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ABSTRACT

The goal of a polyphonic music transcription system is

to extract a score from an audio signal. A multiple funda-

mental frequency estimator is the main piece of these sys-

tems, whereas tempo detection and key estimation comple-

ment them to correctly extract the score. In this work, in or-

der to detect the fundamental frequencies that are present in a

signal, a set of candidates are selected from the spectrum, and

all their possible combinations are generated. The best com-

bination is chosen in a frame by frame analysis by applying a

set of rules, taking into account the harmonic amplitudes and

the spectral smoothness measure described in this work. The

system was evaluated and compared to other works, yielding

competitive results and performance.

Index Terms— Acoustic signal processing, acoustic sig-

nal analysis, spectral analysis, Gaussian distributions, acous-

tic applications

1. INTRODUCTION

Detecting multiple pitches that are present in a acoustic sig-

nal is a very complex task, and currently is far from being

completely solved, despite the state of the art contains several

approaches that have addressed this problem.

Some authors, like Tolonen [1] or Klapuri [2], proposed

models of the human auditory system. Parametric signal mod-

els have been used by Goto [3], and Yeh [4] used a generative

spectral model. Other approaches like [5] include machine

learning techniques.

A number of models or patterns have been previously

used for spectral matching, and they are usually indepen-

dent from the analyzed timbres. In [6], spectral whitening

is performed trying to suppress timbral information before

subtracting a constant pattern previously learned.

In the proposed approach, a pattern for each fundamen-

tal frequency is inferred from the spectrum, by taking into

account the amplitudes of the harmonic partials and their
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smoothness. The principle of this work is based on the expec-

tation that the spectral envelopes of real sounds tend to vary

smoothly as a function of frequency [7], and we can use this

property to separate sources, maximizing the probabilities of

spectral envelopes with high smoothness and high harmonic

amplitude values.

The spectral smoothness principle has been previously

used by Yeh [4], combined with other principles as a criterion

to select spectral harmonics. In a former work, Klapuri [7]

smoothed the spectra of the detected sounds before subtract-

ing them from the mixture. To do this, a moving average was

computed over the amplitudes of the harmonic partials of a

sound, and an octave wide triangular window centered at each

harmonic partial was calculated to obtain the weighted mean

of the amplitudes. Then, the amplitude values were replaced

by the minimum of the original and weighted mean values.

Basically, the scheme of the proposed approach consists

of identifying a set of candidates (pitches), generate all their

possible combinations (chords) and finding the best combina-

tion. This is the combination of candidates that maximizes

the sum of their harmonic amplitudes and their smoothness.

Therefore, the harmonics of each candidate are identified and

the smoothness of their amplitudes contributes to score it. To

do this, the spectrum is neither smoothed nor preprocessed.

2. METHODOLOGY

The multiple pitch estimator converts a mono audio file into

a sequence of MIDI notes. To detect the pitches in a signal,

the Short Time Fourier Transform (STFT) is computed using

a 93 ms Hanning windowed frame (4096 samples for a signal

sampled at 44.1 kHz rate), with a 46 ms hop. This window

size may seem long, but for chord identification pitch margin

is wide [7]. This is the frame size selected in many previous

approaches, like [6]. Zero padding has been used, multiply-

ing the original size of the window by 4 and adding zeroes

to complete it before the STFT is computed. This technique

does not increase resolution, but the estimated amplitudes and

frequencies of the new spectral bins are usually more accu-

rate than applying interpolation, being useful for a better fre-



quency location of the lower pitches.

The proposed algorithm performs a frame by frame anal-

ysis. For each frame, the spectral peaks with an amplitude

higher than a given threshold µ are extracted, while the rest
of spectral information is discarded. Then, a set of funda-

mental frequency (f0) candidates are selected from the spec-

tral peaks. A spectral peak is considered as a f0 candidate

if it is within the range [fmin, fmax], which corresponds to

the pitches of interest. Another restriction for a spectral peak

to be a candidate is that at least η of its harmonics must be
found. As the f0 candidates are spectral peaks, the timbres

with missing fundamental are not considered.

To search for the harmonics of a candidate, a constant

margin hf0 ± fr around each harmonic frequency hf0 for

h = 2, 3, ... is considered, to allow harmonic deviations. The
closest peak to the center of this margin is set as a harmonic

partial and, if no peak is found within this margin, the har-

monic is considered as missing.

Candidates are ordered decreasingly by the sum of their

harmonic amplitudes and, at most, only the first F candidates

of this list are considered, to improve the performance of the

system. Then, all the possible candidate combinations are

calculated, and the combination with best salience (see be-

low) is selected. As the combinations consist on different

number of pitches, no estimation of the number of concur-

rent sounds is performed before estimating the pitches, like in

other works [7]. The combination with best salience will be

selected instead.

The salience of a combination is calculated as the sum of

the saliences of its candidates. A candidate salience is com-

puted by considering the loudness and smoothness of its har-

monic amplitudes. The first stage to compute these values is

to estimate a spectral pattern p for each candidate c. This
spectral pattern (see eq. 1) is a vector of amplitudes:

pc = {pc,1, pc,2, ..., pc,h, ..., pc,H} (1)

where pc,h is the amplitude of the h harmonic of a f0 candi-

date. These harmonics are searched within the margin hf0 ±
fr, as described before. The maximum size of the spectral

pattern was set to H = 10, because usually the first harmon-
ics contain most of the energy of the sound and a higher value

ofH causes that low pitches can cancel higher frequencies.

Then, an iterative algorithm is performed for each com-

bination. Given a combination (a set of candidates), the har-

monics of all its candidates are found and they are labeled

with the candidate they belong to. After this process, there

will be harmonics that only belong to one candidate, i.e. non-

shared harmonics, and harmonics that belong to more than

one candidate, i.e. shared harmonics.

Once the spectral pattern for each candidate has been

computed and the spectral peaks that correspond to harmon-

ics have been labeled, the candidates, ordered by ascending

frequency, are processed to get their salience. For each can-

didate, the shared harmonic amplitudes stored in its spectral

pattern are linearly interpolated using the values of the non-

shared harmonic amplitudes, in a similar way than in [4].

If an interpolated value is greater than the amplitude of the

shared harmonic, then the harmonic amplitude in the spectral

pattern of the candidate will remain the same and the spectral

peak will be removed (amplitude set to zero) for the candi-

dates that share this harmonic. If the interpolated value is

smaller than the shared harmonic amplitude, this interpolated

value is assigned to the harmonic of the spectral pattern and

it is subtracted from the corresponding spectral peak.

When this process is done for all the candidates in a com-

bination, each candidate loudness l(c) is computed by sum-
ming all the values of its spectral pattern.

l(c) =
H∑

h=1

pc,h (2)

Smoothness (σ) is also computed for each spectral pattern
by using Gaussian smoothing; the principle is that a smooth

spectral pattern should be more probable than a sharper one.

To compute the smoothness of a spectral pattern, p, the vec-
tor is low-pass filtered using a truncated normalized Gaussian

windowwith three componentsNσ=1.0 = {0.21, 0.58, 0.21},
that is convolved with p obtaining the smooth version p̃:

p̃ = N1.0 ∗ p (3)

Only three componentswere chosen for the Gaussian win-

dow due to the small size of the spectral pattern (H = 10).
Then, a sharpness measure s(c) is computed by summing
the absolute differences between the smoothed values and the

spectral pattern amplitudes:

s(c) =
H∑

h=1

(|p̃c,h − pc,h|) (4)

The sharpness s(c) is normalized, s̄(c), and the smooth-
ness of a spectral pattern is computed as σ(c) = 1 − s̄(c).

Once the smoothness and the loudness of each candidate

have been calculated, the salience S of a combination is:

S =
C∑

c=1

[l(c) · σ(c)]2 (5)

being C the number of candidates in the combination. The

combination with best salience is the winner chord in the an-

alyzed frame. Combinations that have at least one candidate

with l(c) < γL are discarded, being L = max∀c{l(c)} the
highest candidate loudness.

After selecting the best combination in a frame, a last

stage is applied to avoid local errors. If a given pitch was

not detected in a target frame but it was found in the previous

and next frames, it is considered to be detected in the current

frame too, avoiding discontinuities in the detection. Finally,
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Fig. 1. Gaussian smoothing example. The normalized har-

monic vectors p and smooth versions p̃ of two candidates (c 1,

c2) are shown. Sharpness is s(c1) = 0.13, and s(c2) = 1.23.

very short notes (less than 6 frames, i.e. 55.68 ms) are re-

moved, and the sequences of consecutive detected fundamen-

tal frequencies are converted to MIDI notes.

3. EVALUATION

First experiments were done using a data set to test the sys-

tem and set up the parameters. These data were generated

with random mixtures of different music samples, and they

were used to evaluate previous works [6]. It consists of 4000

chords1 with polyphony 1,2,4, and 6 (1000 each). Only one

frame of each mixture was analyzed to yield the fundamen-

tal frequencies. After these experiments, the best results were

obtained using µ = 0.1, η = 2, fmin =38 Hz, fmax =
2100 Hz, F = 10, fr =10 Hz, and γ = 0.1.

A standard error metrics was used for evaluation; a false

positive is a detected pitch that was not in the original mix-

ture, a false negative is a pitch that was not detected but it

was present in the signal, and the accuracy corresponds to the

standard f-measure. Taken into account the 13000 pitches in

the data set, there were 9052 correctly detected pitches, 3103

false positives and 3948 false negatives, yielding an accuracy

acc = 56.21.
This value cannot be directly compared to the results ob-

tained by Klapuri [6] using the same data set, because in that

work polyphony estimation and f0 estimation were evaluated

separately, and the number of concurrent sounds was given

as a parameter for the pitch estimator. This is not the case

for the present work, where these two stages are calculated

simultaneously.

To compare the system with other approaches, it was sub-

mitted and evaluated in theMIREX 2007 [8] multi-f0 estima-

1Thanks to Anssi P. Klapuri for providing the data set of mixtures

id Acc. Pr Re Etot Esubs Emiss Efa

RK 0.605 0.690 0.709 0.474 0.158 0.133 0.183

CY 0.589 0.765 0.655 0.460 0.108 0.238 0.115

ZR 0.582 0.710 0.661 0.498 0.141 0.197 0.160

PI1 0.580 0.827 0.608 0.445 0.094 0.298 0.053

EV2 0.543 0.687 0.625 0.538 0.135 0.240 0.163

CC1 0.510 0.567 0.671 0.685 0.200 0.128 0.356

SR 0.484 0.614 0.595 0.670 0.185 0.219 0.265

EV1 0.466 0.659 0.513 0.594 0.171 0.371 0.107

PE1 0.444 0.734 0.505 0.639 0.120 0.375 0.144

PL 0.394 0.689 0.417 0.639 0.151 0.432 0.055

CC2 0.359 0.359 0.767 1.678 0.232 0.001 1.445

KE2 0.336 0.348 0.546 1.188 0.401 0.052 0.734

KE1 0.327 0.335 0.618 1.427 0.339 0.046 1.042

AC2 0.311 0.373 0.431 0.990 0.348 0.221 0.421

AC1 0.277 0.298 0.530 1.444 0.332 0.138 0.974

VE 0.145 0.530 0.157 0.957 0.070 0.767 0.120

Table 1. MIREX frame by frame evaluation results. Ac-

curacy, precision, recall, and the error metrics proposed by

Poliner (total, substitution, miss and false alarm errors) are

shown.

tion contest. The evaluation was done at two different levels;

frame by frame pitch estimation and note tracking. In order

to adapt the system to the MIREX frame by frame evaluation

requirements, the hop size was changed to get a temporal res-

olution of 9.28 ms. The data set used in MIREX consisted of

20 real and 8 synthesized recordings.

The results are shown in Tab. 1, and the corresponding

runtimes in table 3. The current work is labeled as PI1, among

the 16 multi-f0 estimators presented.
The accuracy of the system was close to the highest ac-

curacy of the tested systems, being the one with the highest

precision and the lowestEtot error [9]. This error metrics was

proposed as an alternative to avoid double error counting: if a

detected pitch is shifted, e.g., one semitone with respect to the

actual pitch, then the standard accuracy would consider two

errors (a false positive and a false negative).

The difference between precision and recall shows that

the system performs under-detection that may be corrected

by changing the note removal thresholds to get a better recall.

It can be seen in the performance table 2 that the system is

fast compared to the other systems analyzed.

The system was also evaluated for the note tracking con-

test. This task takes into account the onset and pitch of the

notes. Despite it was not designed for this task because the

analysis is performed without information from neighbor-

ing frames but converting consecutive frame detections into

notes, the results were satisfactory, as shown in table 3. The

analyzed system is labeled as PI2. Table 4 shows that it was

the fastest system in this contest.

4. CONCLUSIONS AND FUTUREWORK

A simple approach for multiple fundamental frequency esti-

mation was presented in this work, yielding competitive re-

sults and performance. Using the amplitude spectrum, a set



id Runtime (sec) Machine

CC1 2513 ALE Nodes

CC2 2520 ALE Nodes

KE1 38640 ALE Nodes

KE2 19320 ALE Nodes

VE 364560 ALE Nodes

RK 3540 SANDBOX

CY 132300 ALE Nodes

PL 14700 ALE Nodes

ZR 271 BLACK

SR 41160 ALE Nodes

PI1 364 ALE Nodes

EV1 2366 ALE Nodes

EV2 2233 ALE Nodes

PE1 4564 ALE Nodes

AC1 840 MAC

AC2 840 MAC

Table 2. MIREX frame by frame runtimes. The first column

shows the participant, the second is the runtime and the third

column is the machine where the evaluation was performed.

The fastest machine was ALE Nodes.

id Precision Recall Avg. F-measure Avg. Overlap

RK 0.578 0.678 0.614 0.699

EV4 0.447 0.692 0.527 0.636

PE2 0.533 0.485 0.485 0.740

EV3 0.412 0.554 0.453 0.622

PI2 0.371 0.474 0.408 0.665

KE4 0.263 0.301 0.268 0.557

KE3 0.216 0.323 0.246 0.610

PI3 0.203 0.296 0.219 0.628

VE2 0.338 0.171 0.202 0.486

AC4 0.070 0.172 0.093 0.536

AC3 0.067 0.137 0.087 0.523

Table 3. MIREX note tracking results based on onset and

pitch. Precision, recall, average f-measure and average over-

lap are shown.

of f0 candidates were chosen and all their possible combina-

tions were generated. The combination of spectral patterns

that maximizes a criterion based on the sum of harmonic am-

plitudes and spectral envelope smoothness was chosen. The

system does not make any assumption about the number of

sounds in the mixture, and no estimation of the number of

concurrent sounds is required. The proposed scheme may

also be extended to other problems (e.g., source separation)

where a mixture of signals need to be decomposed and the

spectral envelope of the different sources tends to be smooth.

Future works include to balance precision and recall by

adjusting parameters, and adding a spectrum preprocessing

stage. Many estimation errors are produced by the inhar-

monicity of the sounds and the overlapped partials. To over-

come this problem, a better approach for harmonic selection

or partial tracking may be considered. A postprocessing stage

to perform a pitch selection, based on musical probabilities,

in order to remove false positives is also planned.

Participant Runtime (sec) Machine

AC3 900 MAC

AC4 900 MAC

RK 3285 SANDBOX

EV3 2535 ALE Nodes

EV4 2475 ALE Nodes

KE3 4140 ALE Nodes

KE4 20700 ALE Nodes

PE2 4890 ALE Nodes

PI2 165 ALE Nodes

PI3 165 ALE Nodes

VE 390600 ALE Nodes

Table 4. MIREX note tracking runtimes. Participant, run-

ning time (in seconds) and machine where the evaluation was

performed are shown.
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