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ABSTRACT. In this paper we offer a multiplicity of approaches and procedures for multiple

testing problems with weights. Some rationale for incorporating weights in multiple

hypotheses testing are discussed. Various type-I error-rates and different possible formula-

tions are considered, for both the intersection hypothesis testing and the multiple hypotheses

testing problems. An optimal per family weighted error-rate controlling procedure a laÂ

Spjùtvoll (1972) is obtained. This model serves as a vehicle for demonstrating the different

implications of the approaches to weighting. Alternative approaches to that of Holm (1979)

for family-wise error-rate control with weights are discussed, one involving an alternative

procedure for family-wise error-rate control, and the other involving the control of a

weighted family-wise error-rate. Extensions and modi®cations of the procedures based on

Simes (1986) are given. These include a test of the overall intersection hypothesis with

general weights, and weighted sequentially rejective procedures for testing the individual

hypotheses. The false discovery rate controlling approach and procedure of Benjamini &

Hochberg (1995) are extended to allow for different weights.

Key words: control weights, false discovery rate, family-wise error-rate, per-family error-rate,

procedural weights, p-values

1. Introduction

Consider testing m (null) hypotheses H1, . . ., H m with corresponding p-values P1, . . ., Pm.

The intersection hypothesis test (IHT) problem is to provide a powerful á level test of the

single intersection hypothesis H0 �
Tm

i�1 Hi based on the separate tests of the m Hi (as e.g. in

meta-analysis, testing for carcinogenicity with multiple tumor sites and in testing for a

treatment effect with multiple end-points or in multiple subgroups). The aim of the multiple

hypotheses test (MHT) is to provide m individual inferences on the Hi with suitable type-I

error-rate control. If this control is desired in the strong sense, that is under all combinations

of true and false (null) hypotheses, the IHT and the MHT problems become well separated.

To discuss the error rates to control, de®ne Ri � 1 if Hi is rejected and 0 otherwise, and

de®ne Vi � 1 if a true Hi is (erroneously) rejected, and 0 otherwise. The traditional error-rates

are: (i) per-family error-rate (PFE) � E(ÓVi) which is the expected number of erroneous

rejections, and (ii) family-wise error-rate (FWE) � P(ÓVi . 0), which is the probability of

making at least one erroneous rejection.

Recently Benjamini & Hochberg (1995) introduced a third type of error-rate, which is the

expected proportion of erroneously rejected hypotheses among the rejected ones: (iii) the false

discovery rate (FDR) � E(ÓVi=ÓRi), where ÓVi=ÓRi is de®ned to be 0 when ÓRi � 0. It is

easy to see that FDR < FWE < PFE. Note also that when all hypotheses are true FDR � FWE.

In both IHT and MHT problems there is often a need for incorporating weights into the

respective procedures. For example, in meta-analysis there is often a discussion of the

differential quality of the different studies, see e.g. Rosenthal (1984, ch. 3). Holm (1979), who

®rst introduced weights into his sequentially rejective multiple hypotheses testing procedure,

described the weights as `̀ positive contants indicating the importance of the hypotheses . . .'' He

also implied that the chance of rejecting the corresponding hypothesis increases when a larger

weight is assigned to that hypothesis. A similar purpose motivates the practice of allocating
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unequally the total allowable FWE, in an allocated Bonferroni procedure, among the tested

hypotheses according to their importance. Thus each hypothesis with Pi < ái is rejected, wherePm
i�1ái � á. Another important example is in clinical trials with multiple end-pointsÐmultiple

measures of success. A common practice is to divide these end-points into primary and

secondary ones. A primary end-point is usually the more convincing measure, say mortality,

while the secondary end-points deal with (secondary) aspects of the entire range of possible

advantages (or disadvantages) of the suggested treatment.

In these problems weights re¯ecting differential attitude towards the tested hypotheses can be

incorporated in several ways.

(1) Direct modi®cation of the procedure. Such `̀ procedural weights'' may have an obvious

effect on the power of the procedure, as in an `̀ allocated Bonferroni'' procedure, or a not so

obvious effect as in the weighted Holm's procedure (see section 3).

(2) Modi®cation of the error-rate under control, by introducing weights which re¯ect the

importance of the different type I errors.

(3) Modi®cations of the power function to be maximized, which re¯ect the importance of

different rejections. This function may be overall power (i.e. probability of rejecting H0),

sum of individual powers, expected number of rejections, etc.

(4) Modi®cation of both the error-rate controlled and the power function to be maximized.

These weights will usually be related.

The weights introduced according to (2), (3), or (4) raise multiple testing problems whose

solution may differ from the ad hoc ones used in (1).

Spjùtvoll (1972) introduced a model for testing the intersection null hypothesis, where the

PFE is controlled and the expected number of rejections is maximized. (In many speci®c

problems the derived procedure is also a multiple hypotheses testing procedure). This model

will serve as a vehicle for demonstrating the different implications of taking any of the above

approaches to weighting. This will be done in the next section.

No theory seems to exist for optimal FWE controlling procedures (even) in the equal weights

case. Therefore we limit our discussion in this case to procedural weights, introducing them into

the Bonferroni type procedures which make use of the individual p-values only. In particular, in

section 3, we discuss alternative step-down procedures to that of Holm (1979) for FWE control.

Simes' (1986) procedure is more powerful than Holm's, but requires that test statistics be

independent. Extensions of Simes' procedure to IHT and MHT problems with weights are

discussed in section 4.

In section 5 we introduce weights into the FDR criterion, in accordance with approach (2),

and we give a procedure that controls the weighted FDR. All of these new procedures still carry

over the simplicity associated with their unweighted counterparts.

In this paper we offer a multiplicity of approaches and procedures for multiple testing

problems with weights. This variety is the result of recognizing that there are different reasons

for, and different implications of, incorporating weights into testing procedures of multiple

hypotheses.

2. Controlling the per-family error-rate: introducing weights into Spjùtvoll's model

In this section we denote by H0i and H1i the ith null and alternative hypotheses, respectively.

To simplify matters, suppose that under H0i the test statistic X i is distributed with density

f0i, with respect to the measure ì, while under the alternative H1i the density is f1i,

i � 1, 2, . . ., m. This is the simplest setting for which we can state Spjùtvoll's (1972) result:
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Among all tests of
T

i H0i constructed from m individual tests of H0i, and satisfying

E\i H0i
(
Pm

i�1Vi) � á, the individual likelihood ratio tests with rejection regions of the form

fxj f1i(x) . cf0i(x)g maximize E\H1i
(
Pm

i�1 Ri).

This model will serve as a vehicle for presenting the four possible ways of introducing

weights mentioned before.

1. First note that Spjùtvoll's result does not imply that each individual test is conducted at the

same level ái � á�. If all test statistics X i are similarly distributed under the H0i, and also

similarly distributed under the H1i, then the optimal procedure is to conduct a likelihood ratio

test for each hypothesis at the same level á�. Otherwise, if the distributions are different,

since c is the same constant for all m regions, the further f1i is away from f0i the smaller

ái � PH0i
fxj f1i(x) . cf0i(x)g is. So even though no weighting had been introduced in the

formulation, the optimal procedure will involve weights: each H0i should be tested at a

separate p-value ái � ùiá�.
No procedural weights with the above form can be expected to remain optimal when other

considerations, such as different costs of erroneous decisions or different prior beliefs, are

important. These considerations should therefore be introduced into the problem through the

weighting of the PFE criterion and the power function maximized. We suggest the following

general formulations.

Let ai and bi, i � 1, . . ., m be two sets of positive weights, satisfying
Pm

i�1ai �Pm
i�1bi � m.

Maximize

E\H1i

Xm

i�1

bi Ri

 !
so that

E\H0i

Xm

i�1

aiVi

 !
< á:

Theorem 1

Among all tests satisfying E\H0i
(
Pm

i�1aiVi) � á, the test de®ned by

jab
i (x) � 1 f1i(x) . c

ai

bi

f0i(x)

� c
ci

ai

f1i(x) � c
ai

bi

f0i(x)

� 0 f1i(x) , c
ai

bi

f0i(x)

maximizes E\H1i
(
Pm

i�1bi Ri).

Proof. Let ø1 � � � øm be any other such test, satisfying
Pm

i�1

�
ai f0i(x) dì(x) � á. ThenXm

i�1

bi

�
jac

i (x) f1i(x) dì(x)ÿ
Xm

i�1

bi

�
øi(x) f1i(x) dì(x)

�
Xm

i�1

�
(jac

i (x)ÿ øi(x))(bi f1i(x)ÿ aicf0i(x)) dì(x) > 0
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2. Using theorem 1 we can view the effect of introducing weights only through the error-rate

to be controlled (i.e. setting bi � 1). Here, ái � PH0i
(fxj f1i(x) . cai f0i(x)g) is decreasing in

ai. Note, however, that only when all nulls are similar and all alternatives are similar, then the

different áis given above re¯ect only the differences in the weights ai. For example, when

testing H0i: ì � 0 vs H1i: ì � ì1 with normally distributed test statistics of equal variance,

ái � 1ÿÖ A� 1

ì1

ln (ai)

� �
,

where A is determined from
Pm

i�1ái � á. Otherwise the procedural weights should re¯ect

both the weights and the distances between the nulls and the alternatives.

3. In the case where weights are introduced into the maximized power function, but not into

the error-rate, the situation is the opposite. The áis are monotonically related to the bi, and

again are `̀ proportional'' only when all testing problems are similar.

Thus using a Bonferroni procedure with reallocation of the error rate according to `̀ impor-

tance'' ®ts into this case. Contrary to intuition, in this setting the procedure treats equally the

probabilities of type I error.

4. Theorem 1 prescribes what should affect ái: ái increases with the importance of rejection

and with the distance of the alternative from the null, and it decreases when the importance of

controlling its error increases. One important consequence, though, is evident: if we have

some statement about the importance of a single hypothesis and therefore would like to treat

similarly its false rejection and the power to reject it, i.e. ai � bi, then we are back at case 1

with weights re¯ecting the relative distances of the alternatives from the nulls only.

Remark. It has been sometimes suggested that the control of the per comparison error-rate

(PCE) � E(
P

Vi)=m should be considered in IHT and MHT problems. While the above theorem

and discussion apply also to PCE controlling procedures, the mere control of PCE is inadequate

for most practical purposes. In the current framework, suppose that one of the hypotheses is

extremely important, as re¯ected by a large weight (ai). If m is large enough, a weighted PCE

controlling procedure is to always reject that hypothesis and retain all other ones, no matter what

the observed values are.

In the next two sections we mostly discuss various weighted procedures designed to control

the unweighted FWE. These procedures are not known to be optimal but some comparisons of

their appropriateness and operating characteristics are given.

3. Controlling the family-wise error-rate: on Holm's (1979) and alternative procedures

When FWE control in the strong sense is desired, Holm's (1979) weighted procedure (WHP)

can be used. Let P�i � Pi=wi and order P�(1) < � � � < P�(m). Let H�(i), w�(i), correspond to P�(i).

Reject H�(i) when

P�( j) <
áXm

k� j

w�(k)

, j � 1, . . ., i: (3:1)

Holm's unweighted procedure is the above procedure with all weights being equal (to 1). If

the weighted procedure called for rejecting Hi when P�i � Pi=wi is smaller than a constant,

then a larger wi implies greater power for rejecting that hypothesis. However, because of the
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ordering and the use of (3.1) it is not obvious that larger wi always gives a higher power to reject

the ith hypothesis in the WHP. Consider m � 2 and independent Pi � U [0, äi], äi , 1 i � 1, 2.

The unweighted Holm procedure gives higher power for rejecting H2 than a weighted Holm

procedure with weights w1 and w2, where w1 � w2 � 2, if

2ÿ 2w1 � (w2
1 ÿ 1)

á

ä1

, 0: (3:2)

When w1 , 1 and for suf®ciently small values of ä1 condition (3.2) holds.

An alternative procedure is based on the ordered Pi, P(1) < � � � < P(m). Let H(i), w(i),

correspond to P(i). Reject H(i) as long as

P( j) <
w( j)Xm

k� j

w(k)

:á, j � 1, . . ., i: (3:3)

Theorem 2

The procedure based on (3.3) controls the FWE, in the strong sense, at á.

Proof. Let I � f1, . . ., mg with cardinality c(I) be the index set of the true null hypotheses.

By letting Pj � 08 j =2 I with probability 1, the FWE is increased. Let i9 � mÿ c(I)� 1, so

P(i9) is the smallest of the p-values corresponding to the true null hypotheses. In order for some

true H(i) to be rejected, H(i9) has to be rejected ®rst. Therefore, the FWE is given by

P P(i9) <
w(i9)Xm

k�i9

w(k)

á
264

375 <
X
i2 I

P Pi <
wiX

k2 I

wk

264
375 � á

When m � 2 the WHP is preferable because its rejection regions contain those of the

weighted alternative procedure (WAP). Speci®cally, the regions of the two procedures are

identical except for the region: w2á=2 < p1 < w1á=2; w2á=2 < p2 < p1 (where w1 . w2 and

w1 � w2 � 2) where WHP rejects both hypotheses and WAP rejects none. This superiority

however does not extend to higher dimensions as the following simple example shows: take

m � 3, with wi � i for fi � 1, 2, 3g, and suppose that p1 � 0:05, p2 � 0:06, p3 � 0:30. The

WHP compares sequentially p2, p1 and p3 with á=3, á=4 and á while WAP compares

sequentially p1, p2 and p3 with á=6, 2á=5 and á, respectively. If á=3 , p2 , 2á=5 then WHP

does not reject any hypothesis but WAP rejects H1 and H2 if p1 ,á=6.

Note that whenever the ordering of the Pis is reversed to that of the wis then WHP will reject

all hypotheses rejected by WAP and may reject some more. This favourable circumstance to the

WHP is associated with situations when we give larger weights to larger deviations from null

hypothesis and the ordered p-values later obtained re¯ect good judgement on our part. In other

situations, where we are less certain of our prior knowledge one cannot expect better perform-

ance by the WHP (as the simple example above shows). However, the WHP is monotonous

(in the sense that if one or more p-values become smaller at least the same or even more

null hypotheses would be rejected) while the WAP does not satisfy this property. This can be

seen from the last example mentioned above (for m � 2): on letting P1 � w1á=2ÿ 2å,
P2 � w1á=2ÿ å, with å suf®ciently small. Then P(1) � P1 < w1=2á, P(2) � P2 < á, and the

WAP rejects both hypotheses. On the other hand, if one has p-values Q1 � w2á=2� 2å,
Q2 � w2á=2� å, then Q1 , P1, Q2 , P2 but (because Q(1) � Q2 . w2=2á) no hypothesis is

rejected. Therefore, we do not recommend the WAP.
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The above procedures control the unweighted FWE. This is a natural extension even when we

start with a `̀ weighted version'' of P[ÓVi . 0] i.e. P[ÓaiVi . 0] since the latter is equal to the

former for any set of non-zero weights. However, since the other natural de®nition of the

unweighted FWE is P[ÓVi > 1], we obtain the alternative weighted version of the FWE as

WFWE � P[ÓaiVi > 1]. Now WFWE 6� FWE and the effect of weights can be very dramatic

on the suitable procedure. Consider single-step procedures of the form:

Reject Hi when Pi < wiá:

Example. Take m � 2, a1 � å, a2 � 2ÿ å then ÓaiVi > 1, V2 � 1. It then follows that the

best procedure is to always reject H1 (by choosing w1 > 1=á) and reject H2 if P2 < á (by

choosing w2 � 1).

Another problem associated with the WFWE is that even for very different choices of the ai

the criterion may be identical, and it may differ substantially for very similar values. Therefore,

we do not recommend the WFWE.

4. Controlling the FWE for independent test statistics: weighted Simes type procedures

When the Pi are independent, Simes' (1986) test of the intersection null hypothesis H0, which

rejects H0 if for at least one j

P( j) <
j

m
á, j � 1, . . ., m, (4:1)

has an exact level á.

This test is more powerful than the Bonferroni test from which Holm's test is derived. Hence,

for independent test statistics, the sequentially rejective procedures derived from Simes' test and

the closure method of Marcus et al. (1976), such as Hochberg (1988), are more powerful than

Holm's procedure.

4.1. The intersection hypothesis test problem

When allotment of weights is desired to enhance the testing of H0 based on the Hi, then an

extension of Simes' result is required. Hochberg & Liberman (1993) provided such an

extension. Their procedure rejects H0 if for some j

P�( j) <
j

m
á, j � 1, . . ., m, (4:2)

where the P�( j) are the ordered values of Pj=w j,
Pm

j�1w j � m and max (w j) < 1=á.

Following the alternative considered in section 3, we may suggest here the following

alternative procedure to that of Hochberg & Liberman.

Reject H0 when for some j

P( j) <
w( j)

m
já: (4:3)

The problem with this suggestion is that the constraints on the wis are too strong, and

moreover, the weights depend on á. Consequently, this approach is dropped from further

consideration.

A different alternative, much simpler and with some good operating characteristics, follows.

Let
Pm

j�1w j � m and consider the procedure:
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Reject H0 when for some j

P( j) <

Xj

k�1

w(k)

m
á: (4:4)

Theorem 3

The extended Simes type test based on (4.4) controls the type I error probability at á, for

independent test statistics.

Proof. By induction. For m � 1 it is obviously true. Assume it is true for mÿ 1 and any

weights which sum up to mÿ 1 and show it implies that it is true for m. We want to show that

P P( j) .

Xj

1

w(k)

m
á j � 1, . . ., m

264
375
� 1ÿ á: (4:5)

Conditions on P(m), integrating with respect to its density, and summing over the m possi-

bilities we get

1

m

Xm

i�1

�1

p�á
P

P( j)

p
.

á

pm

Xj

1

w(k)

mÿ wi

(mÿ wi)(mÿ 1)

mÿ 1
, j � 1, . . ., mÿ 1

2664
3775

pmÿ1 dp

� 1

m

Xm

i�1

�1

p�á
P

P( j)

p
.

Xj

k�1

w9(k)

mÿ 1
á9i, j 6� m

2664
3775

pmÿ1 dp (4:6)

w9(k) � w(k)(mÿ 1)

mÿ wi

, á9i � á

p

mÿ wi

m
:

the P( j)=p, j � 1, . . ., mÿ 1 are distributed like order statistics of mÿ 1 independent U [0, 1]

variables and by the induction hypothesis the probability within the integral in (4.6) is equal to

1ÿ ái and we get

� 1

m

Xm

i�1

�1

á
1ÿ á

p

mÿ wi

m

� �
pmÿ1 dp � 1ÿ á:

A thorough investigation of the powers of this procedure and the one in Hochberg &

Liberman is not undertaken here. Note that if the weighting turned out to be successful (in the

manner discussed in section 3) i.e. the p-values observed are ordered in the same way as the

weights, then the weighted procedure introduced here gives better results than the procedure in

Hochberg & Liberman (1993). In the ®rst procedure we compare P(i) toXi

k�1

wk

i

i

m
á

while in the latter procedure we compare P(i) to

wi

i

m
á

and in this case the former values are larger.
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4.2. Multiple hypotheses testing problems

Any weighted Simes procedure can be extended in principle to a multiple hypotheses testing

procedure, by the use of the closure method. However, Hochberg and Liberman's extension

and the use of the closure does not imply that Hommel's (1988) and Hochberg's (1988)

procedures can be used with P�i s instead of Pis. Their extension as well as the extension of

Rom's (1990) procedure, however, will require special constants for each new set of wis. The

other extended Simes procedures are also not easily amenable to sequential procedures. If

mÿ i� 1 in Hochberg's original procedure is replaced by
Pm

h�iw(h) then the resulting

procedure does not control the FWE. To see this let the ®rst mÿ 1 Pis be zero with

probability 1 and Pm � U [0, 1]. FWE � P[Pm < á=wm] .á if wm , 1.

5. Weighted false discovery rate control for independent test statistics

For ease of notation assume that the ®rst 0 < m0 < m hypotheses tested are in fact true and

m1 � mÿ m0 are false. The false discovery rate (FDR) is

E(Q) � E

Xm0

i�1

Vi

Xm

i�1

Ri

0BBBB@
1CCCCA (5:1)

which is the expected proportion of the falsely rejected hypotheses among the rejected ones.

When weighting is desired, the FDR can be generalized as follows.

De®nition

Let Q(w) be

Q(w) �

Xm0

i�1

wiViXm

i�1

wi Ri

Xm

i�1

wi Ri . 0

� 0 otherwise

(5:2)

then the weighted false discovery rate (WFDR) is de®ned to be E(Q(w)).

Note that if some of the weights are 0, and the others are all equal, then the WFDR is identi-

cal to the FDR for the limited problem of testing the positively weighted hypotheses. Under

the intersection null hypothesis that all tested hypotheses are true, WFDR �WFWE. As in

Benjamini & Hochberg (1995), it is again easy to show that WFDR < WFWE, so a WFDR

controlling procedure is potentially more powerful than a WFWE controlling procedure.

Consider now the following procedure:

Let k be the largest j satisfying

P( j) <

Xj

i�1

w(i)

m
q�, (5:3)

then reject H(1) � � � H(k).

Theorem 4

For independent test statistics the procedure based on (5.3) controls the WFDR at level q�.
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The proof of theorem 4 is immediate from the following lemma proved in the appendix.

Lemma

For any 1 < m0 < m independent p-values corresponding to the true null hypotheses, any set

of values that the m1 � mÿ m0 p-values corresponding to the false null hypotheses take, any

set of weights wi > 0,
Pm

i�1wi � m, and any constant q�, the multiple testing procedure

de®ned by (5.3) satis®es the inequality

E(Q(w)jPm0�1 � p1, . . ., Pm � pm1
) <

Xm0

i�1

wi

m
q�: (5:4)

In this procedure, the weights incorporated into the error rate are suitably accumulated to

form the procedural weights. It is important to reject an hypothesis with high weight, as it

considerably increases the `̀ weight'' of the total discoveries. Yet it also increases the weight of

the errors. Essentially we are using approach (4) of incorporating the same weights into the loss

from errors (ÓwiVi) and the gain from rejections Ówi Ri as in Spjùtvoll's model. The two are

combined differently in the WFDR approach, and the procedure is also very different. One

important difference is that no change was needed in Spjùtvoll's procedure when using the same

set of weights, while a change in the procedure is needed when controlling the WFDR instead of

the FDR.

6. Conclusion

In several areas of applications there are identi®ed needs for weighted multiple comparison

analysis. Two prominent examples are meta-analysis and multiple end-points analysis in

clinical trials. In meta-analysis there is need to weight the different studies according to their

quality or sample size etc. In clinical trials with multiple end-points there is often a need to

treat various end-points such as primary vs secondary differently.

In this paper we attempted new and extended approaches to the general problem. First we

examined a variety of formulations for different error-rates. These formulations allow assign-

ments of weights in response to the speci®c requirements of the problem at hand: `̀ Although the

assignment of weights . . . is subjective, the weights allow the experimenter to include economic

and ethical considerations in the data analysis'' (Westfall & Young, 1992, ch. 6).

Second, alternative procedures were derived for some of the weighted multiple comparison

problems and formulations which have been raised. Some comparisons were made and as a

result, some procedures were eliminated.

Additional work is required on the power of the different procedures for different systems of

weights. Also, comparisons with other procedures which were published in the literature are

necessary. In particular one should consider RuÈger (1978) weighted IHT along with its

extensions to weighted MHTs. These include Hommel (1986) and a procedure for logically

related improvements of Shaffer's (1986) hypotheses using weights, which were proposed by

Bergmann & Hommel (1988).
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Appendix

Proof of the lemma. The case m � 1 being immediate, we proceed by induction assuming that

the lemma holds for any m9 < m. If m0 � 0: All null hypotheses are false, Q is identically 0,

and

E(Q(w)jP1 � p1, . . ., Pm�1 � pm�1) � 0 <

Xm0

i�1

wi

m� 1
q�: (1)

If m0 . 0: Denote by P9(m0) the p-value corresponding to the largest p-value among

P1 � � � Pm0
. Since these correspond to the true null hypotheses, P9(m0) is distributed as the

largest of m0 independent U (0, 1) random variables, and f P( m0)
( p) � m0 pm0ÿ1 for 0 < p < 1.

Let us also de®ne j0 to be the largest j, m0 � 1 < j < m� 1, satisfying

pj <

Xj

i�1

wi

m� 1
q�: (2)

Denote by p 0 the value of the right side of (2) at j0. Conditioning on P9(m0) � p,

E(Q(w)jPm0�1 � p1, . . ., Pm�1 � pm1
)
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�
� p 0

0

E(Q(w)jP9(m0) � p, Pm0�1 � p1, . . ., Pm�1 � pm1
) f P9( m0)

( p) dp (3)

�
�1

p 0

E(Q(w)jP9(m0) � p, Pm0�1 � p1, . . ., Pm�1 � pm1
) f P9( m0)

( p) dp: (4)

For p < p 0 all j0 hypotheses are rejected, and

Q(w) �

Xm0

i�1

wi

Xj0

i�1

wi

: (5)

Evaluating (3) we getXm0

i�1

wi

Xj0

i�1

wi

( p 0)m0 �

Xm0

i�1

wi

Xj0

i�1

wi

Xj0

i�1

wi

(m� 1)
q�( p 0)m0ÿ1 �

Xm0

i�1

wi

m� 1
q�( p 0)m0ÿ1: (6)

In order to evaluate (4) we further condition on the P-value at which P9(m0) is achieved

indexed by i9, 1 < i9 < m0.�1

p 0

E(Q(w)jP9(m0) � p, P9(m0) � Pi, Pm0�1 � p1, . . ., Pm�1 � pm1
) f P9( m0)

( p) dp

� 1

m0

Xm0

i9�1

�1

p 0

E(Q(w)jP9(m0) � p, P9(m0) � Pi9, Pm0�1 � p1, . . ., Pm�1 � pm1
) f P9( m0)

( p) dp

(7)

Consider each case: Pj < P9(m0) � Pi9 � p , pj�1 for j . j0, or p 0 , P9(m0) � Pi9 � p , pj0�1.

From the de®nition of j0 and p 0, no hypothesis can be rejected because of the value of p,

pj�1, . . ., pm�1. Therefore, when all hypothesesÐtrue and falseÐare considered together and

their p-values are ordered, a hypothesis H(i) can be rejected only if there exists a k,

i < k < jÿ 1, for which

P(k)

p
<

Xk

i�1

w(i)

(m� 1) p
q�: (8)

Equivalently, H(i) will be rejected if this k satis®es

P(k)

p
<

( jÿ 1)
Xk

i�1

w(i)

( jÿ 1)
Xjÿ1

i�1

w(i)

Xjÿ1

i�1

wi

(m� 1) p
q�

0BB@
1CCA �

Xk

i�1

w�(i)

( jÿ 1)

Xjÿ1

i�1

wi

(m� 1) p
q�

0BB@
1CCA

(9)

with

w�(i) �
( jÿ 1)Xjÿ1

i�1

w(i)

wi: (10)

Scand J Statist 24 Multiple hypotheses testing 417

# Board of the Foundation of the Scandinavian Journal of Statistics 1997.



These weights satisfy w�i > 0, and
P jÿ1

i�1 w�i � jÿ 1; since we conditioned on Pi9 � P9(m0) �
p, the m0 ÿ 1 other Pi=p are distributed as independent U (0, 1) random variables; pi=p for

i � m0 � 1, . . ., j are numbers between (0, 1) corresponding to false null hypotheses. Hence

using (5.3) to test the jÿ 1 � m9 < m hypotheses, of which m0 ÿ 1 are true, is equivalent to

using the procedure with the constantXjÿ1

i�1

wi

(m� 1) p
q� (11)

taking the role of q�.
Now applying the induction hypothesis we have that

E(Q(w)jP9(m0) � p, P9(m0) � Pi9, Pm0�1 � p1, . . ., Pm�1 � pm1
)

<

Xm0

i�1
i6�i9

w�i

( jÿ 1)

Xjÿ1

i�1

w�i
(m� 1) p

q�

0BB@
1CCA

(12)

�

Xm0

i�1

wi ÿ wi9

(m� 1) p
q� (13)

where (13) is derived after replacing w�i with their de®nition in (10).

The bound in (13) depends on p, but not on the segment j pj , p , pj�1 for which it was

evaluated (recall that for j0 the range for p is p 0 , p < pj0�1). It does depend on i9. Therefore,

integrating (13) over ( p 0, 1], while still conditioning on i9 we get

�1

p 0

Xm0

i�1

wi ÿ wi9

(m� 1) p
q�m0 pm0ÿ1 dp � m0

m0 ÿ 1

Xm0

i�1

wi ÿ wi9

 !
(m� 1)

q�(1ÿ ( p 0)m0ÿ1): (14)

Averaging now over i9 we get from (7) and (14)�1

p 0

E(Q(w)jPm0�1 � p1, . . ., Pm�1 � pm1
) f P9( m0)

( p) dp

� 1

m0

Xm0

i9�1

m0

m0 ÿ 1

Xm0

i�1

wi ÿ wi9

 !
(m� 1)

q�(1ÿ ( p 0)m0ÿ1) �

Xm0

i�1

wi

(m� 1)
q�(1ÿ ( p 0)m0ÿ1): (15)

Finally adding (15) and (6) we get the desired inequality (1) for m� 1.

Remark. Theorem 3 follows from this lemma as well, by letting m � m0 and recalling that in

this case FWE � FDR. Since the proof of the special case is considerably less complicated, it

was given separately.
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