is wider than a musical quarter tone for

frequencies under 1030 Hz, we also tried a definition of d

that chose the maximum of either a musical quarter tone or

30Hz: d = max(0.5 semitone, 30Hz). We found the results

were similar to those achieved using the simpler definition of

of d = 0.5 semitone.

Therefore, we disregard masking in the non peak region.

We estimate P (en
h = 1|F0), i.e. the probability of detecting

the h-th harmonic of F0 in the source signal, by running our

peak detector on the set of individual notes from a variety of

instruments used to compose chords in Section VII-A. F0s of

these notes are quantized into semitones. All examples with

the same quantized F0 are placed into the same group. The

probability of detecting each harmonic, given a quantized F0

is estimated by the proportion of times a corresponding peak

is detected in the group of examples. The probability for an

arbitrary F0 is then interpolated from these probabilities for

quantized F0s.

Figure 3 illustrates the conditional probability. It can be

seen that the detection rates of lower harmonics are large,

while those of the higher harmonics become smaller. This is

reasonable since for many harmonic sources (e.g. most acous-

tic musical instruments) the energy of the higher frequency

harmonics is usually lower. Hence, peaks corresponding to

them are more difficult to detect. At the right corner of the

figure, there is a triangular area where the detection rates are

zero, because the harmonics of the F0s in that area are out of

the frequency range of the spectrum.

Fig. 3. The probability of detecting the h-th harmonic, given the F0:
P (eh = 1|F0). This is calculated from monophonic training data.

IV. ESTIMATING THE POLYPHONY

Polyphony estimation is a difficult subproblem of multiple

F0 estimation. Researchers have proposed several methods

together with their F0 estimation methods [8], [17], [23].

In this paper, the polyphony estimation problem is closely

related to the overfitting often seen with Maximum Likelihood

methods. Note that in Eq. (6), the F0 is selected from the set of

estimated F0s, θ, to maximize the likelihood of each normal

peak. As new F0s are added to θ, the maximum likelihood

will never decrease and may increase. Therefore, the larger

the polyphony, the higher the peak likelihood is:

Lpeak region(θ̂
n
) ≤ Lpeak region(θ̂

n+1

) (15)

where θ̂
n

is the set of F0s that maximize Eq. (2) when the

polyphony is set to n. θ̂
n+1

is defined similarly. If one lets the
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Fig. 4. Illustration of polyphony estimation. Log likelihoods given each
polyphony are depicted by circles. The solid horizontal line is the adap-
tive threshold. For this sound example, the method correctly estimates the
polyphony, which is 5, marked with an asterisk.

size of θ range freely, the result is that the explanation returned

would be the largest set of F0s allowed by the implementation.

This problem is alleviated by the non-peak region likeli-

hood, since in Eq. (14), adding one more F0 to θ should result

in a smaller value Lnon-peak region(θ):

Lnon-peak region(θ̂
n
) ≥ Lnon-peak region(θ̂

n+1

) (16)

However, experimentally we find that the total likelihood

L(θ) still increases when expanding the list of estimated F0s:

L(θ̂
n
) ≤ L(θ̂

n+1

) (17)

Another method to control the overfitting is needed. We first

tried using a Bayesian Information Criterion, as in [22], but

found that it did not work very well. Instead, we developed a

simple threshold-based method to estimate the polyphony N :

N = min
1≤n≤M

n,

s.t. ∆(n) ≥ T · ∆(M) (18)

where ∆(n) = lnL(θ̂
n
) − lnL(θ̂

1

); M is the maximum al-

lowed polyphony; T is a learned threshold. For all experiments

in this paper, the maximum polyphony M is set to 9. T is

empirically determined to be 0.88. The method returns the

minimum polyphony n that has a value ∆(n) exceeding the

threshold. Figure 4 illustrates the method. Note that Klapuri

[17] adopts a similar idea in polyphony estimation, although

the thresholds are applied to different functions.

V. POST-PROCESSING USING NEIGHBORING FRAMES

F0 and polyphony estimation in a single frame is not robust.

There are often insertion, deletion and substitution errors, see

Figure 5(a). Since pitches of music signals are locally (on the

order of 100 ms) stable, it is reasonable to use F0 estimates

from neighboring frames to refine F0 estimates in the current

frame. In this section, we propose a refinement method with

two steps: remove likely errors and reconstruct estimates.

Step 1: Remove F0 estimates inconsistent with their neigh-

bors.

To do this, we build a weighted histogram W in the

frequency domain for each time frame t. There are 60 bins in

W , corresponding to the 60 semitones from C2 to B6. Then,

a triangular weighting function in the time domain w centered
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(b) After refinement

Fig. 5. F0 estimation results before and after refinement. In both figures,
lines illustrate the ground-truth F0s, circles are the F0 estimates.

at time t is imposed on a neighborhood of t, whose radius is

R frames. Each element of W is calculated as the weighted

frequency of occurrence of a quantized (rounded to the nearest

semitone) F0 estimate. If the true polyphony N is known, the

N bins of W with largest histogram values are selected to

form a refined list. Otherwise, we use the weighted average of

the polyphony estimates in this neighborhood as the refined

polyphony estimate N , and then form the refined list.

Step 2: Reconstruct the non-quantized F0 values.

We update the F0 estimates for frame t as follows. Create

one F0 value for each histogram bin in the refined list. For each

bin, if an original F0 estimate (unquantized) for frame t falls in

that bin, simply use that value, since it was probably estimated

correctly. If no original F0 estimate for frame t falls in the bin,

use the weighted average of the original F0 estimates in its

neighborhood in this bin.

In this paper, R is set to 9 frames (90ms with 10ms frame

hop). This value is not optimized. Figure 5 shows an example

with the ground truth F0s and F0 estimates before and after

this refinement. It can be seen that a number of insertion

and deletion errors are removed, making the estimates more

“continuous”. However, consistent errors, such as the circles

in the top middle part of Figure 5(a), cannot be removed using

this method.

It is noted that a side effect of the refinement is the

removal of duplicate F0 estimates (multiple estimates within
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a histogram bin). This will improve precision if there are no

unisons between sources in the data set, and will decrease

recall if there are.

VI. COMPUTATIONAL COMPLEXITY

We analyze the run-time complexity of the algorithm in

Table I in terms of the number of observed peaks K and the

maximum allowed polyphony M . We can ignore the harmonic

number upper bound H and the number of neighboring frames

R, because both these variables are bounded by fixed values.

The time of Steps 2 through 4 is bounded by a constant

value. Step 5 is a loop over Steps 6 through 8 with M

iterations. Steps 6 and 7 involves |C| = O(K) likelihood

calculations of Eq. (2). Each one consists of the peak region

and the non-peak region likelihood calculation. The former

costs O(K), since it is decomposed into K individual peak

likelihoods in Eq. (4) and each involves constant-time opera-

tions. The latter costs O(M), since we consider MH harmon-

ics in Eq. (14). Step 9 involves O(M) operations to decide

the polyphony. Step 10 is a constant-time operation. Step 12

involves O(M) operations. Thus, total run-time complexity in

each single frame is O(MK2 + M2K)). If M is fixed to a

small number, the run-time can be said to be O(K2).
If the greedy search strategy is replaced by the brute force

search strategy, that is, to enumerate all the possible F0

candidate combinations, then Steps 5 through 8 would cost

O(2K). Thus, the greedy approach saves considerable time.

Note that each likelihood calculation for Eq. (2) costs

O(K + M). This is a significant advantage compared with

Thornburg and Leistikow’s monophonic F0 estimation method

[20]. In their method, to calculate the likelihood of a F0 hy-

pothesis, they enumerate all associations between the observed

peaks and the underlying true harmonics. The enumeration

number is shown to be exponential in K + H . Although

a MCMC approximation for the enumeration is used, the

computational cost is still much heavier than ours.

VII. EXPERIMENTS

A. Data Set

The monophonic training data are monophonic note record-

ings, selected from the University of Iowa website4. In total

508 note samples from 16 instruments, including wind (flute),

reed (clarinet, oboe, saxophone), brass (trumpet, horn, trom-

bone, tuba) and arco string (violin, viola, bass) instruments

were selected. They were all of dynamic “mf” and “ff” with

pitches ranging from C2 (65Hz, MIDI number 36) to B6

(1976Hz, MIDI number 95). Some samples had vibrato. The

polyphonic training data are randomly mixed chords, generated

by combining these monophonic note recordings. In total 3000

chords, 500 of each polyphony from 1 to 6 were generated.

Chords were generated by first randomly allocating pitches

without duplicates, then randomly assigning note samples of

those pitches. Different pitches might come from the same

instrument. These note samples were normalized to have

the same root-mean-squared amplitude, and then mixed to

4http://theremin.music.uiowa.edu/

generate chords. In training, each note/chord was broken into

frames with length of 93 ms and overlap of 46 ms. A Short

Time Fourier Transform (STFT) with 4 times zero padding

was employed on each frame. All the frames were used to

learn model parameters.

The polyphony estimation algorithm was tested using 6000

musical chords, 1000 of each polyphony from 1 to 6. They

were generated using another 1086 monophonic notes from

the Iowa data set. These were of the same instruments, pitch

ranges, etc. as the training notes, but were not used to generate

the training chords. Musical chords of polyphony 2, 3 and

4 were generated from commonly used note intervals. Triads

were major, minor, augmented and diminished. Seventh chords

were major, minor, dominant, diminished and half-diminished.

Musical chords of polyphony 5 and 6 were all seventh chords,

so there were always octave relations in each chord.

The proposed multiple F0 estimation method was tested on

10 real music performances, totalling 330 seconds of audio.

Each performance was of a four-part Bach chorale, performed

by a quartet of instruments: violin, clarinet, tenor saxophone

and bassoon. Each musician’s part was recorded in isolation

while the musician listened to the others through headphones.

In testing, each piece was broken into frames with length of

46 ms and a 10 ms hop between frame centers. All the frames

were processed by the algorithm. We used a shorter frame

duration on this data to adapt to fast notes in the Bach chorales.

The sampling rate of all the data was 44.1kHz. A sample piece

can be accessed through “http://music.cs.northwestern.edu/lab/

research.php” under Section “Multi-pitch Estimation”.

B. Ground-truth and Error Measures

The ground-truth F0s of the testing pieces were estimated

using YIN [29] on the single-instrument recordings prior to

mixing recordings into four-part monaural recordings. The

results of YIN were manually corrected where necessary.

The performance of our algorithm was evaluated using

several error measures. In the Predominant-F0 estimation (Pre-

F0) situation, only the first estimated F0 was evaluated [7]. It

was defined to be correct if it deviated less than a quarter

tone (3% in Hz) from any ground-truth F0. The estimation

accuracy was calculated as the amount of correct predominant

F0 estimates divided by the number of testing frames.

In the Multi-F0 estimation (Mul-F0) situation, all F0 esti-

mates were evaluated. For each frame, the set of F0 estimates

and the set of ground-truth F0s were each sorted in ascending

order of frequency. For each F0 estimate starting from the

lowest, the lowest-frequency ground-truth F0 from which it

deviated less than a quarter tone was matched to the F0

estimate. If a match was found, the F0 estimate was defined to

be correctly estimated, and the matched ground-truth F0 was

removed from its set. This was repeated for every F0 estimate.

After this process terminated, unassigned elements in either the

estimate set or the ground-truth set were called errors. Given

this, Precision, Recall and Accuracy were calculated as:

Precision =
#cor

#est
Recall =

#cor

#ref
(19)
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Accuracy =
#cor

#est + #ref − #cor
(20)

where #ref is the total number of ground truth F0s in testing

frames, #est is the total number of estimated F0s, and #cor

is the total number of correctly estimated F0s.

Octave errors are the most common errors in multiple F0

estimation. Here we calculate octave error rates as follows:

After the matching process in Mul-F0, for each unmatched

ground-truth F0, we try to match it with an unmatched F0

estimate after transcribing the estimate to higher or lower

octave(s). Lower-octave error rate is calculated as the number

of these newly matched F0 estimates after a higher octave(s)

transcription, divided by the number of ground-truth F0s.

Higher-octave error rate is calculated similarly.

For polyphony estimation, a mean square error (MSE)

measure is defined as:

Polyphony-MSE = Mean
{

(Pest − Pref)
2
}

(21)

where Pest and Pref are the estimated and the true polyphony

in each frame, respectively.

C. Reference Methods

Since our method is related to previous methods based on

modeling spectral peaks, it would be reasonable to compare

our performance to the performance of these systems. How-

ever, [18]–[20] are all single F0 estimation methods. Although

[21] is a multiple F0 estimation method, the computational

complexity of the approach makes it prohibitively time-

consuming, as shown in Section VI. Instead, our reference

methods are the one proposed by Klapuri in [17] (denoted as

“Klapuri06”) and the one proposed by Pertusa and Iñesta in

[23] (denoted as “Pertusa08”). These two methods both were

in the top 3 in the “Multiple Fundamental Frequency Esti-

mation & Tracking” task in the Music Information Retrieval

Evaluation eXchange (MIREX) in 2007 and 2008 5.

Klapuri06 works in an iterative fashion by estimating the

most significant F0 from the spectrum of the current mixture

and then removing its harmonics from the mixture spectrum. It

also proposes a polyphony estimator to terminate the iteration.

Pertusa08 selects a set of F0 candidates in each frame from

spectral peaks and generates all their possible combinations.

The best combination is chosen according to their harmonic

amplitudes and a proposed spectral smoothness measure. The

polyphony is estimated simultaneously with the F0s. For both

reference methods, we use the authors’ original source code

and suggested settings in our comparison.

D. Multiple F0 Estimation Results

Results reported here are for the 330 seconds of audio from

ten four-part Bach chorales described in Section VII-A. Our

method and the reference methods are all evaluated once per

second, in which there are 100 frames. Statistics are then

calculated from the per-second measurements.

We first compare the estimation results of the three methods

in each single frame without refinement using context infor-

mation. Then we compare their results with refinement. For

5http://www.music-ir.org/mirex/

Klapuri06, which does not have a refinement step, we apply

our context-based refinement method (Section V) to it. We

think this is reasonable because our refinement method is quite

general and not coupled with our single frame F0 estimation

method. Pertusa08, has its own refinement method using

information across frames. Therefore, we use Pertusa08’s

own method. Since Pertusa08 estimates all F0s in a frame

simultaneously, Pre-F0 is not a meaningful measure on this

system. Also, Pertusa08’s original program does not utilize

the polyphony information if the true polyphony is provided,

so Mul-F0 Poly Known is not evaluated for it.

(a) Before refinement

(b) After refinement

Fig. 6. F0 estimation accuracy comparisons of Klapuri06 (gray), Pertusa08
(black) and our method (white). In (b), Klapuri06 is refined with our
refinement method and Pertusa08 is refined with its own method.

Figure 6 shows box plots of F0 estimation accuracy com-

parisons. Each box represents 330 data points. The lower and

upper lines of each box show 25th and 75th percentiles of

the sample. The line in the middle of each box is the sample

median, which is also presented as the number below the box.

The lines extending above and below each box show the extent

of the rest of the samples, excluding outliers. Outliers are

defined as points over 1.5 times the interquartile range from

the sample median and are shown as crosses.

As expected, in both figures the Pre-F0 accuracies of both

Klapuri06’s and ours are high, while the Mul-F0 accuracies

are much lower. Before refinement, the results of our system

are worse than Klapuri06’s and Pertusa08’s. Take Mul-F0

Poly Unknown as an example, the median accuracy of our
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TABLE IV
MUL-F0 ESTIMATION PERFORMANCE COMPARISON, WHEN THE

POLYPHONY IS NOT PROVIDED TO THE ALGORITHM.

Accuracy Precision Recall
Klapuri06 59.7±11.6 86.1±9.6 66.0±11.5
Pertusa08 57.3±11.4 84.6±13.5 63.7±9.6
Our method 68.9±10.8 82.7±8.1 80.2±10.3

method is about 4% lower than Klapuri06’s and 2% lower than

Pertusa08’s. This indicates that Klapuri06 and Pertusa08 both

gets better single frame estimation results. A nonparametric

sign test performed over all measured frames on the Mul-

F0 Poly Unknown case shows that Klapuri06 and Pertusa08

obtains statistically superior results to our method with p-value

p < 10−9 and p = 0.11, respectively.

After the refinement, however, our results are improved

significantly, while Klapuri06’s results generally stay the same

and Pertusa08’s results are improved slightly. This makes our

results better than Klapuri06’s and Pertusa08’s. Take the Mul-

F0 Poly Unknown example again, the median accuracy of our

system is about 9% higher than Klapuri06’s and 10% higher

than Pertusa08’s. A nonparametric sign test shows that our

results are superior to both reference methods with p < 10−25.

Since we apply our refinement method on Klapuri06 and our

refinement method removes inconsistent errors while strength-

ening consistent errors, we believe that the estimation errors

in Klapuri06 are more consistent than ours.

Remember that removing duplicates is a side effect of

our post-processing method. Since our base method allows

duplicate F0 estimates, but the data set rarely contains unisons

between sources, removing duplicates accounts for about 5%

of Mul-F0 accuracy improvement for our method in both

Poly Known and Unknown cases. Since Klapuri06 removes

duplicate estimates as part of the approach, this is another

reason our refinement has less effect on Klapuri06.

Figure 6 shows a comparison of our full system (white

boxes in (b)) to the Kapuri06 as originally provided to us

(gray boxes in (a)) and Pertusa08’s system (black box in

(b)). A nonparametric sign test on the Mul-F0 Poly Unknown

case shows our system’s superior performance was statistically

significant with p < 10−28.

Table IV details the performance comparisons of Mul-F0

Poly Unknown in the format of “Mean±Standard deviation” of

all three systems. All systems had similar precision, however

Klapuri06 and Pertusa08 showed much lower accuray and

recall than our system. This indicates both methods under-

estimate the number of F0s. This analysis is supported in our

analysis of polyphony estimation.

E. Polyphony Estimation Results

Since polyphony estimation is a difficult task itself, we eval-

uated all three methods on this task. Among the 33,000 frames

in Bach chorale test data, 29,687 had instruments sounding.

Since all the pieces are quartets, and every instrument is active

all along, the ground-truth polyphony is set to four for every

frame with instruments sounding (we ignore the few frames

that some performer ended or started a touch early).

Figure 7 shows the polyphony estimation histograms for

all three methods without and with the refinement step. It

can be seen that before refinement, all the methods tend to

underestimate the polyphony. However, in both cases, our

method obtains a better result with a lower MSE value

than Klapuri06 and Pertusa08. Moreover, our refinement step

improves the results for both Klapuri06 and our method, and

finally our method obtains a symmetric histogram around the

true polyphony as Figure 7 (f) shows.
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Fig. 7. Polyphony estimate histogram on the total 33,000 frames of the testing
music pieces. X-axes represent polyphony. Y-axes represent the proportion of
frames (%). The asterisk indicates the true polyphony.

In order to evaluate our polyphony estimation method

(Section IV without refinement) more comprehensively, we

tested it on single frames of musical chords with different

polyphony. Figure 8 shows the results. It can be seen that in

most examples of polyphony from 1 to 4, the system outputs

the correct polyphony. However, for polyphony 5 and 6, the

polyphony estimation results are not satisfying. One of the

reason is that F0s with octave relations are difficult to estimate

using our algorithm. In our data set, chords of polyphony 1, 2,

3 and 4 do not have octave relations. Each chord of polyphony

5 contains a pair of pitches related by an octave. This means

40% of the pitches are in an octave relation. Each chord of

polyphony 6 contains two pairs, giving 66.7% of the pitches in

an octave relation. Thus, the tendency to underestimate their

polyphony is not surprising.
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Fig. 8. Polyphony estimation histogram of musical chords with polyphony
from 1 to 6. X-axes represent polyphony. Y-axes represent the proportion of
frames (%). The asterisk indicates the true polyphony.
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F. Individual Analysis of System Components

When a new approach is introduced, it may not always

be clear which aspects of it contribute most strongly to its

performance. We now investigate the effectiveness of differ-

ent techniques that are used in our method: modeling peak

frequencies and amplitudes, considering the possibility of

spurious peaks, modeling the non-peak region, and refining

F0 estimates using neighboring frames. In this experiment, we

compare the F0 estimation accuracies with different system

configurations:

• 1: models peak frequency deviations with a single Gaus-

sian, as in [18].

• 2: models peak frequency deviations with a GMM model.

• 3: system 2 + models peak amplitudes with the non-

parametric model in Eq. (12).

• 4: system 3 + considers the possibility of spurious peaks.

• 5: system 4 + models the non-peak region with Eq. (14).

• 6: system 5 + refines F0 estimates, as in Section V.
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Fig. 9. F0 estimation accuracy of different system configurations of
our method, when the true polyphony is provided. The x-axes are system
configuration numbers.

Box plots of F0 estimation accuracies of these systems when

the true polyphony is provided are illustrated in Figure 9.

Again, each box represents 330 data points, corresponding

to the 330 seconds of our testing pieces. For Pre-F0 results,

systems except 2 and 3 are all higher than 90%. From System

2 to 3, the single Gaussian is replaced by a GMM to model

Fig. 10. Octave error (gray: lower-octave error, white: higher-octave
error) rates of different system configurations of our method, when the true
polyphony is provided. The x-axis is the system configuration number.

the peak frequency deviation, which makes it possible to

represent the tail of the distribution in Figure 1. Therefore, the

frequency restriction of each F0 estimate is loosened, and the

accuracy of the predominant F0 estimate is lower. However,

after adding the spurious peak model in System 4 and the non-

peak region model in System 5, more restrictions are added

to F0 estimates and the accuracy is improved. Finally, the F0

refinement technique improves the Pre-F0 median accuracy

to 100.0%. We note that the predominant F0 estimate in a

frame after the refinement may not be the same predominant

F0 estimate as before, instead, it is the best predominant F0

estimate in the neighborhood, hence is more robust.

For Mul-F0, the F0 estimation accuracy generally increases

from System 1 to 6. There are three main improvements

of the median accuracy: a 2.7% increase by replacing the

single Gaussian with a GMM of modeling peak frequency

deviations (System 1 to 2); a 7.3% increase by adding the

non-peak region model (System 4 to 5); a 17.3% increase by

F0 refinement (System 5 to 6). All of these improvements are

statistically significant with p < 10−8 in a nonparametric sign

test. The only decrease occurs when adding the peak amplitude

model (System 2 to 3). This indicates that the peak amplitude

model parameters learned from randomly mixed chords are not

suitable for the testing music pieces. In fact, when we train

the peak likelihood parameters using 5 testing music pieces

and test on all the 10 pieces, System 2 achieves 46.0% (0.5%

lower), while System 3 achieves Mul-F0 accuracy median

of 49.5% (4.3% higher). This indicates two things: First,

the peak frequency deviation model is well learned from

randomly mixed chords; Second, the peak amplitude (timbre

information) modeling is helpful only if the training data are

similar to the testing data. However, due to the timbral variety

of music, this situation can be rare. This is in accordance

with Klapuri’s observation in [16], [17], where he employs a

spectral whitening technique to remove timbre information of

both training and testing signals.

As octave errors are the most frequency errors in multiple

F0 estimation, Figure 10 shows the octave error rates of our

systems. System 1 to 4 have much more lower-octave errors

than higher-octave errors. This supports our claim that only
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modeling peaks will cause many lower octave errors. From

System 4 to 5, lower-octave errors are significantly reduced

because of the non-peak region model, as they have a small

non-peak region likelihood. Lower-octave and higher-octave

errors are then approximately balanced. It is noted that this

balance is achieved automatically by our probabilistic model,

while it is achieved by manual assignment of the balancing

factor ρ in [19]. Finally, both octave errors are significantly

reduced by the refinement.

We submitted our system to the “Multiple Fundamental

Frequency Estimation & Tracking” task in MIREX 2009.

“DHP2” is the system we described in this paper and “DHP1”

is the multi-pitch tracking system built based on “DHP2”. Both

systems obtained good results. The results can be accessed

at http://www.music-ir.org/mirex/2009/index.php/Multiple

Fundamental Frequency Estimation & Tracking Results.

VIII. CONCLUSION

In this paper, we proposed a maximum likelihood approach

for multiple F0 estimation, where the power spectrum of a

time frame is the observation and the F0s are the parameters

to be estimated. The proposed method reduces the power

spectrum into a peak region and a non-peak region, and

the likelihood function is defined on both parts. The peak

region likelihood is defined as the probability that a peak

is detected in the spectrum given a set of F0s. The non-

peak region likelihood is defined as the probability of not

detecting any harmonics in the non-peak region. The two

parts act as a complementary pair. To solve the combinatorial

problem of simultaneously estimating F0s, we adopted an

iterative estimation strategy to estimate F0s one by one. As

expanding the number estimated F0s in each iteration, the total

likelihood increases. We then proposed a polyphony estimation

method by setting a threshold of the likelihood improvement.

Finally, we proposed a refinement method to refine the F0

estimates using neighboring frames. This method removes a

lot of inconsistent errors.

We tested the proposed approach on a corpus of 10 in-

strumental recordings of J. S. Bach quartets. The results

show the proposed approach outperforms two state-of-the-

art algorithms on this data set on both F0 estimation and

polyphony estimation. The polyphony estimation method is

also tested on 6,000 musical chords. Good results are obtained

when there is no octave relation between pitches. It is noted

that our system was trained using randomly mixed chords and

monophonic notes, while tested on music pieces and musical

chords. This indicates the generality of our system.

For sounds having octave-related pitches, the performance

of our method will deteriorate, due to the binary masking

assumption adopted in the peak region likelihood definition.

Since octaves are the most common intervals encountered in

music, this problem should be addressed in future work.

The current formulation limits the use of the method to

harmonic sounds, but it should not be hard to extend it to

quasi-harmonic sounds. The only change will occur in the

calculation of the harmonic number of each peak.

Although using information from neighboring frames, the

proposed method is still a F0 estimator rather than a F0 tracker.

How to connect F0 estimates in adjacent frames and track them

into F0 trajectories is a direction for future work.

IX. ACKNOWLEDGEMENT

We would like to thank A. Klapuri and A. Pertusa for

generously providing source code for [17] and [23] respec-

tively for comparison. We also thank the reviewers, whose

comments greatly improved this article. This research was

supported, in part, by US National Science Foundation grant

IIS-0643752, China 973 Program (2009CB320602) and China

National Science Foundation (Grant No. 60721003).

REFERENCES

[1] G. E. Poliner and D. P. W. Ellis, “A discriminative model for polyphonic
piano transcription,” EURASIP Journal on Advances in Signal Processing,
vol. 2007, Article ID 48317, 9 pages.

[2] J. Woodruff, Y. Li, and D.-L. Wang, “Resolving overlapping harmon-
ics for monaural musical sound separation using pitch and common
amplitude modulation,” in Proc. International Conference on Music

Information Retrieval (ISMIR), 2008, pp. 538-543.
[3] N. Orio, S. Lemouton, and D. Schwarz, “Score following: state of the art

and new developments,” in Proc. The 2003 Conference on New Interfaces

for Musical Expression (NIME), 2003, pp. 36-41.
[4] M. Davy, S. J. Godsill, and J. Idier, “Bayesian analysis of western tonal

music,” J. Acoust. Soc. Am., vol. 119, no. 4, pp. 2498-2517, 2006.
[5] E. Vincent and M. D. Plumbley, “Efficient Bayesian inference for har-

monic models via adaptive posterior factorization,” Neurocomputing, vol.
72 , no. 1-3, pp. 79-87, 2008.

[6] K. Kashino and H. Murase, “A sound source identification system
for ensemble music based on template adaptation and music stream
extraction,” Speech Communication, vol. 27, pp. 337-349, 1999.

[7] M. Goto, “A real-time music scene description system: predominant-
F0 estimation for detecting melody and bass lines in real-world audio
signals,” Speech Communication, vol. 43, no. 4, pp. 311-329, 2004.

[8] H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch analyzer
based on harmonic temporal structured clustering,” IEEE Trans. on Audio,

Speech, and Language Process., vol. 15, no. 3, pp. 982-994, 2007.
[9] S. Saito, H. Kameoka, K. Takahashi, T. Nishimoto and S. Sagayama,

“Specmurt analysis of polyphonic music signals,” IEEE Trans. Audio

Speech Language Process., vol. 16, no. 3, pp. 639-650, 2008.
[10] J.-L. Durrieu, G. Richard and B. David, “Singer melody extraction

in polyphonic signals using source separation methods,” in Proc. IEEE

International Conference on Acoustic, Speech and Signal Processing

(ICASSP), 2008, pp. 169-172.
[11] V. Emiya, R. Badeau and B. David, “Multipitch estimation of quasi-

harmonic sounds in colored noise,” in Proc. 10th International Conference

on Digital Audio Effects (DAFx), 2007, pp. 93-98.
[12] G. Reis, N. Fonseca and F. Ferndandez, “Genetic algorithm approach to

polyphonic music transcription,” in Proc. IEEE International Symposium

on Intelligent Signal Processing, 2007, pp. 321-326.
[13] R. Meddis and L. O’Mard, “A unitary model of pitch perception,” J.

Acoust. Soc. Am., vol. 102, no. 3, pp. 1811-1820, 1997.
[14] T. Tolonen and M. Karjalainen, “A computationally efficient multipitch

analysis model,” IEEE Trans. Speech Audio Processing, vol. 8, no. 6, pp.
708-716, 2000.

[15] A. de Cheveigné and H. Kawahara, “Multiple period estimation and
pitch perception model,” Speech Commun., vol. 27, pp. 175-185, 1999.

[16] A. Klapuri, “Multiple fundamental frequency estimation based on
harmonicity and spectral smoothness,” IEEE Trans. Speech and Audio

Processing, vol. 11, no. 6, pp. 804-815, 2003.
[17] A. Klapuri, “Multiple fundamental frequency estimation by summing

harmonic amplitudes,” in Proc. International Conference on Music Infor-

mation Retrieval (ISMIR), 2006, pp. 216-221.
[18] J. Goldstein, “An optimum processor theory for the central formation of

the pitch of complex tones,” J. Acoust. Soc. Am., vo. 54, pp. 1496-1516,
1973.

[19] R. C. Maher and J. W. Beauchamp, “Fundamental frequency estimation
of musical signals using a two-way mismatch procedure,” J. Acoust. Soc.

Am., vol. 95, pp. 2254-2263, 1993.
[20] H. D. Thornburg and R. J. Leistikow, “A new probabilistic spectral pitch

estimatior: extract and MCMC-approximate strategies,” Lecture Notes in

Computer Science, vo. 3310/2005, pp. 41-60, 2005.



13

[21] R. J. Leistikow, H. Thornburg, J.O. Smith, and J. Berger, ”Bayesian
identification of closely-spaced chords from single-frame STFT peaks,”
in Proc. 7th Int. Conf. Digital Audio Effects (DAFx), 2004, pp. 228-233.

[22] Z. Duan and C. Zhang, “A maximum likelihood approach to multiple
fundamental frequency estimation from the amplitude spectrum peaks,” in
Proc. Neural Information Processing Systems (NIPS) workshop on Music,

Brain and Cognition, 2007.
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