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Abstract

Searching for rare genetic variants associated with complex diseases can be facilitated by

enriching for diseased carriers of rare variants by sampling cases from pedigrees enriched for

disease, possibly with related or unrelated controls. This strategy, however, complicates analyses

because of shared genetic ancestry, as well as linkage disequilibrium among genetic markers. To

overcome these problems, we developed broad classes of “burden” statistics and kernel statistics,

extending commonly used methods for unrelated case-control data to allow for known pedigree

relationships, for autosomes and the X chromosome. Furthermore, by replacing pedigree-based

genetic correlation matrices with estimates of genetic relationships based on large-scale genomic

data, our methods can be used to account for population-structured data. By simulations, we show

that the type I error rates of our developed methods are near the asymptotic nominal levels,

allowing rapid computation of P-values. Our simulations also show that a linear weighted kernel

statistic is generally more powerful than a weighted “burden” statistic. Because the proposed

statistics are rapid to compute, they can be readily used for large-scale screening of the association

of genomic sequence data with disease status.
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Introduction

Large-scale genomic technologies, such as assays used for genome wide association studies

(GWAS), whole exome sequencing, or whole genome sequencing, provide rich resources to

screen for genetic variants associated with complex diseases. Recent efforts have focused on

the potential role of rare variants influencing disease, such as variants with minor alleles

having a frequency of less than 5%. Rare variants are likely to have a prominent role in the

etiology of some complex traits, a role found true for a number diseases [Azzopardi et al.,

2008; Cohen et al., 2004; Hershberger et al., 2010] and supported by population genetic

principles [Bodmer and Bonilla, 2008; Dickson et al., 2010; Pritchard, 2001]. To enrich for

affected subjects likely to carry rare variants, pedigrees with multiple affected subjects are a

good choice [Bodmer and Bonilla, 2008; Teng and Risch, 1999], particularly because of

widely available resources from past linkage mapping efforts. Many of such collections have
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multiple affected pedigree members, perhaps with some unaffected members. It is not

unusual to use these types of collections as a source for sampling cases (one per family), to

compare with a set of unrelated controls. To make full use of such pedigree data with

multiple cases, and possibly unrelated controls, we developed broad classes of statistics to

account for pedigree relationships, allowing a mixutre of related and unrelated cases and

controls. To understand our proposed methods, it is worthwhile to review recent

developments of “burden” tests and kernel tests for association testing of multiple genetic

variants with disease status.

Because they are sparse, it is nearly impossible to evaluate individual rare variants. Hence, a

popular strategy is to combine rare variants into groups, to increase the group sizes and

hence power. The grouping could be at the gene level, or a set of genes composing a

biochemical pathway. Most strategies are based on combining the minor alleles across

multiple variant sites into a single test statistic, either without weighting [Li and Leal, 2008;

Morgenthaler and Thilly, 2007; Zawistowski et al., 2010], or with fixed weights based on

allele frequencies [Madsen and Browning, 2009; Sun et al., 2011], or with data-adaptive

weights [Lin and Tang, 2011; Liu and Leal, 2010]. Variations on these strategies are data-

adaptive thresholds to include or exclude some variants [Hoffmann et al., 2010; Pan and

Shen, 2011; Price et al., 2010]. The strengths and weaknesses of these methods have been

reviewed and compared [Asimit and Zeggini, 2010; Bansal et al., 2010; Basu and Pan,

2010]. A simplistic view of this overall strategy is the creation of a variant-sum “burden” for

each subject, where the variant-sum is the total, across all variant sites, of the minor allele

dosages (possibly weighting each variant site with either fixed weights or data-adaptive

weights, and possibly weights of zero to exclude some variants). The variant-sum can be

used in regression models, possibly as a score-statistic, to test the association of the variant-

sum with a trait. From this perspective, these methods can be viewed as testing whether the

variant-sum influences the mean of the trait. For case-control studies, this is analogous to

testing the difference in the mean of the variant-sums between cases and controls. These

combined approaches are sensitive to when the minor alleles across all sites have effects in

the same direction (i.e., all risk variants or all protective variants).

Although testing of the variant-sum on the mean of a trait has significant advantages in a

regression framework, allowing for covariate adjustment (such as eigenvectors for

population stratification), it will have limited power when the variants are a mixture of both

risk and protective variants. Methods to overcome this limitation have been proposed

[Ionita-Laza et al., 2011; Neale et al., 2011], with powerful methods that allow covariate

adjustment based on kernel regression [Kwee et al., 2008; Lee et al., 2012a, b; Wu et al.,

2011]. Some important aspects of the kernel regression approach are: (1) kernel regression

can be formulated as a mixed model, with the adjusting covariates treated as fixed effects

and the genetic factors treated as random effects; (2) the random effects are assumed to have

a covariance structure that is determined by σ2H, where H is an n × n kernel matrix of

specified structure that summarizes the genetic similarity between pairs of subjects; (3)

under the null hypothesis of no association of the genetic data with a trait, the genetic

similarity between pairs of subjects is not associated with trait similarity between pairs of

subjects, so the scalar parameter σ2 = 0 under the null hypothesis of no association. The

resulting score statistic for testing Ho : σ2 = 0 can be efficiently computed by the quadratic

form Q = (Y – Ŷ)′ H(Y – Ŷ), where Y is a vector of length n for the trait values of n

subjects, and Ŷ is the covariate-fitted value of Y. Note that for quantitative traits, Q is

typically scaled by dividing by , where  is the maximum likelihood estimate of the

residual variance [Kwee et al., 2008].

A key assumption of the kernel association test, when applied to unrelated subjects, is that

the residuals, (Y – Ŷ), are assumed to be uncorrelated. To extend the kernel association test
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for autosomes to quantitative traits of pedigree data, Schifano et al. [2012] and Chen et al.

[2012] allowed for residual correlations among family members by assuming that the

random effects, denoted by the vector b, have a multivariate normal distribution under the

null hypothesis of no genetic-trait associations, with mean 0 and covariance matrix

. The matrix K contains diagonal elements Kii = 1 + hi, where hi is the

inbreeding coefficient for subject i, and off-diagonal elements Kij = 2ϕij . The parameter ϕij

is the kinship coefficient between individuals i and j, the probability that a randomly chosen

allele at a given locus from individual i is identical by descent to a randomly chosen allele

from individual j, conditional on their ancestral relationship. For autosomes, the genetic

correlation between subjects i and j is Kij = 2ϕij. By combining variation from the random

effects with the residual error variation, they were able to construct a null variance matrix

that accounts for correlations induced by pedigree relationships: . The

unknown parameters are replaced with their maximum likelihood estimates, ,

and this is used in the quadratic association statistic to account for correlations induced by

pedigree relationships: Q = (Y – Ŷ)′ V–̂1 HV–̂1 (Y – Ŷ). The mixed model provides a

framework to separate the variance components into a part attributed to pedigree

relationships and a part due to random error. This is especially useful for quantitative traits,

but statistically more challenging for binary traits due to complications with generalized

linear mixed models [Breslow and Lin, 1995; Lin and Breslow, 1996]. An important

assumption of these methods is that the pedigrees were randomly ascertained. Without

random sampling, it is critically important to account for the ascertainment process (e.g.,

sampling according to trait values of some pedigree members) [Epstein et al., 2002].

Without proper adjustment for ascertainment, the estimated variance components are biased,

influencing the Q statistic.

Recently, Ionita-Laza et al. [2013] developed a family-based association test (FBAT) for the

kernel statistic, following the approach of others [Rabinowitz and Laird, 1999] by specifying

the distribution of offspring genotypes conditional on their phenotypes and their parental

genotypes (or the sufficient statistic when parental genotypes are not available), treating the

offspring genotypes as random. Although this approach is robust to population stratification,

there is a high price in terms of loss in power by the conditioning process. For example,

moderate-sized pedigrees sampled for multiple affected subjects with older age of onset

often have little information for the sufficient statistic because only affected subjects in the

lowest generation are available. Furthermore, this approach ignores between-family

information, which dramatically decreases power [Ionita-Laza et al., 2007; Van Steen et al.,

2005], and makes it impossible to use unrelated controls.

We developed statistical methods to analyze pedigree data for binary traits, which could

include unrelated subjects (e.g., multiple cases from pedigrees and unrelated controls), for

both the kernel statistic and the burden statistic. To do so, we took the perspective that the

ascertainment process for pedigrees enriched for multiple affected subjects is difficult to

define and model, leading us to a retrospective view that treats the traits as fixed and the

genotypes as random, in contrast to others who consider prospective random sampling,

treating the trait as random and the genotypes as fixed. This allowed us to account for

complex and undefined ascertainment of pedigrees [Kraft and Thomas, 2000; Schaid et al.,

2010], typical of pedigrees selected for linkage studies. We then evaluated the type I error

rates of our developed methods by simulations, as well as compared the power of the burden

and kernel statistics. Based on our simulations, we propose guidelines on choice of statistic

for testing the association of multiple variants with disease status.
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Methods

To derive the kernel association statistic and the burden statistic for data that includes

related subjects, we take a retrospective view of sampling, with the genotypes considered

random. Key aspects of our derivations are the first two moments of the random matrix of

genotypes. First consider genotypes measured on the autosomes. We use G to denote an n ×

m matrix of genotype scores with elements gil having values of 0, 1, or 2 for the number of

minor alleles for the lth marker (l = 1, . . . , m) of the ith subject. Under the null hypothesis

of no association of genotypes with traits, the expectation of matrix G has elements Eo[gil] =

2pl, where pl is the minor allele frequency for the lth marker. The null covariance of

elements of matrix G, Covo(gik, gjl), are influenced by how subjects are related (captured by

identity by descent coefficients) and how the genetic markers are correlated within subjects

due to linkage disequilibrium. We assume that we can obtain unbiased estimates of the

correlations among markers, perhaps from unrelated subjects or through use of estimating

equations with related subjects [Olson, 1994]. Let R denote an m × m correlation matrix of

genotype scores, with item Rkl for markers k and l, and let Ω denote an n × n matrix of

genetic correlations for all n subjects. For autosomes, the elements of Ω are twice the kinship

coefficients, Ωij = 2ϕij. For outbred pedigrees, the diagonal elements of Ω are 1, but for

inbreeding, the diagonal elements are Ωii = 1 + hi, where hi is the inbreeding coefficient for

subject i. For the X chromosome, discussed later, the genetic correlations are not as simple.

The covariance of the genotype codes in matrix G for subjects i and j, and markers k and l,

can be expressed as

(1)

A compact way to express the entire covariance structure of G is to stack the columns of the

matrix G on top of each other, into an nm × 1 vector, , so that

 where Vp is an m × m matrix with elements

 and the symbol ⊗ denotes the Kronecker matrix

product. When there are no cryptic relationships among subjects from different pedigrees,

the matrix Ω is block diagonal, with pedigree-specific kinship matrices filling in the blocks.

Kernel Statistic for Pedigree Data

Let Y′ = (y1, . . . , yn) denote a vector of disease status indicators for n subjects, with yi

having values of 1 or 0 for affected and unaffected, respectively. The quadratic kernel

association statistic can be expressed as Q = (Y – Ŷ) H(Y – Ŷ), where (Y – Ŷ) is the vector

of residuals, after adjusting for covariates, perhaps by use of logistic regression models, and

H is an n × n kernel matrix H (assumed to be positive semidefinite). Although the kernel

matrix, used to measure genetic similarity between all pairs of subjects, can be formulated in

many different ways [Schaid, 2010a, b; Wu et al., 2011], we derive the moments of Q under

the null hypothesis of no association based on a weighted linear kernel. The weighted linear

kernel has the form H = GWWG′, where G is the matrix of genotype scores, described

earlier, and W is a diagonal matrix with weights for each marker along the diagonal. We

make this restriction because of the wide use of the linear kernel [Lee et al., 2012a, b; Wu et

al., 2011], and the straight-forward way this kernel is amenable to the derivations we

present.
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By assuming a weighted linear kernel, the elements of the kernel matrix can be expressed as

, where wl is the weight for marker l, and the quadratic statistic can be

expressed as

where vector Z has elements . By the central limit theorem, Z has

an asymptotic multivariate normal distribution (although we should divide Z by n for this

asymptotic result, n would cancel in later derivations so we ignore it here). An advantage of

the multivariate normal distribution is that the moments of a quadratic form are well known.

That is, if Z ~ N(μ, VZ), then E [Z′ AZ] = tr(AVZ) + μ′ Aμ and Var(Z′ AZ) = 2tr(AVZAVZ)

+ 4μ′ AVZAμ, where tr(A) is the trace of matrix A (sum of diagonal elements). We use this

to derive the moments of Q under the null hypothesis (using subscript o to denote null

hypothesis). The first moment of vector Z has elements .

The elements of the covariance matrix of Z can be expressed as

where Covo(gik, gjl) is obtained from expression (1). This makes it clear that Covo(Zk, Zl)

depends on how the genotype scores are correlated, both within subjects (due to linkage

disequilibrium) and between subjects (due to kinship).

If the data contains pedigrees of known structure, including pedigrees of size 1 for singleton

subjects (e.g., unrelated controls or unrelated cases), then Ω is block-diagonal with block

sizes depending on the size of each pedigree. For this situation, the calculation of Covo(Zk,

Zl) simplifies because we only need to sum over the contributions from each pedigree. For

example, with D pedigrees, and the size of the dth pedigree denoted nd,

By rearranging terms, this covariance can be expressed as

where

The factor cZ depends only on relationships among subjects, and is constant over all

markers. This means that the covariance matrix for vector Z can be expressed as VZ = cZ *
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ff′ ○ R, where f is a vector with elements , matrix R is the correlation

matrix of the m markers, the symbol * denotes multiplication of the scalar cZ times all

elements in the adjacent matrix, and the symbol ○ denotes element-wise matrix

multiplication. By computing VZ in this manner, the factor cZ only needs to be computed

once, making efficient computation of matrix VZ when the number of markers is large.

Now, because Q = Z′Z, we can use the null moments of Z to determine the null moments of

Q: Eo[Q] = tr(VZ), Varo(Q) = 2tr(VZVZ). Asymptotically, the Q statistic is distributed as a

mixture of independent χ2 statistics. Alternatively, the distribution of Q can be approximated

by a Satterwaite approximation for the distribution of quadratic forms [Kwee et al., 2008;

Liu et al., 2008; Wu et al., 2011]. We estimate the distribution of Q by a scaled χ2

distribution with the scale and degrees of freedom estimated by the first two moments of Q.

That is, the scale was estimated as δ = Varo(Q)/(2Eo[Q]), the degrees of freedom as d =

2Eo[Q]2/Varo(Q), and P-values were computed by assuming .

Burden Test for Pedigree Data

A burden test can be formulated as follows. For the ith subject, compute a weighted average

of the genotype scores, . Under the null hypothesis, these summed scores are

not correlated with the trait, so a burden test can be constructed as L′S, where L is a mean-

zero function of the trait. For example, as discussed elsewhere [Thornton and McPeek,

2010], the Armitage trend test uses the contrast vector L = (Y – Ȳ). To adjust for covariates,

one could use L = (Y – Ŷ), the vector of residuals, after adjusting for covariates. The statistic

for this type of burden test is

The elements of matrix VS depend on Covo(gik, gjl), resulting in

where

Because cS is constant over all pairs of subjects, it needs to be computed only once. This

means that VS = cSΩ. Hence,

For large samples, T has an approximate χ2 distribution with 1 degree of freedom.
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Our proposed T statistic is similar in form to the statistics derived by Thornton [Thornton

and McPeek, 2010], yet with some notable differences. First, Thornton's statistic was for a

single marker at a time, not a burden test. Second, Thornton et al. considered pedigrees of

known structure as well as relationships estimated from large-scale genomic data. This

would be simple to do for our proposed statistic, by replacing the genetic correlation matrix

Ω with a matrix of estimated relationships. For example, if a large number of genetic

markers are available on the subjects, say m markers, then an estimate of the elements of Ω
proposed by Thornton et al. is

If markers are missing on some subjects, Thornton et al. adjusted this estimate by summing

over nonmissing pairs of subjects and dividing by the number of terms in the sum.

Alternative ways to estimate  could be based on estimated probabilities of identical by

descent (IBD) sharing, with , where Pĵ is an estimate of the probability of

sharing j alleles IBD. Both moment-based [Purcell et al., 2007] and maximum likelihood

estimation [Sun et al., 2002; Weir et al., 2006] procedures have been developed. We have

found maximum likelihood estimates to be closer to pedigree-based expected IBD

probabilities, particularly for third-degree and higher relationships, despite the more time it

takes to compute them. Which procedure is best is worthy of future research, but

nonetheless this estimated genetic correlation matrix would be a way to account for cryptic

relationships for both the kernel association statistic and the burden statistic.

Extensions to the X Chromosome

Because of the asymmetry of males and females with respect to the X chromosome, a

number of modifications are needed to extend the kernel and burden association tests to the

X chromosome. First, expression (1) for the null covariances of elements in the G matrix

changes because of the need to consider the sex of the members of each pair of relatives.

Second, because of X chromosome dosage compensation in females, the power for

association testing with the X chromosome can be improved by coding males as

homozygous females (i.e., 0, 2 instead of 0, 1) [Clayton, 2008; Ozbek, 2012]. To develop

our methods in a general way to code male genotypes for the X chromosome, we use d to

represent the code for males that carry the minor allele, so that males are coded as 0 or d (d

might be 1 or 2), whereas females are coded as 0, 1, or 2 (as for autosomes). Assuming

Hardy-Weinberg equilibrium, the null expected value of the code for females is , and

the null variance for females is . For males, the null mean is  and the

null variance is . The genetic correlation for the X chromosome for a pair of

relatives can be expressed in terms of the probability of sharing 0, 1, or 2 alleles IBD,

denoted ko, k1, k2, respectively [Li, 1976]. The genetic correlations are

(2)

Note that the genetic correlation for a pair of females is computed in the same manner as for

autosomes, because the kinship coefficient is ϕij = k1/4 + k2/2. However, the values of k1

and k2 differ between autosomes and the X chromosome. For example, for a pair of outbred

sisters, the values for autosomes are k1 = 0.5 and k2 = 0.25, yet for the X chromosome the
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values are k1 = 0.5 and k2 = 0.5, because sisters must share the X chromosome from their

father. The genetic correlation for a pair of males depends on the probability of sharing 1

allele IBD, which can be nonzero when there are no males in the ancestral line connecting

the pair of males. The genetic correlation for a female-male pair also depends on sharing 1

allele IBD, but the divisor of  originates from dividing the genetic covariance by the

square-root of the product of genetic variances, and only females have a factor of 2 for their

binomial variance (males have a factor of 1 due to one X chromosome). Note that these

genetic correlations do not change if we code males as 0, d, because the genetic covariance

(numerator) and the square-root of the product of genetic variances (denominator) both

depend on d, which cancels in the correlation. Finally, similar to Thornton et al. [2012], we

define the diagonal terms to be Ωii = 1 + hi for females, where hi is the inbreeding

coefficients for females based on pedigree relationships, and Ωii = 2 for males regardless of

inbred.

With the genetic correlations in expression (2), the elements of the null covariance matrix of

the genotype codes can be expressed as follows, for subjects i and j and markers k and l;

As for the case of autosomes, the above null covariance matrix of the genetic codes can be

used to express the covariance matrix for vector Z as VZ = cZ * ff′ ○ R, but now the

coefficient cZ for the X chromosome is,

where

With the above changes for the X chromosome, the other methods to compute the kernel

association statistic and its approximate asymptotic distribution remain the same as for

autosomes.

For the burden test, the computation of the numerator remains the same, (Y – Ŷ)′S]2, but the

variance in the denominator, (Y – Ŷ)′VS(Y – Ŷ) is slightly altered. The matrix VS has

elements

where
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To extend the above methods to situations for which relationships are estimated from

genomic data, we propose replacing the genetic correlation matrix Ω with a matrix of

estimated relationships, tailored for the X chromosome. Following ideas from Yang et al.

[2011], the estimated correlations take the form

Simulation Methods

To evaluate the type I error rates and power of our developed statistics, we simulated

genotype data for subjects in pedigrees, as well as unrelated control subjects, as illustrated in

Figure 1. For scenario 1, we simulated genetic markers for 150 pedigrees, each composed of

10 members, and included in the analyses the 3 affected members in the third generation.

These 450 affected subjects were compared with 450 unrelated controls. This scenario

represents a common study design that uses multiple cases of older onset disease from

pedigrees, and compares them with unrelated controls. In contrast, scenario 2 uses only

cases and controls from pedigrees, also from the third generation. These two scenarios

represent extremes, whereas in practice cases and controls are likely to be a mix of unrelated

and related subjects.

To simulate genetic marker data, we first simulated haplotypes, and then randomly sampled

haplotypes to assign to founders of pedigrees (or to unrelated controls). The haplotypes were

randomly assigned to the nonfounders of pedigrees by Mendelian “gene-dropping,”

assuming no recombination within haplotypes, as one would expect for small genomic

regions. For simulations under the null of no associations, the populations of haplotypes

were the same for pedigrees and unrelated controls (scenario 1). For power evaluations

(restricted to scenario 1), separate haplotype populations were created for pedigrees (with

three affected cases per pedigree) and for unrelated controls.

Because we anticipated that a number of features of the haplotypes could influence either

type I error rates or power, we designed a simulation process that would allow us to rapidly

simulate haplotypes, while specifying the number of markers, the minor allele frequencies

(MAF), the amount of correlations among the markers, and—for power—the number of risk

and protective markers, along with their relative risks. To achieve this, we used the methods

of Basu [Basu and Pan 2010], which are based on multivariate normal simulations. For m

markers, a latent vector Z of standard normal random variables was simulated. The latent

vector was transformed to have a specified correlation structure by X = AZ, where the

Cholesky decomposition is given by AA′ = R, and R is an m × m matrix of specified

correlation structure. The latent vector X was transformed to a haplotype vector having

alleles of 0 or 1 by using quantiles of a standard normal distribution based on the MAF of

the genetic markers. For correlation structure, we used a compound symmetric matrix (all

off-diagonal correlations equal to common value of ρ). We chose this to evaluate the impact

of extremes in linkage disequilibrium, with values of ρ = 0, 0.5, and 0.9. For rare variants,
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we do not expect large values of ρ, yet we wanted to force extremes to fully test our

methods. For the total number of markers, we simulated m = 50 and 100. For MAF, we

chose values of MAF = 0.01, 0.05, and 0.10, keeping MAF constant across all m markers for

each evaluation. Each simulation was based on 1,000 simulated datasets. For the weights,

we used the Madsen-Browning weights [Madsen and Browning, 2009], ,

where pl̂ was the naïve minor allele frequency estimate based on gene counting. Because pl̂

can be unstable for rare variants, we estimated it by the pool of all simulated data, not just

the controls, as suggested by others [Lin and Tang, 2011]. The elements of the correlation

matrix, R, were also based on gene-counting, a method that has been shown to provide

consistent estimates even when relationships among pedigree members are ignored [Olson,

1994].

To compare the power of the kernel Q statistic vs. the burden T statistic, we simulated a total

of m = 50 markers. In one set of simulations, we set the number of risk variants to be 10, 20,

or 40, with no protective variants (all risk variants having the same relative risk). In another

set of simulations, we set an equal number of risk and protective variants, with

risk:protective counts of variants as 5:5, 10:10, and 20:20.

We recognize that our simulations might not reflect real population data, as one might

simulate by a coalescent process, such as the popular COSI software [Schaffner et al., 2005].

Our intent, however, was to have more control over parameters that might influence the

properties of our statistical tests, such as MAF, number of variants, and correlation structure,

primarily because these features differ across the genome, and a population average model

of simulation might not reveal critical aspects of our methods.

Results

Simulation results for the type I error are presented in Table 1 for scenario 1 with autosomal

markers, which included 150 pedigrees, each with three affected members, and 450

unrelated controls. These results show that both the kernel Q statistic and the burden T

statistic control the type I error rates at the nominal levels of 0.05 and 0.01. The type I error

rates for scenario 2 with autosomal markers, which used both cases and controls from

pedigree data, are presented in Table 2. In general, the empirical type I error rates are close

to the nominal, yet with a few exceptions that were slightly above the nominal (for 1,000

simulations, the upper 99th binomial percentile of the nominal type I error rates are 0.067

for α = 0.05 and 0.018 for α = 0.01). The results in Tables 1 and 2 were for equal MAF

across all markers. We repeated simulations allowing the MAFs to have an exponential

distribution, truncated to the range of 0.01 to 0.1, so that the MAFs were skewed toward

small values, as one would expected for rare variants. Similar to results in Tables 1 and 2,

the type I error rates were close to the nominal values (results not shown).

For the X chromosome, simulation results for scenario 2 are presented in Table 3. The

empirical type I error rates are close to the nominal for the kernel Q statistic for all the

different parameter settings. The burden T statistic had empirical type I error rates close to

the nominal in most situations, with the exception that it tended to be very conservative

when the MAF was not small (e.g., MAF = 0.10), and genetic markers were simulated

without correlations (ρ = 0). We suspect that this is caused by sampling errors that cause

nonzero estimates of elements of the correlation matrix, making the statistic conservative by

overcorrecting for estimated correlations that would approach zero with larger sample sizes.

This suspicion was validated by using the assumed correlation (identity matrix, because ρ =
0), in place of the estimated correlation, which resulted in simulated type I error rates near

the nominal (results not shown). This suggests that methods to “shrink” small correlations

[Wen and Stephens, 2010] might prove useful when correlations are small. Overall, these
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results suggest that the null distributions of both the kernel Q and burden T statistics are

reasonably approximated by our asymptotic derivations.

Simulation results for power for autosomal markers are summarized in Figures 2–5. For

each of these figures, we present the Q and T statistics, each evaluated at nominal type I

error rates of 0.05 and 0.01. Each figure shows simulations for different values of ρ = 0, 0.5,

and 0.9, as well as the number of risk and protective variants. In Figure 2, the results for

only risk variants with MAF of 0.01, it can be seen that power increases with the number of

risk variants, but decreases as correlation ρ increases. Figure 3 illustrates similar patterns, for

MAF = 0.05. Surprisingly, the burden T statistic has little power advantage over the kernel

Q test, even as the number of risk variants increases.

Figures 4 and 5 illustrate power when there are an equal number of risk and protective

variants. Not surprisingly, the burden T statistic performs poorly, due to the canceling of

effects in the weighted sum of variants per subject. Because the magnitude of relative risk

for the protective variants was set as the inverse of the relative risk for the risk variants, we

can compare Figures 4 and 5 with Figures 2 and 3, to see that power results are similar for

the kernel Q statistic, indicating that the direction of effect has little impact on power, as

expected.

Discussion

Our proposed methods to evaluate the association of multiple genetic variants with disease

status when subjects are related provide a sound basis for analyzing pedigree data, with

particular emphasis on rare genetic variants that benefit from analyzing groups of variants,

instead of individual variants. Because our statistical methods are simple to compute, and

the nominal type I error rates are reasonably approximated by our developed methods, it is

feasible to use the proposed statistics on large scale data, such as whole exome sequence

data.

A critical feature of our approach was viewing the sample collection as a retrospective

study, which means conditioning on phenotypes, treating the genotype data random. This

approach seems reasonable for pedigrees sampled because of multiple affected members,

such as those collected for past linkage studies. This overcomes the problem of modeling the

ascertainment process, which would be particularly challenging for highly enriched

pedigrees. Although conditioning on traits in a retrospective likelihood tends to be less

efficient than treating traits as random variables in a prospective likelihood, there tends to be

little loss in efficiency for binary traits [Kraft and Thomas, 2000]. In principal, this approach

could be extended to quantitative traits, by conditioning on the quantitative traits of all

pedigree members. This might be of value when pedigrees are highly selected according to

quantitative traits of the pedigree members, or when subjects to sequence are sampled

according to extreme phenotypes to increase power to detect rare variants [Barnett et al.,

2012].

Through simulations, we showed that the linear weighted kernel Q statistic had more power

than the weighted burden T statistic, even in situations that would seem to favor the burden

statistic. This suggests that the kernel Q statistic would be the method of choice. An

advantage of the weighted kernel is that a wide variety of weights could be used, such as

those based on the β density function or based on functional information [Wu et al., 2011].

Although our methods were based on additive allele dosage, scoring genotypes as 0, 1, and 2

for the number of minor alleles, it is possible to generalize the scoring, such as for dominant

effects (scores of 0, 1, and 1) or for recessive effects (scores of 0, 0, and 1). However, it can

be shown that the genetic correlations for dominant and recessive scoring are no longer as
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simple as twice the kinship coefficient (for autosomes), but rather depend on the minor allele

frequencies. Furthermore, because our methods were proposed to analyze multiple genetic

markers for a gene, it is not clear that scoring all markers as dominant, or all as recessive, or

even a mix of these scores, would offer much advantage over the simple additive scoring for

all markers.

We chose a linear kernel, which is rapid to compute and facilitated our derivations. It might

be worthwhile to evaluate other types of kernels (e.g., Gaussian kernels, or a kernel-based

local identical by descent for the evaluated gene), although nonlinear kernels complicate the

computations of the moments of the Q statistic. To illustrate the complications, consider the

popular Gaussian radial basis kernel [Schaid, 2010a], which has the form

, where σ2 is a specified scale parameter that governs how

rapid the kernel function diminishes to 0. An approach to derive the moments of Q would be

to use Taylor-series expansion to “linearize” the kernel into a polynomial function of the

genotype scores. Expanding this function about 0 (assuming that the scale parameter σ2 is

chosen large enough), this kernel can be approximated as .

With this in hand, the Q statistic can be expressed in terms of gil, , gjl, and , and product

terms, gilgjl. The covariances among these pieces can be determined in a manner similar to

our derivations for Covo(gi,k, gj,l), but requiring third and fourth moments, because of terms

like . The third and fourth null moments for pedigree data can be challenging to compute,

because they no longer depend solely on kinship coefficients. Rather, pedigree-based

simulations by “gene-dropping” would likely be required. At this computational cost, it

would seem better to use gene dropping (including random assignment of alleles to

unrelated controls) to compute P-values for nonlinear kernels. For these reasons, and the

computational speed of the weighted linear kernel, we favored the linear kernel.
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Figure 1.
Scenarios for simulations. Each scenario has 450 affected subjects and 450 unaffected

subjects with simulated genotype data. The “+” symbol indicates subjects included in

analyses.
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Figure 2.
Simulated power for MAF = 0.01 with risk variants having relative risk of 2, and no

protective variants. Nominal type I error rate in parentheses.
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Figure 3.
Simulated power for MAF = 0.05 with risk variants having relative risk of 1.5, and no

protective variants. Nominal type I error rate in parentheses.
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Figure 4.
Simulated power for MAF = 0.01 with an equal mix of risk:protective variants. Relative risk

for risk variants was 2, and relative risk for protective variants was 0.5. Nominal type I error

rate in parentheses.
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Figure 5.
Simulated power for MAF = 0.05 with an equal mix of risk:protective variants. Relative risk

for risk variants was 1.5, and relative risk for protective variants was 0.67. Nominal type I

error rate in parentheses.
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