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The performance of multiple test procedures with respect to error control
is an old issue. Assuming that all hypotheses are true we investigate the
behavior of the expected number of type I errors (ENE) as a characteristic
of certain multiple tests controlling the familywise error rate (FWER) or
the false discovery rate (FDR) at a prespecified level. We derive explicit
formulas for the distribution of the number of false rejections as well as
for the ENE for single-step, step-down and step-up procedures based on
independent p-values. Moreover, we determine the corresponding asymptotic
distributions of the number of false rejections as well as explicit formulae
for the ENE if the number of hypotheses tends to infinity. In case of
FWER-control we mostly obtain Poisson distributions and in one case a
geometric distribution as limiting distributions; in case of FDR control we
obtain limiting distributions which are apparently not named in the literature.
Surprisingly, the ENE is bounded by a small number regardless of the
number of hypotheses under consideration. Finally, it turns out that in case of
dependent test statistics the ENE behaves completely differently compared to
the case of independent test statistics.

1. Introduction. In this paper interest is focused on the expected number of
type I errors of certain multiple test procedures ϕ = (ϕi : i ∈ I ) for a given family
of hypotheses H = {Hi : i ∈ I }, where I �= ∅ denotes an arbitrary index set and
ϕi denotes a nonrandomized test for Hi , i ∈ I . We always assume ∅ �= Hi ⊂ �

for all i ∈ I , where � denotes a parameter set referring to distributions Pϑ ,
ϑ ∈ �. Many criteria of error control for multiple tests have been discussed in
the literature. Discussions of basic concepts can be found, for example, in Miller
(1981) and Hochberg and Tamhane (1987). Nowadays most authors prefer the
(strong) familywise error rate (FWER) criterion; that is, the probability of any
type I error is bounded by a prespecified level α ∈ (0,1) irrespective of which
hypotheses are true or false. We call a test with this property a multiple level α
test. Formally, a multiple test ϕ = (ϕi : i ∈ I ) for H is said to control the multiple

Received December 2000; revised June 2001.
AMS 2000 subject classifications. Primary 62J15, 62F05; secondary 62F03, 60F99.
Key words and phrases. Asymptotic critical value behavior, Ballot theorem, Bolshev’s recursion,

Bonferroni test procedure, Dempster’s formula, DKW inequality, empirical distribution function,
familywise error rate, false discovery rate, independent p-values, Lagrange–Bürmann theorem,
multiple comparisons, multiple level, multiple test procedure, order statistics, Schur–Jabotinski
theorem, step-down test, step-up test.

220



EXPECTED TYPE I ERRORS 221

level α, if

∀ϑ ∈ �: Pϑ

( ⋃
i∈I (ϑ)

{ϕi = 1}
)

≤ α,

where I (ϑ) = {i ∈ I :ϑ ∈ Hi} denotes the index set of true hypotheses given
ϑ ∈ �.

Although Spjøtvoll (1972) developed some theory about the expected number
of type I errors this approach keeps a more or less shadowy existence in theory and
practice. In the introduction of his paper Spjøtvoll (1972) argued that the expected
number of false rejections is technically easier to work with and more instructive
than thinking in terms of the probability of at least one false rejection. However,
this paper will show that it can be a hard job to calculate the expected number of
false rejections of multiple test procedures.

There are various possibilities for defining a criterion referring to expected type
I errors. For a finite index set I with |I | = n ∈ N (say) and fixed ϑ ∈ � we define
Vn = |{1 ≤ i ≤ n :ϕi = 1 and ϑ ∈ Hi}|. Then the expected number of type I errors
(ENE for short) is defined by EϑVn while the expected (type I ) error rate (EER
for short) is defined by EϑVn/n. In the literature the ENE is called per family error
rate (PFE) and the EER is called per comparison error rate (PCE), respectively,
[cf., e.g., Hochberg and Tamhane (1987)]. It is well known that if the ENE of a
multiple test ϕ is bounded by some α ∈ (0,1) for all ϑ ∈ �, then ϕ is a multiple
level α test, too.

Recently, Benjamini and Hochberg (1995) rediscovered a nearly forgotten idea
of Eklund [cf. Eklund and Seeger (1965) or Seeger (1966)] to combine Vn and
the number of all rejected hypotheses to an error rate control criterion, that is,
control of the false discovery rate (FDR) at some level α ∈ (0,1). Letting Rn

denote the number of false hypotheses being rejected, the FDR is defined to be
the expectation of a random quantity Qn, where Qn = 0 in case of Vn + Rn = 0
and Qn = Vn/(Vn + Rn) otherwise. Since FDR-control at level α is more liberal
than controlling a multiple level α it has led to a considerable number of papers
dealing with this topic.

In this paper we are not interested in the ENE (or EER) as error control criteria
but as characteristics describing the performance of multiple level-α tests and
FDR-controlling procedures, especially when all hypotheses are assumed to be
true provided that

⋂
i∈I Hi �= ∅. For example, a large ENE of a multiple level-α

test may be a hint for good power performance. The distribution of Vn may be of
interest, too. We know that a multiple level-α test ϕ satisfies Pϑ(Vn > 0) ≤ α, but
what about Pϑ(Vn > i) for i = 1, . . . , n? Moreover, we can ask for the limiting
distribution of Vn as well as the limit of the ENE (or EER) for certain types of
tests if the number n of hypotheses tends to infinity. The aim of this paper is to
answer some of these questions in a theoretical manner. A comparison of the main
results of this paper for multiple tests based on order statistics of independent
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p-values with the few results available for multiple tests based on order statistics
of dependent test statistics yields some (sometimes surprising) general insight
into the behavior of multiple comparison procedures at all. Another possibility to
study the performance of multiple tests is to compare the critical values of various
procedures [cf., e.g., Finner and Roters (1998, 1999, 2000)].

In Section 2 we first introduce some notation and summarize some results on
the joint distribution of order statistics which will be used subsequently. Among
others, we reformulate and discuss a result on the probability that the empirical
distribution function falls below a straight line. Section 3 is concerned with
the (limiting) distribution of Vn and its expectation for single-step and stepwise
multiple test procedures based on independent p-values including a stepwise
test based on Simes’ test proposed by Hommel (1988). Depending on the test
procedure we obtain a Poisson distribution as the limiting distribution of Vn or in
one case a geometric distribution. Astonishingly, it turns out that EϑVn tends to a
finite limit approximately equal to α for small values of α if n tends to infinity.
We also discuss the question whether there exists a universal upper bound for
lim supn→∞ EϑVn, which may be of interest in itself. Note that all considerations
are carried out under the global null hypothesis

⋂
i∈I Hi . The case where some

of the hypotheses are assumed to be false is discussed at the end of Section 3.
In Section 4 we study the ENE of the FDR-controlling procedure, proposed
by Benjamini and Hochberg (1995) and earlier by Eklund, and its step-down
counterpart. Here the distribution of Vn can be identified with a certain boundary
crossing distribution appearing in connection with the one-sided Kolmogorov–
Smirnov test. The resulting limiting distributions are apparently not named in the
literature. Finally, in Section 5 we briefly discuss the behavior of the ENE (EER)
in case of dependent test statistics and relate the results for the independence and
dependence cases. Several technical proofs are deferred to the Appendix.

2. Notation and some useful tools. Let U1:n ≤ · · · ≤ Un:n denote the order
statistics of n independent and uniformly distributed random variables U1, . . . ,Un

on [0,1]. We study various multiple tests based on independent p-values under
the assumption that all hypotheses are true. Additionally, we assume that in this
situation the p-values are distributed as U1, . . . ,Un. Therefore, we define all tests
under consideration in terms of U1, . . . ,Un. Special attention is focused on so-
called single-step (SS) tests, step-down (SD) tests and step-up (SU) tests. Let γi, n,
i = 1, . . . , n, denote a sequence of critical values with 1 ≥ γ1, n ≥ · · · ≥ γn,n ≥ 0,
n ∈ N. A SS-procedure based on a critical value γn,n will be denoted by SS (γn,n)

and rejects a hypothesis Hi if Ui ≤ γn,n. SD- and SU-procedures based on
critical values γ1,n ≥ · · · ≥ γn,n will be denoted by SD (γi, n, i = 1, . . . , n) and
SU (γi, n, i = 1, . . . , n). If H1:n, . . . ,Hn:n denote the ordered hypotheses with
respect to the order of the p-values, a SD (γi, n, i = 1, . . . , n)-procedure rejects
Hi:n if and only if Uj :n ≤ γn−j+1, n for all j = 1, . . . , i, while a SU (γi, n, i =
1, . . . , n)-procedure rejects Hi:n if and only if Uj :n ≤ γn−j+1, n for some j ∈
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{i, . . . , n}. An appropriate choice of the critical values leads to a multiple level-α
test procedure. Note that a SU-procedure based on the same set of critical values as
its SD-counterpart rejects at least all hypotheses rejected by SD, possibly more. In
other words, the random variable Vn for the SU-procedure is pointwise larger than
the corresponding Vn for SD. The exact critical values for the step-down procedure
will be denoted by ᾱk and are given by ᾱk = 1 − (1 − α)1/k , k = 1, . . . , n. The
exact critical values for the step-up procedure, denoted by α1, . . . , αn, can be
determined in terms of the joint distribution function Fk (say) of the order statistics
U1:k ≤ · · · ≤ Uk:k of U1, . . . ,Uk by successively solving the system of equations
Fk(1 − α1, . . . ,1 − αk) = 1 − α, k = 1, . . . ,n. Dalal and Mallows (1992) showed
that the resulting αk’s are decreasing in k, which is important for the step-up
algorithm. An explicit formula for the αk’s is given by [cf. Rom (1990)]

αk = 1

k

(
k−1∑
i=1

αi −
k−2∑
i=1

(
k

i

)
αk−i
i+1

)
, k = 2, . . . ,n,(2.1)

with α1 = α. Another valid choice for SD- as well as SU-procedures is γi,n = α/i,
i = 1, . . . , n. In the SD-case this procedure is known as the Bonferroni–Holm test,
in the SU-case as Hochberg’s SU-test [Hochberg (1988)]. A further interesting
multiple level-α test procedure based on an idea of Simes (1986) proposed
by Hommel (1988) is the closed Simes test denoted by Simes ((m− i + 1)α/m,
1 ≤ i ≤ m ≤ n), which is more complicated than SD and SU. The Simes
((m− i + 1)α/m, 1 ≤ i ≤ m ≤ n)-procedure rejects H1:n, . . . ,Hr :n, where r is
determined as follows. Let J = {1 ≤ i ≤ n :Un−i+k:n > kα/i for all k = 1, . . . , i}.
If J �= ∅, set j ′ = supJ , otherwise j ′ = 1. Then r = sup{1 ≤ i ≤ n :Ui:n ≤ α/j ′},
where sup∅ = 0 (say). We note that the closed Simes test rejects at least all
hypotheses rejected by Hochberg’s SU-test, possibly more.

Under the assumption that 1 ≥ γ1, n ≥ · · · ≥ γn,n ≥ 0, n ∈ N, a general recursive
formula for the joint cdf Fk

n of U1:n, . . . ,Un−k:n, 0 ≤ k ≤ n− 1, is given by

Fk
n (1 − γ1, n, . . . ,1 − γn−k, n)

= 1 −
n−k−1∑
j=0

(
n

j

)
Fj(1 − γ1,n, . . . ,1 − γj,n)γ

n−j
j+1, n

(2.2)

with F 0
n = Fn and F 0

0 ≡ Fn
n ≡ 1. This is essentially Bolshev’s recursion, which

is proved in different ways in Shorack and Wellner [(1986), pages 366–367]
and in Finner, Hayter and Roters (1993). A useful formula for the evaluation of
Fn(1 − γ1,n, . . . ,1 − γn,n), which is in connection to the classical Ballot theorem
[cf. Karlin and Taylor (1981), pages 107–137] and which is used later to obtain
explicit formulas for the ENE of some specific multiple test procedures, is given in
the special case when γ1, n, . . . , γn,n decrease linearly. More specifically, we have:
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LEMMA 2.1. Let n ∈ N, a, γ ∈ R such that 0 ≤ a + γ ≤ a + nγ ≤ 1. Then

Fn(a + γ, . . . , a + nγ ) = (a + γ )
(
a + (n+ 1)γ

)n−1
.

PROOF. We only sketch the proof of this lemma since the assertion of it is well
known [cf. Rényi (1973), page 293, and Shorack and Wellner (1986), page 344,
formula (4)], although it has apparently never been stated in this utmost generality.
Rényi (1973) considers the case a +nγ = 1 and Shorack and Wellner (1986) need
the restriction a+ (n+1)γ < 1 in their proof which is essentially due to Dempster
(1959).

Similarly, but a little more generally as in Rényi (1973), we derive a recursive
formula for Pn(a, γ ) = Fn(a + γ, . . . , a + nγ ), n ∈ N, by conditioning on the
values of the smallest order statistic U1:n. An easy calculation then yields

Pn(a, γ ) =
∫ a+γ

0
Pn−1

(
a + γ − y

1 − y
,

γ

1 − y

)
n(1 − y)n−1 dy, n ≥ 2,

which immediately proves the lemma by induction on n ∈ N. �

3. Results for independent p-values. We start this section with results for
SS-, SD- and SU-procedures all keeping a multiple level α ∈ (0,1). All probability
and expectation computations are understood to be carried out under the global null
hypothesis of the underlying multiple testing problem.

For a SS (γn,n)-procedure it is obvious that

P (Vn = i) =
(
n

i

)
γ i
n,n(1 − γn,n)

n−i for i = 0, . . . ,n,(3.1)

EVn = nγn,n,(3.2)

that is, Vn follows a binomial distribution with parameters n and γn,n. For stepwise
procedures the situation is somewhat more complicated. Therefore, we present two
lemmas with formulas for the distribution and the expectation of Vn for SD- and
SU-procedures.

LEMMA 3.1. For a SD (γi, n, i = 1, . . . , n)-procedure it holds that

P (Vn ≥ i) = Fn−i
n (γn,n, . . . , γn−i+1,n),(3.3)

P (Vn = i)=
(
n

i

)
Fi(γn,n, . . . , γn−i+1,n)(1 − γn−i,n)

n−i

for i = 0, . . . , n,

(3.4)

EVn =
n∑

i=1

Fn−i
n (γn,n, . . . , γn−i+1,n).(3.5)
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In case of γi,n = ᾱi the expression (1 − γn−i+1,n)
n−i+1 on the right-hand side of

(3.4) simplifies to 1 − α for i = 1, . . . , n.

PROOF. Equation (3.3) is obvious. Equation (3.4) follows from (2.2) with
(3.3), while (3.5) follows by applying (3.3). �

Similarly, we obtain the following result for the SU-procedure.

LEMMA 3.2. For a SU (γi,n, i = 1, . . . , n)-procedure it holds that

P (Vn ≤ i) = F i
n(1 − γ1,n, . . . ,1 − γn−i,n),(3.6)

P (Vn = i) =
(
n

i

)
Fn−i(1 − γ1,n, . . . ,1 − γn−i,n)γ

i
n−i+1,n

(3.7)
for i = 0, . . . , n,

EVn =
n−1∑
i=0

(
1 − F i

n(1 − γ1,n, . . . ,1 − γn−i,n)
)
.(3.8)

In case of γi,n = αi the expression Fn−i+1(1 − γ1,n, . . . ,1 − γn−i+1,n) on the
right-hand side of (3.7) simplifies to 1 − α for i = 1, . . . , n.

The following theorem provides us with the limiting distribution of Vn as well
as with the limit of EVn for n tending to infinity.

THEOREM 3.3. Let c = − log(1 − α). For the SS (ᾱn)-, the SD (ᾱi , i = 1,
. . . , n)- and the SU (αi, i = 1, . . . , n)-procedures it holds that

lim
n→∞P (Vn = i) = exp(−c)ci/i! for i ∈ N0,(3.9)

lim
n→∞ EVn = c.(3.10)

For the SS (α/n)-, the SD (α/i, i = 1, . . . , n)- and the SU (α/i, i = 1, . . . , n)-
procedures we obtain

lim
n→∞P (Vn = i) = exp(−α)αi/i! for i ∈ N0,(3.11)

lim
n→∞ EVn = α.(3.12)

PROOF. For all γi,n ∈ {ᾱn, ᾱi , αi}, i ∈ {1, . . . , n}, n ∈ N, we have limn→∞ n×
γn−i,n = c for all i ∈ N0, and for all γi,n ∈ {α/n,α/i}, i ∈ {1, . . . , n}, n ∈ N,
we have limn→∞ nγn−i,n = α for all i ∈ N0. From this fact and (3.1) as well as
(3.2) we immediately get the result for the SS (ᾱn)-procedure. A similar argument
applies for the SS (α/n)-procedure.
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For the SD-procedures under consideration, observe that in (3.4) the term
Fi(γn,n, . . . , γn−i+1,n) can be bounded as follows: for all i ∈ {1, . . . , n}, n ∈ N,
we have γ i

n,n ≤ Fi(γn,n, . . . , γn−i+1,n) ≤ γ i
n−i+1,n; hence, for example, Fatou’s

lemma implies that

lim inf
n→∞ EVn ≥

∞∑
i=1

i lim
n→∞

(
n

i

)
γ i
n,n lim

n→∞(1 − γn−i,n)
n−i = c or = α,

according to whether the SD (ᾱi , i = 1, . . . , n)- or the SD (α/i, i = 1, . . . , n)-
procedure is considered. For this, the expectation of the Poisson distribution has to
be kept in mind. To obtain an upper bound for lim supn→∞ EVn, observe that for all
n− i ∈ N the term (1−γn−i,n)

n−i = exp(−c) or ≤ exp(−α), according to whether
the SD (ᾱi , i = 1, . . . , n)- or the SD (α/i, i = 1, . . . , n)-procedure is considered.
Moreover, in both cases we have limn→∞ nP (Vn = n) = 0, so that for computing
lim supn→∞ EVn we may neglect this last term in the sum of the formula for EVn.
But finally, the remaining term to be coped with is limn→∞

∑n−1
i=1

(n
i

)
iγ i

n−i+1,n,
which can easily be evaluated by using Lemma A.2(i) in Finner and Roters (1999)
with k = 0, r = 1 and m = 1. This yields the desired results (3.10) and (3.12).

Consider now the SU-procedures. From Finner and Roters (1994) we obtain that
limn→∞ Fn−i(1 − γ1,n, . . . ,1 − γn−i,n) = exp(−c) or = exp(−α) for all i ∈ N0,
according to whether the SU (αi, i = 1, . . . , n)- or the SU (α/i, i = 1, . . . , n)-
procedure is considered. So, as before, Fatou’s lemma yields lim infn→∞ EVn ≥ c

or ≥α, accordingly. Since in (3.7) for all n − i ∈ N the term Fn−i (1 − γ1,n, . . . ,

1 − γn−i,n) = exp(−c) for the SU (αi, i = 1, . . . , n)-procedure and Fn−i(1 −
γ1,n, . . . ,1 −γn−i,n) ≤ (1 −γn−i,n)

n−i ≤ exp(−α) for the SU (α/i, i = 1, . . . , n)-
procedure, we may repeat the argument used before to finally obtain the desired
results (3.10) and (3.12) also in the SU-cases. �

In Theorem 3.3 it is obvious from (3.9) and (3.11) that the sequence of random
variables (Vn)n∈N converges in distribution to a Poisson distributed random
variable V (say) with parameter c = − log(1 − α) (in case of exact critical
values) or with parameter α (in case of Bonferroni-adjusted critical values). It
may be somewhat surprising that in the limit there is no difference between an
SS-procedure and its SD- and SU-counterparts. Moreover, in the limit there is
no difference between SD and SU, although an SU-procedure rejects at least all
hypotheses rejected by an SD-procedure based on the same set of critical values.
However, we have to keep in mind that our results refer to the situation where all
hypotheses are assumed to be true.

We conclude this section with limiting results for the closed Simes test. In view
of the complexity of this test procedure no explicit formulas are given for EVn and
P (Vn = i).



EXPECTED TYPE I ERRORS 227

THEOREM 3.4. For the Simes (m−i+1
m

α, 1 ≤ i ≤ m ≤ n)-procedure it holds
that

lim
n→∞P (Vn = i) = exp(−α)αi/i! for i ∈ N0,(3.13)

lim
n→∞ EVn = α,(3.14)

which coincides with the results for the SS (α/n)-, the SD (α/i, i = 1, . . . , n)- and
the SU (α/i, i = 1, . . . , n)-procedures, respectively.

PROOF. Let U1:n ≤ · · · ≤ Un:n denote the ordered p-values for testing
H1, . . . ,Hn and denote by H1:n, . . . ,Hn:n the ordered hypotheses according to the
ordered p-values. The components of the closed Simes test for Hi:n are denoted by
ϕi:n and the components of Hochberg’s SU-test procedure are referred to as ϕHC

i:n ,
i = 1, . . . , n. Moreover, let Vn and V HC

n denote the ENEs of the closed Simes test
and of Hochberg’s SU-test procedure, respectively. Since ϕi:n ≥ ϕHC

i:n we obtain
P (Vn ≥ i) = P (ϕi:n = 1) ≥ P (ϕHC

i:n = 1) = P (V HC
n ≥ i) for all i = 1, . . . , n,

hence, for all i ∈ N0 and n ≥ i,

EVn − EV HC
n =

n∑
j=1

(
P (Vn ≥ j) − P (V HC

n ≥ j)
)

≥P (Vn ≥ i) − P (V HC
n ≥ i) ≥ 0.

(3.15)

But now limn→∞ EV HC
n = α [cf. (3.12) and (3.14)], which is proved below, entails

that

lim
n→∞

(
P (Vn ≥ i) − P (V HC

n ≥ i)
)= 0 for i ∈ N0,

so that with (3.11) the assertion (3.13) follows.
To prove (3.14) we first note that lim infn→∞ EVn ≥ α due to (3.15) and (3.12).

It remains to show that lim supn→∞ EVn ≤ α.
For arbitrary θ ∈ (0,1 − α) let (jn)n∈N such that limn→∞ jn/n = θ . The closed

Simes test rejects a hypothesis Hi:n at most, if the intersection hypothesis

Hi:n ∩ Hjn+1:n ∩ · · · ∩ Hn:n

is rejected by the corresponding Simes test with critical values

1

n− jn + 1
α, . . . ,

n − jn + 1

n − jn + 1
α for 1 ≤ i ≤ jn

and with critical values

1

n− jn
α, . . . ,

n− jn

n− jn
α for jn < i ≤ n, n ∈ N.
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This means that with

An
i =

{
Ui:n ≤ α

n − jn + 1

}
and Bn

r =
n⋃

j=jn+1

{
Uj :n ≤ j − jn + r

n− jn + r
α

}
,

r = 0,1,

we get {ϕi:n = 1} ⊆ An
i ∪ Bn

1 for all 1 ≤ i ≤ jn and {ϕi:n = 1} ⊆ Bn
0 ⊆ Bn

1 for all
jn < i ≤ n, which entails for all n ∈ N,

EVn =
n∑

i=1

P (ϕi:n = 1) ≤
jn∑
i=1

P (An
i ∪ Bn

1 ) +
n∑

i=jn+1

P (Bn
0 )

≤
n∑

i=1

P (An
i ) + nP (Bn

1 ).

In view of
∑n

i=1 P (Ui:n ≤ β) = nβ , β ∈ [0,1], we obtain

lim sup
n→∞

EVn ≤ lim sup
n→∞

(
n

α

n − jn + 1
+ nP (Bn

1 )

)

≤ α

1 − θ
+ lim sup

n→∞
nP (Bn

1 ).

The next step is to show limn→∞ nP (Bn
1 ) = 0. Denoting by Gn(t) =∑n

i=1 I[0,t](Ui)/n, t ∈ [0,1], n ∈ N, the empirical distribution function with re-
spect to U1, . . . ,Un and noting that

j − jn + 1

n− jn + 1
α − j

n
≤ − θ ′

1 − θ ′α = −ε(say)(3.16)

for all 0 < θ ′ < θ (∈ (0,1 − α)) and all 1 ≤ j ≤ n, where n exceeds a sufficiently
large number n0 ∈ N, we get for these n,

P (Bn
1 ) ≤ P

(
n⋃

j=1

{
Uj :n − j

n
≤ j − jn + 1

n− jn + 1
α − j

n

})

≤ P

(
n⋃

j=1

{
Uj :n − j

n
≤ −ε

})

≤ P

(
n⋃

j=1

{(|Gn(Uj :n) − Uj :n|)≥ ε

})

≤ P
(

sup
t∈[0,1]

∣∣√n
(
Gn(t) − t

)∣∣≥ √
nε
)

≤ 2 exp(−2nε2)
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by virtue of an improved version of the DKW inequality for the empirical
processes (

√
n (Gn(t) − t))t∈[0,1], n ∈ N [cf., e.g., Csörgő and Horváth (1993),

page 119]. From this, it is now evident that limn→∞ nP (Bn
1 ) = 0, which implies

lim supn→∞ EVn ≤ α/(1 − θ). Letting θ ↘ 0 completes the proof. �

REMARK 3.5. All multiple level-α test procedures considered up to now
satisfy lim supn→∞ EVn ≤ c = − log(1 − α), which is approximately equal to α

for small values of α. It may be surprising that, for almost all n, EVn is bounded
by a number slightly larger than α for common values of α. The question arises
whether there exist multiple level-α test procedures with lim supn→∞ EVn > c.
If we allow randomized multiple level-α test procedures, the following procedure
has EVn = nα. Choose ϕi ≡ α for all i = 1, . . . , n and reject Hi , i = 1, . . . , n,
if the realization of a standard uniform variate is less than or equal to α. Then
P (Vn = n) = α and P (Vn = 0) = 1 − α, hence EVn = nα. But what happens
if we only allow nonrandomized tests? To this end we consider the following
well-known procedure which we call the particular order procedure. Before the
experiment starts, fix a particular order of the hypotheses with the purpose to test
the hypotheses in this order all at level α until the first acceptance occurs. For this
procedure we obviously get P (Vn ≥ i) = αi for i = 0, . . . , n, hence the limiting
distribution of Vn is a geometric distribution with parameter α and

EVn =
n∑

i=1

P (Vn ≥ i) = α
1 − αn

1 − α
, n ∈ N,

lim
n→∞ EVn = α

1 − α
> − log(1 − α) for all α ∈ (0,1).

A nonrandomized multiple level-α test with lim supn→∞ EVn > α/(1 − α) is not
known to the authors. So one may formulate the conjecture that all members of the
class of nonrandomized multiple level-α tests based on independent p-values sat-
isfy lim supn→∞ EVn ≤ α/(1 − α) and that all tests in the class of all nonrandom-
ized multiple level α tests being permutation invariant satisfy lim supn→∞ EVn ≤
− log(1 − α). Here a multiple test ϕ = (ϕi : i = 1, . . . , n) based on p-values
(p1, . . . , pn) is said to be permutation invariant if for all permutations π it holds
that

∀ i = 1, . . . , n: ϕi(p1, . . . , pn) = ϕπ(i)(pπ(1), . . . , pπ(n)).

Finally, the question arises whether a sequence of test procedures satisfying
lim supn→∞ EVn ≤ c (such as the closed Simes test) can be improved upon.

REMARK 3.6. One may ask how the ENE of multiple level α tests behaves
if some of the hypotheses are false. Clearly, for a single-step procedure the
ENE will decrease if the number of false hypotheses increases. If, for instance,
a proportion θ of hypotheses is false and the corresponding p-values are 0
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(with probability 1), the ENE of the SS (ᾱn)-procedure tends to (1 − θ)c =
−(1 − θ) log(1 − α) for n tending to infinity. The ENE-behavior of stepwise
procedures is different. For example, in the case of the SD (ᾱi , i = 1, . . . , n)-
procedure the ENE still tends to c = − log(1 − α) if a proportion θ of hypotheses
is false and the corresponding p-values are 0 (with probability 1). However,
for stepwise procedures it is generally not clear whether the ENE in case of
some false hypotheses is smaller or larger than the ENE in the case that all
hypotheses are true because EVn is not necessarily increasing in the number of
hypotheses n. However, it is evident that for the FWER-controlling procedures
considered in this paper, the ENE for a family of n hypotheses, where k

hypotheses are false and the remaining hypotheses are true, is less than or equal
to the ENE of these procedures when the family of hypotheses is restricted
to the n − k true hypotheses. In many cases, c = − log(1 − α) seems to
be an upper bound for lim supn→∞ EϑVn for all nonrandomized permutation
invariant multiple level-α tests whether or not some of the hypotheses are
false.

4. Results for two FDR-controlling procedures. In this section we consider
the SD- and SU-procedures based on Simes’ critical values, that is, the SD ((n −
i + 1)α/n, i = 1, . . . , n)- and the SU ((n − i + 1)α/n, i = 1, . . . , n)-procedure,
respectively. Although these procedures are no longer multiple level-α tests
(except for n ≤ 2) they both control the so-called false discovery rate (FDR)
at level α [cf. Benjamini and Hochberg (1995) for the SU-case and Sarkar
(2002) for the SD-case]. The SD-FDR-controlling procedure can be viewed as
a conservative counterpart of the SU-FDR-controlling procedure. As mentioned in
the introduction, letting Rn denote the number of false hypotheses being rejected,
the FDR is defined to be the expectation of a random quantity Qn, where Qn = 0
in case of Vn + Rn = 0 and Qn = Vn/(Vn + Rn) otherwise. Since there is some
controversy about the FDR-concept, it may be of interest to study the behavior of
Vn in this case, too.

We note that Lemma 3.1 and Lemma 3.2 are still applicable for the SU-FDR-
and SD-FDR-controlling procedures. But it turns out that we can derive some more
attractive formulas. We start with two lemmas dealing with the distribution and the
expectation of Vn for a larger class of step-down and step-up procedures including
the FDR-controlling procedures mentioned before. Proofs of these results can be
found in the Appendix.

It should be mentioned that the probability parts of these lemmas are essentially
known as Dempster’s (1959) formula for the probability that the graph of the
empirical distribution function Gn of uniformly distributed random variables on
[0,1] intersects a certain straight line at a certain height for the first time [cf.
Shorack and Wellner (1986), pages 344–346]. Such barrier crossing distributions
appear for instance as helpful tools for the derivation of the distribution of the
one-sided Kolmogorov–Smirnov statistics.
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LEMMA 4.1. Let β, τ ∈ [0,1], n ∈ N, such that β ≥ (n − 1)τ and let γi, n =
β − (i − 1)τ , i = 1, . . . , n. Then we have for V SD

n (β, τ ) = sup{1 ≤ i ≤ n :Uj :n ≤
γn−j+1,n for all j = 1, . . . , i} and i = 1, . . . , n,

P
(
V SD
n (β, τ ) = i

)=
(
n

i

)(
β − (n − 1)τ

)(
β − (n− i − 1)τ

)i−1

(4.1)
× (

1 − β + (n − i − 1)τ
)n−i

,

P
(
V SD
n (β, τ ) = 0

)= (
1 − β + (n − 1)τ

)n
,(4.2)

EV SD
n (β, τ ) = n

(
β − (n − 1)τ

) n−1∑
i=0

(
n − 1

i

)
i!τ i .(4.3)

LEMMA 4.2. Let β, τ ∈ [0,1], n ∈ N, such that β ≥ (n − 1)τ and let γi, n =
β − (i − 1)τ , i = 1, . . . , n. Then we have for V SU

n (β, τ ) = sup{1 ≤ i ≤ n :Ui:n ≤
γn−i+1,n} and i = 0, . . . , n − 1,

P
(
V SU
n (β, τ ) = i

)=
(
n

i

)
(1 − β)

(
1 − β + (n − i)τ

)n−i−1

(4.4)
× (

β − (n − i)τ
)i
,

P
(
V SU
n (β, τ ) = n

)= βn,(4.5)

EV SU
n (β, τ ) = n

(
1 − (1 − β)

n−1∑
i=0

(
n − 1

i

)
i!τ i

)
(4.6)

= n

n−1∑
i=0

(
β − (n − i − 1)τ

)(n− 1

i

)
i!τ i .(4.7)

REMARK 4.3. The expectations in Lemmas 4.1 and 4.2 can also be calculated
by

EV SD
n (β, τ ) = exp(1/τ )τn−1n

(
β − (n − 1)τ

) ∫ ∞
1/τ

exp(−t)tn−1 dt,

EV SU
n (β, τ ) = n

(
1 − (1 − β) exp(1/τ )τ n−1

∫ ∞
1/τ

exp(−t)tn−1 dt

)
.

Moreover, for technical reasons we derived recursive formulas for these expecta-
tions in the proofs of Lemmas 4.1 and 4.2 [cf. (A.1) and (A.2) in the Appendix].
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We now return to the SD ((n− i +1)α/n, i =1, . . . , n)- and the SU ((n− i +1)
α/n, i = 1, . . . , n)-procedures, respectively. In the next two theorems we also have
convergence in distribution of (Vn)n∈N, but with the difference that the limiting
values limn→∞ P (Vn = i), i ∈ N0, do not evidently sum up to 1 at first sight.
However, from complex analysis one can utilize the so-called Lagrange–Bürmann
or Schur–Jabotinski theorems [cf. Henrici (1974), pages 55–59] to evaluate the
corresponding infinite series. As a matter of fact, the SD-case is explicitly treated
as an example on pages 57 and 58 in Henrici’s (1974) book.

To give a probabilistic argument for the convergence in distribution of (Vn)n∈N

in both cases we use the additional assumption that besides the possibly improper
convergence of the distributions of (Vn)n∈N [cf. Feller (1971), page 248, for the
definition of improper convergence], which is given in the two theorems below
by (4.10) and (4.14), the sequence (EV ρ

n )n∈N is bounded for some ρ > 0 [cf.
Feller (1971), pages 251 and 252], which is fulfilled below for ρ = 1 by (4.11)
and (4.15).

THEOREM 4.4. For the SD (n−i+1
n

α, i = 1, . . . , n)-procedure it holds that

P (Vn = i) =
(
n

i

)
(i + 1)i−1

(
α

n

)i(
1 − i + 1

n
α

)n−i

for i = 0, . . . , n,(4.8)

EVn = α

n−1∑
i=0

(
n− 1

i

)
i!
(
α

n

)i

for n ∈ N(4.9)

and

lim
n→∞P (Vn = i) = (i + 1)i−1

i! αi exp
(−(i + 1)α

)
for i ∈ N0,(4.10)

lim
n→∞ EVn = α

∞∑
i=0

αi = α

1 − α
.(4.11)

PROOF. Setting β = α and τ = α/n in Lemma 4.1, we immediately get (4.8)
and (4.9) from (4.1), (4.2) and (4.3), respectively. From (4.8), also (4.10) is evident.
A look at (4.9) shows that all the terms of the sum appearing on the right-hand side
of the formula for EVn are nondecreasing in n, hence one easily obtains (4.11) by
using monotone convergence. �

REMARK 4.5. (i) As mentioned before Theorem 4.4, the right-hand side
limiting values of (4.10) constitute a genuine probability distribution over N0. It
should be mentioned that the complex analysis argument for this statement already
occurs in Rényi’s (1973) paper, page 293, in connection with the convergence
in distribution of the random variables max1≤k≤n nUk:n/k, n ∈ N, but without
elaboration.
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We now state some ingredients of this argument in order to show that the
expectation of the aforementioned limiting distribution equals the value on the
right-hand side of (4.11).

It is easy to see that the radius of convergence of the power series f (x) =∑∞
i=1(i

i−1/i!)xi is r = 1/e, where e denotes Euler’s constant. Moreover, it can be
shown by using the aforementioned Schur–Jabotinski theorem that f (g(α)) = α

for all α ∈ (0,1), where g(x) = x/exp(x), x ∈ R.
Let V SD denote a random variable having the limiting distribution just

mentioned and differentiate the equation f (g(α)) = α with respect to α ∈ (0,1).
This yields 1 = f ′(g(α))g′(α) = exp(α)E(V SD + 1)g′(α) = E(V SD + 1)(1 − α),
hence EV SD = α/(1 − α).

THEOREM 4.6. For the SU (n−i+1
n

α, i = 1, . . . , n)-procedure it holds that

P (Vn = i) =
(
n

i

)
(1 − α)

(
i

n
α

)i(
1 − i

n
α

)n−i−1

for i = 0, . . . ,n,(4.12)

EVn = α

n−1∑
i=0

(
n − 1

i

)
(i + 1)!

(
α

n

)i

for n ∈ N.(4.13)

Finally,

lim
n→∞P (Vn = i) = ii

i! (1 − α)αi exp(−iα) for i ∈ N0,(4.14)

lim
n→∞ EVn = α

∞∑
i=0

(i + 1)αi = α

( ∞∑
i=0

αi

)2

= α

(1 − α)2
.(4.15)

PROOF. Setting β = α and τ = α/n in Lemma 4.2, we immediately get (4.12)
and (4.13) from (4.4), (4.5) and (4.7), respectively. From (4.12), also (4.14) is
evident. A look at (4.13) shows that, as in the SD-case, all the terms of the sum
appearing on the right-hand side of the formula for EVn are nondecreasing in n,
so, similarly as before, we obtain (4.15) by using monotone convergence. �

REMARK 4.7. Also in the SU-case the sequence (Vn)n∈N converges in
distribution to a random variable V SU with expectation α/(1 − α)2. As mentioned
before Theorem 4.4, we have already proved the convergence result by appealing
to (4.14) and (4.15). However, we want to give another proof without using (4.15).
To this end we add up the values given in (4.14). Defining h(x) =∑∞

i=1(i
i/i!)xi ,

x ∈ (−1/e,1/e), we have to prove h(g(α)) = α/(1 − α). But this is true since by
Remark 4.5 we have

α/(1 − α) = αE(V SD + 1) = h
(
g(α)

)
.
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To prove the second statement observe that

EV SU = h′(g(α))g(α)(1 − α) = h′(g(α))g′(α)α

= (h ◦ g)′(α)α = α/(1 − α)2.

At first sight the FDR-criterion seems to behave nearly as conservatively with
respect to the ENE as the FWER-criterion. Unfortunately, this is only true if all
hypotheses are true. If a fixed proportion of hypotheses is assumed to be false, the
ENE of the FDR-controlling procedures considered before may tend to infinity if
the number of hypotheses tends to infinity. Detailed results on this issue can be
found in Finner and Roters (2001b).

5. Dependent test statistics. As far as the authors know, not many (if any)
theoretical results are known on the behavior of expected type I errors of multi-
ple level-α test procedures and FDR-controlling procedures when the underlying
test statistics are dependent. A brief discussion of this issue for single-step proce-
dures based on exchangeable test statistics and range statistics can be found in a
recent paper by Finner and Roters (2001a). A comparison of step-down and step-
up procedures based on exchangeable test statistics is carried out in Finner and
Roters (1998). Some general results on FDR-control for dependent test statistics
can be found in Benjamini and Yekutieli (2001) and Sarkar (2002). Theoretical
results concerning the behavior of the ENE for stepwise procedures based on de-
pendent test statistics do not seem to exist in the literature. In view of the results of
Section 3 one might presume that the ENE of stepwise multiple level-α test proce-
dures based on dependent test statistics behaves rather similarly to their single-step
counterparts. In any case, as reported in Finner and Roters (2001b), even the ENE
of single-step procedures based on dependent test statistics seems to have a com-
pletely different behavior from the case of independent test statistics, that is, in one
case of dependent test statistics the ENE often tends to infinity when the number
of hypotheses tends to infinity. This is the case, for example, for Tukey’s range test
for all pairwise comparisons of population means as well as for Dunnett’s test for
multiple comparisons with a control when the sample means follow, for instance, a
normal distribution. Moreover, depending on the underlying distributions, the rate
of convergence may differ considerably. It is intuitively clear that a multiple level-
α test procedure for n hypotheses may have an ENE near nα if the test statistics
are almost totally dependent. Consider, for example, an exchangeable sequence of
standard normally distributed random variables (Yn)n∈N with common correlation
coefficient ρ ∈ [0,1) under the probability distribution Pρ . Moreover, for all n ∈ N

let cn be defined by Pρ(Yn ≤ cn) = 1 −α for some α ∈ (0,1) and let dn be defined
by P0(Y1 ≤ dn) = 1 − (1 − α)1/n. Then cn (dn) is the critical value of a single-
step procedure for testing Hi :µi ≤ 0 versus Ki :µi > 0, i = 1, . . . , n, in a corre-
sponding normal model with means µ1 = ϑ1 − ϑ0, . . . ,µn = ϑn − ϑ0, which typ-
ically appears in multiple comparisons with a control. To calculate limn→∞ EρVn
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for ρ ∈ (0,1), Finner and Roters (2001a) determined a sequence (m(n))n∈N

such that limn→∞ m(n)Pρ(Y1 > cn) = limn→∞ nP0(Y1 > dn) = − log(1 − α) =
c, which is given by m(n) = n1−ρ+γn with limn→∞ γn = 0 (of some
complicated rate of convergence). This results in limn→∞ EρVn/n

ρ−γn =
limn→∞ nPρ(Y1 > cn)/n

ρ−γn = limn→∞ m(n)P0(Y1 > cn) = c, which deter-
mines how fast EρVn tends to infinity for n → ∞ in case of positive correlation.
We refer the interested reader to the aforementioned paper by the authors for more
detailed results concerning single-step procedures in models with underlying ex-
changeable test statistics or range statistics. The limiting behavior of EVn for step-
wise procedures in the case of dependent test statistics is not yet clear, but it may
differ from the limiting behavior of single-step procedures. However, some of the
formulas given in Section 3 for a fixed number of n hypotheses offer the possibility
of deriving corresponding formulas in the case of exchangeable test statistics by
conditioning on a suitable variable.

Often the FWER-criterion is rejected because of its low power performance. On
the other hand, testing all hypotheses at level α increases the expected number of
type I errors. If n hypotheses are all tested at level α and all hypotheses are true,
the ENE can be nα. This may be the reason why the FDR-criterion is currently in
vogue because it seems to offer a compromise between the FWER-criterion and
testing everything at level α. However, the FDR has many undesirable properties
and difficulties, too [cf. Finner and Roters (2001b)]. However, as also illuminated
in this paper, the control of a multiple level α may have different bearings on
the expected number of false rejections in different models. Sometimes it is very
conservative (in case of independent test statistics), sometimes it may be quite
liberal (in case of dependent test statistics) with respect to the ENE, but a more
balanced method does not seem to be in sight yet.

APPENDIX

PROOF OF LEMMA 4.1. From (3.4) in Lemma 3.1 and by choosing a =
β − nτ , γ = τ in Lemma 2.1 we get for i = 1, . . . , n,

P
(
V SD
n (β, τ ) = i

)=
(
n

i

)
Fi

(
β − (n− 1)τ, . . . , β − (n − i)τ

)
× (

1 − β + (n − i − 1)τ
)n−i

=
(
n

i

)(
β − (n − 1)τ

)(
β − (n− i − 1)τ

)i−1

× (
1 − β + (n − i − 1)τ

)n−i
,
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hence (4.1). Formula (4.2) follows in the same manner by keeping in mind that
F0 ≡ 1. In order to prove (4.3), we first show the validity of the recursive formula,

EV SD
n (β, τ ) = n

(
(β − (n − 1)τ )+ τEV SD

n−1(β − τ, τ )
)

for n ≥ 2, β ≥ (n− 1)τ.
(A.1)

Since EV SD
n (β, τ ) = 0 for all n ∈ N whenever β = (n− 1)τ [cf. (4.1) and (4.2)], it

suffices to restrict attention to the case β > (n− 1)τ . In this case we have

EV SD
n (β, τ ) =

n∑
i=0

i

(
n

i

)(
β − (n− 1)τ

)(
β − (n− i − 1)τ

)i−1

× (
1 − β + (n − i − 1)τ

)n−i

= n

n∑
i=0

((
n

i

)
−
(
n− 1

i

))(
β − (n− 1)τ

)(
β − (n − i − 1)τ

)i−1

× (
1 − β + (n − i − 1)τ

)n−i

= n

n∑
i=0

(
P
(
V SD
n (β, τ ) = i

)− (
1 − β + (n − i − 1)τ

)
× P

(
V SD
n−1(β − τ, τ ) = i

))
= n

((
β − (n− 1)τ

)+ τEV SD
n−1(β − τ, τ )

)
.

Setting ai,n = EV SD
i (β− (n− i)τ, τ ), b = β− (n−1)τ , c = τ we get the recursive

formula ai,n = i(b + cai−1,n), i = 1, . . . , n, where a0,n = 0, n ∈ N, by applying
(A.1) and (4.1), (4.2) for n = 1. Since the (unique) solution of this recursion is
an,n = nb

∑n−1
i=0

(n−1
i

)
i!ci for all n ∈ N, (4.3) is proved. �

PROOF OF LEMMA 4.2. From (3.7) in Lemma 3.2 and by choosing a =
1 − β − τ , γ = τ in Lemma 2.1 we immediately get (4.4). Formula (4.5) follows
in the same manner by keeping in mind that F0 ≡ 1. In order to prove (4.6),
we first note that from the formulas already derived we can conclude that for all
i = 0, . . . , n, n ∈ N, and β ≥ (n − 1)τ it holds that

P
(
V SU
n (β, τ ) = i

)= P
(
V SD
n

(
1 − β + (n − 1)τ, τ

)= n − i
)
.

Hence, for all n ∈ N we obtain

EV SU
n (β, τ ) = n − EV SD

n

(
1 − β + (n − 1)τ, τ

)

= n

(
1 − (1 − β)

n−1∑
i=0

(
n− 1

i

)
i!τ i

)
,

which is (4.6). Simple algebraic manipulations now yield the remaining assertion
(4.7). �
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REMARK. Similarly to the SD case, one can prove the recursive formula

(1 − β + τ )EV SU
n (β, τ )=n

(
τ + (1 − β)(β − nτ)

+ (1 − β)τEV SU
n−1(β − τ, τ )

)(A.2)

for n ≥ 2, β ≥ (n− 1)τ .

Acknowledgment. We are grateful for some valuable comments by an
Associate Editor and a referee.

REFERENCES

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.

BENJAMINI, Y. and YEKUTIELI, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Ann. Statist. 29 1165–1188.
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