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ABSTRACT

Histogram Matching (HM) is a common technique for find-

ing a monotonic map between two histograms. However, HM

cannot deal with cases where a single mapping is sought be-

tween two sets of histograms. This paper presents a novel

technique that finds such a mapping in an optimal manner un-

der various histograms distance measures.

1. INTRODUCTION

In many scientific disciplines there is a need to determining

a monotonic mapping between two discrete sequences (i.e. a

mapping that maintains the internal order of the sequence el-

ements). A classic example is color calibration between two

images. In this case, one wishes to remap the tones (inten-

sities) of one image to another image, while maintaining the

shadow regions darker than the highlights.

When two images are captured from the same view-point

but at different times or using different camera parameters,

color calibration between the images can be found directly

from their color pixels [1]. In this case, one wishes to find a

monotonic color map that optimally fits the pixel colors in the

source image to their corresponding pixel colors in the target

image. As pixel correspondences between the two images

are used for calculating the color map, spatial information is

exploited. We consider such solutions as spatial approaches.

In more challenging cases, the images were acquired

under different view-points, thus, pixel correspondence is

not directly available and difficult to extract. In such cases,

color mapping is commonly calculated from the images’

histograms where only statistical information is considered

while spatial information is ignored. We consider solutions

of this type as statistical approaches. Clearly, such a solu-

tion is inferior to the spatial approaches and may suffer from

inaccuracies.

In this paper we propose to exploit spatial as well as sta-

tistical information for color calibration. The main idea is to

divide the images into a set of local regions and construct a

local histogram for each region. Such local histograms are

insensitive to small geometric deformations. We construct a

histogram correspondence such that for each local histogram

in one image a corresponding histogram in the other image

is determined. Histogram correspondence can be obtained ei-

ther by calculating a rough geometric transformation between

the images or by corresponding image regions using local fea-

tures such as SIFT or SURF [2, 3]. Given two sets of local his-

tograms, one set for each image, along with a correspondence

between the histograms, an optimal monotonic color mapping

is calculated to simultaneously satisfy the entire set of his-

togram pairs. This approach enables, on one hand to handle

inaccurate geometric transformation by considering statistical

information (histograms), while on the other hand to exploit

spatial information as the histograms describes local statistics.

Histogram Matching (HM) [4, 5] is a common approach

for finding a monotonic mapping between a pair of his-

tograms. Given two histograms (PDFs) the algorithm finds

a color mapping that optimally transforms one histogram to-

wards the other. HM is a simple yet very effective algorithm,

however it suffers from a number of shortcomings: First, it is

limited to only two histograms and cannot deal with multiple

histograms simultaneously. Second, HM approximates the

optimal solution with respect to the L1 norm over the cu-

mulative histogram pair [6, 7, 8], but is unable to provide an

optimal solution for other metrics. Finally, the HM solution is

designed for continuous PDFs and may produce non optimal

solutions in the discrete histogram case.

In this paper, we propose a new algorithm that generalizes

HM in a number of ways. First, the algorithm can find a sin-

gle monotonic mapping between multiple pairs of histograms

such that the mapping will satisfy all pairs simultaneously.

Second, the algorithm can work with any distance metric as

long as it is additive (such as L1, L2, KL, χ2, histogram inter-

section, etc.). Finally, the algorithm can work with distance

metrics defined over histograms as well as cumulative his-

tograms providing the optimal solution. Since the algorithm

generalizes the traditional Histogram Matching we term it

Generalized Histogram Matching (GHM). Formally, we con-

sider the following scenario:

1. Given two images Ia and Ib we divide the two images

into k distinct sub-images. For each sub-image we calcu-

late a local histogram resulting in two sets of histograms

A = {ai}
k
i=1

for image Ia and B = {bi}
k
i=1

for image Ib,

such that ai corresponds to bi, i = 1..k. We do not constrain

corresponding histograms to have the same number of bins,



thus the two sets can discretize the continues range of gray-

values with different quantizations bins.

2. A distance measure d(·, ·) between two histograms (with

the same number of bins) is given. We assume d is ad-

ditive, i.e. for any two histograms, a and b, d(a,b) =
∑

i d(a(i), b(i)) , where d(a(i), b(i)) is a bin-to-bin dis-

tance1 Accordingly, for two sets of histograms A and B, the

distance is defined as a sum of distances over all histogram

pairs:

d(A,B) =
∑

ai∈A,bi∈B

d(ai,bi)

3. W.l.o.g. we seek the optimal color monotonic mapping M
applied to image Ia so that its resulting sub-image histograms

M(A) will be as close as possible to B. Formally speaking,

we are looking for M minimizing the following distance:

E(M) = d(M(A),B))

In the following we present an efficient method for finding

the optimal monotonic mapping M∗ under a given distance

measure d. The algorithm minimizes the (possibly weighted)

sum of distances over all histogram pairs at once using dy-

namic programming. We do not restrict the distance measure

to be l1 or l2 norms and we can deal with any additive dis-

tance. Additionally, the approach is easily extended to deal

with distances defined between two sets of cumulative his-

tograms (CDFs). Such distances are especially interesting as

they were shown to be analogous to the Earth Mover Distance

(EMD) in the 1D case [9, 8, 7].

2. MAPPING AS ROW TRANSFORMATION

Let the two sets of histograms {ai}
k
i=1

and {bi}
k
i=1

be repre-

sented by two matrices as follows: A = [a1,a2, · · · ,ak] and

B = [b1,b2, · · · ,bk]. We do not constrain the two sets to

have the same number of bins, thus, A is a n × k matrix and

B is m × k. We define an auxiliary matrix Ã to be of same

size as B. We will apply the mapping operator from A to Ã,

while aiming to minimize the distance d(Ã, B). Mapping the

tone-value of bin i in image Ia to the tone-value of bin j in

image Ib implies that the entire row i from A is mapped to

row j in Ã. Thus, color transformation applied to Ia can be

regarded as row transformations applied to A and resulting

in Ã. Observe that multiple source rows are allowed to ag-

gregate into a single destination row (many-to-one mapping),

however, splitting a source row into several target rows is not

allowed. If the mapping does not map any of the source rows

to any particular target row, this target row remains zero.

The above definition of row mapping allows us to intro-

duce the mapping operator M as a matrix multiplication:

Ã = MA

1To simplify notations we denote bin distance and histogram distance

with the same symbol d.
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Fig. 1. Left: A monotonic mapping matrix along with the

mapping results drawn with arrows. Right: A non monotonic

mapping matrix and its arrows. In this example m = n = 4,

and k = 1.

where M is an m× n matrix, whose entries are all zeros, ex-

cept for a single element in every column, whose value is 1.

We will call this element the column’s indicator. An indicator

existing at M(i, j) will accumulate the entire row j in A into

row i in Ã. We denote by πM (j) the entry number in which

the indicator appears in column j, namely, M(i, j) = 1 gives

that πM (j) = i. Since mappings are restricted to be mono-

tonic we require that

πM (j) ≥ πM (j′) for j > j′ (1)

i.e. if any row j in A is mapped to some row i in Ã, then all

rows j′ < j must be mapped to rows i′ ≤ i (see Figure 1).

Thus, matrix M can be seen as a matrix of zeros, except for

a ”seam” of indicators, crossing it from left to right in a non-

increasing manner. Denote by S the set of all monotonic ma-

trices as defined above. Our goal is to find an optimal map-

ping matrix M ∈ S that minimizes the objective function:

M∗ = arg min
M∈S

d(MA,B) (2)

3. THE GENERALIZED HISTOGRAM MATCHING

As defined above, each column of the mapping matrix M

must have exactly one indicator. Due to the monotonicity

of M , each row must satisfy the following two conditions:

First, given an indicator existing at M(i, j), no indicator can

appear neither at the lower-left sub-matrix of M(i, j), nor at

its upper-right sub-matrix (see Figure 2-c). The second con-

dition is that if there are several indicators in a certain row,

they must be consecutive, otherwise the previous condition is

violated.

The above two conditions of the mapping matrix M

allows for an efficient calculation of the optimal path of indi-

cators. The outline of the algorithm goes as follows:

1. During the process two auxiliary matrices, T and C,

are maintained. The matrices are of the same size as M . We

use T as the trace-back matrix, helping to keep track of the

optimal path of indicators, while C is used as the cost matrix

such that each cell, C(i, j), represents the best cost achiev-

able by a partial path of indicators starting at the first row and

ending at the ith row, given that the right-most indicator in



this path is at column j.

2. A row-by-row scan of matrix C is performed, starting

at row i = 1, and calculating the cost values for every entry

C(i, j). In the first row, C(1, j) is evaluated as follows:

C(1, j) = RowCost(1, 1 · · · j) and T (1, j) = 0

where RowCost is defined as:

RowCost(i, j · · · k) = d





k
∑

p=j

A(p, ·) , B(i, ·)





That is, RowCost(i, j · · · k) calculates the additional cost

of mapping rows j · · · k in A into row i in B. In matrix M

this is represented as a sequence of consecutive indicators in

M(i, j . . . k) (see Figure 2-b).

3. For the following rows, each entry C(i, j), i = 2 . . . n, j =
1 . . .m, is calculated by seeking the optimal indicator path

admissible by C(i, j). At this point we exploit the additivity

of the distance measure and calculate the optimal path using

the values in C(i − 1, ·). For each C(i, j), the optimal con-

necting indicator path starting at row i−1 and ending at row i

is sought (Figure 2-b). This search is performed by scanning

all values of C(i − 1, j′), 1 ≤ j′ ≤ j, and adding the cost

for completing the path with consecutive indicators in row i:

C(i, j) = min
j′≤j

{C(i− 1, j′) +RowCost(i, (j′ + 1) . . . j)}

In order to keep track of the optimal path, the optimal index

of j′ is stored in the trace-back matrix, at T (i, j). Since eval-

uating a row in T and C only requires data from the previous

row, C and T can be evaluated using a linear top-down and

left-to-right scan. Figure 2-b shows a situation where for

C(i, j), the optimal connecting indicator path was chosen to

initiate from (i− 1, j′). Thus, T (i, j) was associated with j′.

As a result, if location (i, j) will be included in the final path,

a sequence of j− j′ indicators will be inserted in the i’th row

of M .

4. The process terminates when all costs are filled in C.

The optimal cost over all possible paths can be determined

from C(m,n), and the optimal path of indicators is con-

structed by tracing back from T (m,n) up to the first row of

T . The transformation matrix M is then populated by filling

in indicators according to the constructed path.

Since the distance is assumed to be additive, partially op-

timizing the distance function (over only some of the rows

of M ) still leads to a global minimum of the total cost at the

end of the procedure, as performed in standard Dynamic Pro-

gramming schemes. Therefore, this algorithm can work with

any additive distance and outputs the optimal transformation

matrix.
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Fig. 2. (a) Information propagation in the C matrix. The

cell (3,4) considers the 4 cells above it as optional sources.

(b) Computing the optimal indicator path for entry (3, 4)
given the choice of (2, 1) as the source of the path, requiring

4 − 1 = 3 consecutive indicators in row 3. (c) In a mono-

tonic permutation matrix, every indicator has no indicators in

its upper-right and lower-left submatrices (shadowed). Addi-

tionally, the indicators in every row are consecutive. (d) An

example of mapping matrix M and its corresponding map-

ping matrix applying to CDF.

3.1. Runtime and Memory Complexities

As the auxiliary elements in the algorithm include T and

C, the memory consumption is linear in the mapping matrix

size, i.e. O(mn). As for running time, in the most general

case, running time is O(n2m), as the rows are scanned once

(1 . . .m), and for every row, a double loop (1 . . . n) of j and

j′ is performed.

In the next section, we show that when adopting the al-

gorithm to work on cumulated density functions, the runtime

can be further reduced to be as low as O(mn).

3.2. Using the Algorithm on Cumulative Histograms

To extend the algorithm to cumulative histograms (CDFs), let

us first define the integration matrix H to be a lower trian-

gular matrix of ones, namely: H(i, j) = 1, if i ≥ j, and 0
otherwise. To convert a set of normalized histograms (PDF

set) into cumulative histograms (CDF), one may multiply it

by H . Thus, we now change the objective function, and seek

for the optimal M∗ to satisfy:

M∗ = arg min
M∈S

d(HMA,HB) (3)

Since H is a full rank matrix we may write:

d(HMA,HB) = d(HMH−1HA,HB) = d(M̃HA,HB)

It is easy to verify that M̃ = HMH−1 is a matrix of zeros

except for a single indicator in each row with value 1. In the

ith row the indicator appears at column φ(i) where:

φ(i) = argmax
i′

{πM (i′) ≤ i}



Meaning φ(i) returns the largest column index of the indi-

cators in the first i rows in M (see example in Figure 2-d).

Therefore, we can use an algorithm similar to the one used

for histograms, but instead of working with histogram ma-

trices A and B, we work with cumulative matrices HA and

HB, respectively. Instead of searching for a sequence of in-

dicators in M , we are looking for a single indicator in each

row of M̃ , still in a non-decreasing column index. Due to the

monotonic non-decreasing property of the CDFs themselves,

and due to the fact that we only choose a single indicator, we

can run the algorithm even faster.

The cost calculation for finding C(i, j) involves two parts:

The cost caused by setting an indicator in column j, and the

cost originated from the previous row, i.e. minj′≤j C(i −
1, j′). The latter can now be calculated efficiently for each j

by a single comparison. This reduces the runtime to be linear

in the of number of elements in C, i.e O(mn).

4. RESULTS

In order to demonstrate the advantage of GHM we evaluate

the behavior of GHM at different number of histogram pairs

and compare it to a couple of common alternatives. The first

alternative is to average all histograms together and apply

the standard HM to the histogram mean. This approach is

commonly used for finding inter camera Brightness Transfer

Function (BTF) [10]. The BTF is eventually a color map used

to match images taken by two cameras. The second alterna-

tive is to compute the mapping for each pair of histograms

independently, then average the mappings. This termed Mean

Brightness Transfer Function (MBTF) [10]. The last alterna-

tive is the mapping method suggested by Porikli [11].

A source image of a static scene was taken using some

“wrong” white balancing settings. The target image had the

“correct” white balance, but the scene is slightly different. A

ground-truth image is supplied for comparison. The setup is

shown in the top row of Figure 3. We used the color his-

tograms (each color band independently) to correct the colors

of the source image, despite the changes in the scene. For

comparison, the RMSE between the mapped and the refer-

ence images were calculated. All images of the scene are

fairly aligned, so in order to get multiple histograms, the im-

age was arbitrarily divided into square patches. This provides

multiple histogram sources, and avoids the need for exact im-

age registration. Patches or regions where the images are dif-

ferent are considered outliers, and we expect our method to

properly calibrate the colors, despite those outliers.

The number of patches produced by the image division

is a parameter that can be tuned. Setting it to 1, results in a

single histogram pair, making GHM, MBTF and HM behave

almost identically. As the number of patches is increased, the

differences between the algorithms begin to emerge. Figure

3 shows a visual comparison between GHM, MBTF [10] and

Porikli’s method [11]. Note that MBTF deteriorates drasti-

cally when the number of patches increases, as small patches

usually have sparse histograms, providing less information

about the mapping outside their regions. Porikli’s method

demonstrates less sensitivity to the number of patches but,

unfortunately, it produces poor looking results. The GHM

results shows the advantage of dividing the image into mul-

tiple patches. It shows a perceptually better results when in-

creasing the number of patches. Figure 4 shows RMSE be-

tween the reference and the mapped source vs. the number

of patches. The graph is averaged over 6 sets of images, after

dividing RMSE by the HM’s result. It is demonstrated that

GHM outperforms the other tested approaches.

Source Target Ground Truth

MBTF Porikli GHM

Fig. 3. Top: source, target and reference images. The goal is

to map the colors of the source image, using the target image.

Below it are the results of MBTF, Porikli, and GHM for 6 and

192 patches (marked with a red grid).
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Fig. 4. RMSE relative to HM as a function of the number of

patches. The error was averaged over 6 different scenes, such

as shown in Figure 3.

5. CONCLUSIONS

We proposed a new algorithm, termed Generalized Histogram

Matching (GHM), to find a monotonic mapping between

two sets of images using their histograms. It extends His-

togram Matching in three ways: (1) it can handle multiple

histograms, (2) it can work with any additive distance metric

(3) it can work either with PDFs or CDFs.



6. REFERENCES

[1] Y. Hel-Or, H. Hel-Or, and E. David, “Fast template

matching in non-linear tone-mapped images,” in Com-

puter Vision (ICCV), 2011 IEEE International Confer-

ence on. IEEE, 2011, pp. 1355–1362.

[2] D.G. Lowe, “Distinctive image features from scale-

invariant keypoints,” International journal of computer

vision, vol. 60, no. 2, pp. 91–110, 2004.

[3] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded

up robust features,” Computer Vision–ECCV 2006, pp.

404–417, 2006.

[4] K.R. Castlman, Digital Image Processing, Prentice

Hall, Englewood Cliffs,NJ, 1996.

[5] R.C. Gonzalez and R.E. Woods, Digital Image Pro-

cessing (3rd Edition), Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 2006.

[6] Y. Rubner and C. Tomasi, Perceptual Metrics for Im-

age Database Navigation, Kluwer Academic Publish-

ers, Boston, Dec. 2000.

[7] M. Werman, S. Peleg, and A. Rosenfeld, “A distance

metric for multidimensional histograms,” Computer Vi-

sion, Graphics, and Image Processing, vol. 32, no. 3,

pp. 328–336, 1985.

[8] O. Pele and M. Werman, “Fast and robust earth mover’s

distances,” in Computer vision, 2009 IEEE 12th inter-

national conference on. IEEE, 2009, pp. 460–467.

[9] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth

mover’s distance as a metric for image retrieval,” IJCV,

vol. 40, 2000.

[10] M. Shah O. Javed, K. Shafique, “Appearance modeling

for tracking in multiple non-overlapping cameras,” in

IEEE ICCV, 2005, pp. 26–33.

[11] F. Porikli, “Inter-camera color calibration using cross-

correlation model,” in ICIP, 2003, pp. II:133–136.


