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Multiple Hypothesis Testing in Microarray

Experiments

Sandrine Dudoit, Juliet Popper Shaffer, and Jennifer C. Boldrick

Abstract

DNA microarrays are a new and promising biotechnology which allows the mon-

itoring of expression levels in cells for thousands of genes simultaneously. An

important and common question in microarray experiments is the identification of

differentially expressed genes, i.e., genes whose expression levels are associated

with a response or covariate of interest. The biological question of differential

expression can be restated as a problem in multiple hypothesis testing: the simul-

taneous test for each gene of the null hypothesis of no association between the

expression levels and the responses or covariates. As a typical microarray ex-

periment measures expression levels for thousands of genes simultaneously, large

multiplicity problems are generated. This article discusses different approaches

to multiple hypothesis testing in the context of microarray experiments and com-

pares the procedures on microarray and simulated datasets.



1 Introduction

The burgeoning field of genomics has revived interest in multiple testing procedures by raising

new methodological and computational challenges. For example, microarray experiments gener-
ate large multiplicity problems in which thousands of hypotheses are tested simultaneously. DNA
microarrays are a new and promising biotechnology which allows the monitoring of expression lev-

els in cells for thousands of genes simultaneously. Microarrays are being applied increasingly in
biological and medical research to address a wide range of problems, such as the classification of

tumors or the study of host genomic responses to bacterial infections (Alizadeh et al. 2000, Alon
et al. 1999, Boldrick et al. 2002, Golub et al. 1999, Perou et al. 1999, Pollack et al. 1999, Ross

et al. 2000). An important and common question in microarray experiments is the identification of
differentially expressed genes, i.e., genes whose expression levels are associated with a response or

covariate of interest. The covariates could be either polytomous (e.g. treatment/control status, cell
type, drug type) or continuous (e.g. dose of a drug, time), and the responses could be, for example,

censored survival times or other clinical outcomes. The biological question of differential expression
can be restated as a problem in multiple hypothesis testing: the simultaneous test for each gene of
the null hypothesis of no association between the expression levels and the responses or covariates.

As a typical microarray experiment measures expression levels for thousands of genes simultane-
ously, large multiplicity problems are generated. In any testing situation, two types of errors can be

committed: a false positive, or Type I error, is committed by declaring that a gene is differentially
expressed when it isn’t, and a false negative, or Type II error, is committed when the test fails to

identify a truly differentially expressed gene. When many hypotheses are tested and each test has
a specified Type I error probability, the chance of committing some Type I errors increases, often

sharply, with the number of hypotheses. In particular, a p–value of 0.01 for one gene among a list
of several thousands will no longer correspond to a significant finding, as it is inevitable that such

small p–values will occur by chance when considering a large enough set of genes. Special problems
arising from the multiplicity aspect include defining an appropriate Type I error rate and devising

powerful multiple testing procedures which control this error rate and account for the joint distri-
bution of the test statistics. A number of recent papers have addressed the question of multiple
testing in microarray experiments (Dudoit et al. 2002, Efron et al. 2000, Golub et al. 1999, Kerr

et al. 2000, Manduchi et al. 2000, Tusher et al. 2001, Westfall et al. 2001). However, the proposed
solutions have not always been cast in the standard statistical framework.

This article discusses different approaches to multiple hypothesis testing in the context of microarray

experiments and compares the procedures on microarray and simulated datasets. Section 2 reviews
basic notions and approaches to multiple testing, and discusses the recent proposals of Efron et al.

(2000), Golub et al. (1999), and Tusher et al. (2001) within this framework. The microarray
datasets and simulation models which are used to evaluate the different multiple testing procedures

are described in Section 3 and the results of the comparison study are presented in Section 4.
Finally, Section 5 summarizes our findings and outlines open questions. Although the focus is on
the identification of differentially expressed genes in microarray experiments, some of the methods

described in this article are applicable to any large–scale multiple testing problem.
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2 Methods

2.1 Multiple testing in microarray experiments

Consider a microarray experiment which produces expression data on m genes (or variables) for n
mRNA samples, and further suppose that a response or covariate of interest is recorded for each

sample. Such data may arise, for example, from a study of gene expression in tumor biopsy speci-
mens from leukemia patients (Golub et al. 1999): in this case, the response is the tumor type and the
goal is to identify genes that are differentially expressed in the different types of tumors. The data

for sample i consist of a response or covariate yi and a gene expression profile xi = (x1i, . . . , xmi),
where xji denotes the expression level of gene j in sample i, i = 1, . . . , n, j = 1, . . . , m. The expres-

sion levels xji might be either absolute (e.g. Affymetrix oligonucleotide chips (Lockhart et al. 1996))
or relative with respect to the expression levels of a suitably defined common reference sample (e.g.

Stanford two–color cDNA microarrays (Brown & Botstein 1999, DeRisi et al. 1997)). Note that
the expression levels xji are in general highly processed data. The raw data in a microarray ex-

periment consist of image files, and important preprocessing steps include image analysis of these
scanned images and normalization (Yang, Buckley, Dudoit & Speed 2002, Yang et al. 2001, Yang,

Dudoit, Luu, Lin, Peng, Ngai & Speed 2002). The gene expression data are conventionally stored
in an m×n matrix X = (xji), with rows corresponding to genes and columns to individual mRNA
samples 1. In a typical experiment, the total number n of samples is anywhere between around

ten and a few hundreds, and the number m of genes is several thousands. The gene expression
levels, x, are continuous variables, while the response or covariate, y, could be either polytomous or

continuous as described above. Let Xj denote the random variable corresponding to the expression
level for gene j and let Y denote the response or covariate.

The biological question of differential expression can be restated as a problem in multiple hypothesis

testing: the simultaneous test for each gene j of the null hypothesis Hj of no association between
Xj and Y . A standard approach to this problem consists of two aspects: (1) computing a test

statistic Tj for each gene j, and (2) applying a multiple testing procedure to determine which hy-
potheses to reject while controlling a suitably defined Type I error rate (Dudoit et al. 2002, Efron
et al. 2000, Golub et al. 1999, Kerr et al. 2000, Manduchi et al. 2000, Tusher et al. 2001, Westfall

et al. 2001).

The univariate problem in (1) has been studied extensively in the statistical literature. In general,
the appropriate test statistic will depend on the experimental design and the type of response or

covariate. For example, for binary covariates one might consider a t– or a Mann–Whitney statistic,
for categorical responses one might use an F–statistic, and for survival data one might rely on

the score statistic for the Cox proportional hazard model. We won’t discuss the choice of statistic
any further here, except to say that for each gene j the null hypothesis Hj is tested based on a

statistic Tj, where tj denotes a realization of the random variable Tj. To simplify matters, and
unless specified otherwise, we further assume that the null Hj is rejected for large values of |Tj|
(two–sided hypotheses). Question (2) is the subject of the present article. Although multiple

testing is by no means a new subject in the statistical literature, microarray experiments present
a new and challenging area of application for multiple testing procedures because of the sheer

number of comparisons. In the remainder of this section, we review basic notions and approaches to

1Note that this gene expression data matrix is the transpose of the standard n × m design matrix. The m × n

representation was adopted in the microarray literature for display purposes, since for very large m and small n it is
easier to display an m × n matrix than an n × m matrix.

2

http://biostats.bepress.com/ucbbiostat/paper110



multiple testing, and discuss recent proposals for dealing with the multiplicity problem in microarray
experiments.

2.2 Type I error rates

Set–up. Consider the problem of testing simultaneously m null hypotheses Hj , j = 1, . . . , m,
and denote by R the number of rejected hypotheses. In the frequentist setting, the situation can

be summarized by the table below (Benjamini & Hochberg 1995). The specific m hypotheses
are assumed to be known in advance, the numbers m0 and m1 = m − m0 of true and false null
hypotheses are unknown parameters, R is an observable random variable, and S, T , U , and V

are unobservable random variables. In the microarray context, there is a null hypothesis Hj for
each gene j and rejection of Hj corresponds to declaring that gene j is differentially expressed.

In general, one would like to minimize the number V of false positives, or Type I errors, and the
number T of false negatives, or Type II errors. The standard approach in a univariate setting is to

prespecify an acceptable Type I error rate α and seek tests which minimize the Type II error rate,
i.e., maximize power, within the class of tests with Type I error rate α.

# not rejected # rejected

# true null hypotheses U V m0

# non–true null hypotheses T S m1

m− R R m

Type I error rates. When testing a single hypothesis, H1, say, the probability of a Type I error,

i.e., of rejecting the null hypothesis when it is true, is usually controlled at some designated level α.
This can be achieved by choosing a critical value cα such that pr(|T1| ≥ cα|H1) ≤ α and rejecting

H1 when |T1| ≥ cα. A variety of generalizations to the multiple testing situation are possible; the
Type I error rates described next are the most standard (Shaffer 1995).

• Per–comparison error rate (PCER). The PCER is defined as the expected value of (number
of Type I errors/number of hypotheses), i.e.,

PCER = E(V )/m.

• Per–family error rate (PFER). The PFER is defined as the expected number of Type I errors,

i.e.,
PFER = E(V ).

• Family–wise error rate (FWER). The FWER is defined as the probability of at least one

Type I error, i.e.,
FWER = pr(V ≥ 1).

3
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• False discovery rate (FDR). The FDR of Benjamini & Hochberg (1995) is the expected pro-
portion of Type I errors among the rejected hypotheses, i.e.,

FDR = E(Q),

where by definition

Q =

{
V/R, if R > 0,

0, if R = 0.

Strong vs. weak control. It is important to note that the expectations and probabilities above
are conditional on which hypotheses are true. A fundamental, yet often ignored distinction, is that
between strong and weak control of the Type I error rate. Strong control refers to control of the

Type I error rate under any combination of true and false hypotheses, i.e., any value of m0. In
contrast, weak control refers to control of the Type I error rate only when all the null hypotheses

are true, i.e., under the complete null hypothesis HC
0 = ∩m

j=1Hj with m0 = m. In other words,

for the FWER, weak control means control of pr(V ≥ 1 | HC
0 ), while strong control means control

of maxΛ0⊆{1,...,m} pr(V ≥ 1 | ∩j∈Λ0Hj). In general, weak control without any other safeguards is
unsatisfactory. In the microarray setting, where it is very unlikely that no genes are differentially

expressed, it seems particularly important to have strong control of the Type I error rate. In
the remainder of this article, unless specified otherwise, probabilities and expectations are com-

puted under arbitrary combinations of true and false hypotheses, that is, under the null hypotheses
∩j∈Λ0Hj for some arbitrary subset Λ0 ⊆ {1, . . . , m} of size m0.

Power. Within the class of multiple testing procedures that control a given Type I error rate at an
acceptable level α, one seeks procedures that maximize power, that is, minimize a suitably defined

Type II error rate. As with Type I error rates, the concept of power can be generalized in various
ways when moving from single to multiple hypothesis testing. Three common definitions of power

are: (i) the probability of rejecting at least one false null hypothesis, pr(S ≥ 1) = pr(T ≤ m1− 1);
(ii) the average probability of rejecting the false null hypotheses, E(S)/m1, or average power; and

(iii) the probability of rejecting all false null hypotheses, pr(S = m1) = pr(T = 0) (Shaffer 1995).
When the family of tests consists of pairwise mean comparisons, these quantities have been called

any–pair power, per–pair power, and all–pairs power (Ramsey 1978). In a spirit analogous to the
FDR, one could also define power as E(S/R|R > 0)pr(R > 0) = pr(R > 0)−FDR; when m = m1,

this is the any–pair power pr(S ≥ 1). One should note again that probabilities are conditional on
which null hypotheses are true and which are false.

Comparison of Type I error rates. In general, for a given multiple testing procedure, PCER ≤
FWER ≤ PFER. Thus, for a fixed criterion α for controlling the Type I error rates, the order

reverses for the number of rejections R: procedures controlling the PFER are generally more
conservative than those controlling either the FWER or the PCER, and procedures controlling the

FWER are more conservative than those controlling the PCER. To illustrate the properties of the
different Type I error rates, suppose each hypothesis Hj is tested individually at level αj and the

decision to reject or not reject this hypothesis is based solely on that test. Under the complete
null hypothesis, the PCER is simply the average of the αj and the PFER is the sum of the αj . In

contrast, the FWER is a function not of the test sizes αj alone, but involves the joint distribution
of the test statistics Tj

PCER = (α1 + . . . + αm)/m ≤ max(α1, . . . , αm) ≤ FWER ≤ PFER = α1 + . . . + αm.

4
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The FDR also depends on the joint distribution of the test statistics and, for a fixed procedure,
FDR ≤ FWER, with FDR = FWER under the complete null. The classical approach to multi-

ple testing calls for strong control of the FWER (e.g. Bonferroni procedure). The recent proposal
of Benjamini & Hochberg (1995) controls the FWER in the weak sense and can be less conserva-
tive than FWER otherwise. Procedures controlling the PCER are generally less conservative than

those controlling either the FDR or FWER, but tend to ignore the multiplicity problem altogether.
The following simple example describes the behavior of the various Type I error rates as the total

number of hypotheses m and the proportion of true hypotheses m0/m vary.

A simple example. Consider random Gaussian m–vectors with mean µ = (µ1, . . . , µm) and
identity covariance matrix Im. Suppose we wish to test simultaneously the m null hypotheses Hj :

µj = 0 against the two–sided alternatives H′
j : µj 6= 0. Given a random sample of n m–vectors from

this distribution, a simple multiple testing procedure would be to reject Hj if |X̄j| ≥ zα/2/
√

n, where

X̄j is the average of the jth coordinate for the n m–vectors, zα/2 is such that Φ(zα/2) = 1−α/2, and
Φ(·) is the standard normal cumulative distribution function. Let Rj = I(|X̄j| ≥ zα/2/

√
n), where

I(·) is the indicator function, equaling 1 if the condition in parentheses is true, and 0 otherwise,
and assume without loss of generality that the m0 true null hypotheses are H1, . . . , Hm0. Then

V =
∑m0

j=1 Rj, R =
∑m

j=1 Rj, and analytical formulae for the Type I error rates can easily be
derived as

PFER =

m0∑

j=1

γj,

PCER =

m0∑

j=1

γj/m,

FWER = 1−
m0∏

j=1

(1− γj),

FDR =

1∑

r1=0

. . .

1∑

rm=0

∑m0
j=1 rj∑m
j=1 rj

m∏

j=1

γ
rj

j (1− γj)
1−rj ,

with the FDR convention that 0/0 = 0 and γj = E(Rj) = 1−Φ(zα/2− µj
√

n) + Φ(−zα/2− µj
√

n)

denoting the chance of rejecting hypothesis Hj. In our simple example, γj = α for j = 1, . . . , m0,
and if we further assume that µj = d/

√
n for j = m0 + 1, . . . , m, then the expressions for the error

rates simplify to

PFER = m0α,

PCER = m0α/m,

FWER = 1− (1− α)m0 ,

FDR =

m1∑

s=0

m0∑

v=1

v

v + s

(
m0

v

)
αv(1− α)m0−v

(
m1

s

)
βs(1− β)m1−s,

where β = 1 − Φ(zα/2 − d) + Φ(−zα/2 − d). Note that unlike the PFER, FWER, or PCER, the

FDR depends on the distribution of the test statistics for the false null hypotheses through the
random variable S. In general, the FDR is thus more complicated to compute. Figure 1 displays

plots of the FWER, PCER, and FDR vs. the number of hypotheses m, for different proportions

5
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m0/m = 1 , 0.9, 0.8, 0.5, 0.2, 0.1 of true null hypotheses, and for α = 0.05 and d = 1. In general,
the FWER and PFER increase sharply with the number of hypotheses m, while the PCER remains

constant (the PFER is not shown on the figure because it is on a different scale). Under the complete
null m = m0, the FDR is equal to the FWER and both increase sharply with m. However, as
the proportion of true null hypotheses m0/m decreases, the FDR remains relatively stable as a

function of m and approaches the PCER. Figure 2 displays plots of the FWER, PCER, and FDR
vs. individual test size α, for different proportions m0/m of true null hypotheses, and for m = 100

and d = 1. The FWER is generally much larger than the PCER, the largest difference being under
the complete null m = m0. As the proportion of true null hypotheses decreases, the FDR becomes

closer to the PCER. Similar behavior of the error rates is displayed in Figure 3, which plots Type
I error rates vs. expected proportion of rejected hypotheses E(R)/m, for different proportions

m0/m of true null hypotheses, and for m = 100 and d = 1. These plots can be used to compare
the different Type I error rates one would expect for a given number of rejected hypotheses.

2.3 Adjusted p–values

Unadjusted p–values. Consider first a single hypothesis H1, say, and a family of tests of H1,
with level–α nested rejection regions Sα such that: (a) pr(T1 ∈ Sα|H1) = α for all α ∈ [0, 1] which

are achievable under the distribution of T1, and (b) Sα′ = ∩α≥α′Sα for all α and α′ for which
these regions are defined in (a). Rather than simply reporting rejection or not of the hypothesis, a
p–value connected with the test can be defined as p1 = inf{α : t1 ∈ Sα} (adapted from Lehmann

(1986), p. 170, to include discrete test statistics). The p–value can be thought of as the level of the
test at which the hypothesis H1 would just be rejected. The smaller the p–value p1, the stronger

the evidence against the null hypothesis H1. Rejecting H1 when p1 ≤ α provides control of the
Type I error rate at level α. In our context, the p–value can also be restated as the probability of

observing a test statistic as extreme or more extreme in the direction of rejection as the observed
one, that is, p1 = pr(|T1| ≥ |t1||H1). Extending this concept to the multiple testing situation leads

to the very useful notion of adjusted p–value.

Adjusted p–values. Let tj and pj = pr(|Tj| ≥ |tj ||Hj) denote respectively the test statistic and
p–value for hypothesis Hj (gene j), j = 1, . . . , m. Just as in the single hypothesis case, a multiple
testing procedure may be defined in terms of critical values for the test statistics or p–values of

individual hypotheses: e.g. reject Hj if |tj| ≥ cj or if pj ≤ αj, where the critical values cj and αj

are chosen to control a given Type I error rate (FWER, PCER, PFER, or FDR) at a prespecified

level α. Alternatively, the multiple testing procedure may be defined in terms of adjusted p–values.
Given any test procedure, the adjusted p–value corresponding to the test of a single hypothesis

Hj can be defined as the level of the entire test procedure at which Hj would just be rejected,
given the values of all test statistics involved (Hommel & Bernhard 1999, Shaffer 1995, Westfall &

Young 1993, Wright 1992, Yekutieli & Benjamini 1999). If interest is in controlling the FWER, the
FWER adjusted p–value for hypothesis Hj is

p̃j = inf {α ∈ [0, 1] : Hj is rejected at FWER = α} .
The corresponding random variables for unadjusted (or raw) and adjusted p–values are denoted

by Pj and P̃j , respectively. Hypothesis Hj is then rejected, i.e., gene j is declared differentially
expressed, at FWER α if p̃j ≤ α. Adjusted p–values for other Type I error rates are defined simi-

larly, that is, for the FDR, p̃j = inf {α : Hj is rejected at FDR = α} (Yekutieli & Benjamini 1999).
As in the single hypothesis case, an advantage of reporting adjusted p–values, as opposed to only

6
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rejection or not of the hypotheses, is that the level of the test does not need to be determined in
advance. Some multiple testing procedures are also most conveniently described in terms of their

adjusted p–values and these can in turn be easily determined using resampling methods (Westfall
& Young 1993).

Stepwise procedures. One usually distinguishes among three types of multiple testing pro-
cedures: single–step, step–down, and step–up procedures. In single–step procedures, equivalent

multiplicity adjustments are performed for all hypotheses, regardless of the ordering of the test
statistics or unadjusted p–values, that is, each hypothesis is evaluated using a critical value that

is independent of the results of tests of other hypotheses. Improvement in power, while preserving
Type I error rate control, may be achieved by stepwise procedures, in which rejection of a particular

hypothesis is based not only on the total number of hypotheses, but also on the outcome of the tests
of other hypotheses. In step–down procedures, the hypotheses corresponding to the most significant

test statistics (i.e., smallest unadjusted p–values or largest absolute test statistics) are considered
successively, with further tests depending on the outcomes of earlier ones. As soon as one hypoth-
esis is accepted, all remaining hypotheses are accepted. In contrast, for step–up procedures, the

hypotheses corresponding to the least significant test statistics are considered successively, again
with further tests depending on the outcomes of earlier ones. As soon as one hypothesis is re-

jected, all remaining hypotheses are rejected. The next section discusses single–step and stepwise
procedures for control of the FWER.

2.4 Control of the family–wise error rate

2.4.1 Single–step procedures

For strong control of the FWER at level α, the Bonferroni procedure, perhaps the best known in
multiple testing, rejects any hypothesis Hj with p–value less than or equal to α/m. The corre-

sponding single–step Bonferroni adjusted p–values are thus given by

p̃j = min
(
mpj, 1

)
. (1)

Control of the FWER in the strong sense follows from Boole’s inequality. Assume without loss of
generality that the true null hypotheses are Hj, for j = 1, . . . , m0, then, for Pj having a U [0, 1]

distribution under Hj

FWER = pr(V ≥ 1) = pr
(m0⋃

j=1

{P̃j ≤ α}
)
≤

m0∑

j=1

pr
(
P̃j ≤ α

)
≤

m0∑

j=1

pr
(
Pj ≤ α/m

)
= m0α/m.

Closely related to the Bonferroni procedure is the Šidák procedure which is exact under the complete
null for protecting the FWER when the unadjusted p–values are independently distributed as

U [0, 1]. The single–step Šidák adjusted p–values are given by

p̃j = 1− (1− pj)
m. (2)

However, in many situations, the test statistics and hence the p–values are correlated. This is the
case in microarray experiments, where groups of genes tend to have highly correlated expression

levels due, for example, to co–regulation. Westfall & Young (1993) propose adjusted p–values for

7
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less conservative multiple testing procedures which take into account the dependence structure
among test statistics. The single–step minP adjusted p–values are defined by

p̃j = pr
(

min
1≤l≤m

Pl ≤ pj | HC
0

)
, (3)

where HC
0 denotes the complete null hypothesis and Pl the random variable for the unadjusted

p–value of the lth hypothesis. Alternatively, one may consider procedures based on the single–step

maxT adjusted p–values which are defined in terms of the test statistics Tj themselves

p̃j = pr
(

max
1≤l≤m

|Tl| ≥ |tj||HC
0

)
. (4)

The following points should be noted regarding these four procedures.

1. If the unadjusted p–values (P1, . . . , Pm) are independent and Pj has a U [0, 1] distribution under

Hj, the minP adjusted p–values are the same as the Šidák adjusted p–values.

2. The Šidák procedure does not guarantee control of the FWER for arbitrary distributions of

the test statistics, however, it controls the FWER for test statistics that satisfy an inequality
known as Šidák’s inequality: pr(|T1| ≤ c1, . . . , |Tm| ≤ cm) ≥ ∏m

j=1 pr(|Tj| ≤ cj). This inequality,

also known as the positive orthant dependence property, was initially derived by Dunn (1958) for
(T1, . . . , Tm) having a multivariate normal distribution with mean zero and certain types of covari-

ance matrix. Šidák (1967) extended the result to arbitrary covariance matrices, and Jogdeo (1977)
showed that the inequality holds for a larger class of distributions, including the multivariate t–

and F–distributions. When the Šidák inequality holds, the minP adjusted p–values are less than
or equal to the Šidák adjusted p–values.

3. Computing the quantities in (3) using the upper bound provided by Boole’s inequality yields
the Bonferroni p–values, for unadjusted p–values Pl ∼ U [0, 1] marginally under Hl.

In other words, procedures based on the minP adjusted p–values are less conservative than the

Bonferroni or Šidák (under the Šidák inequality) procedures. In the case of independent test statis-
tics, the Šidák and minP adjustments are equivalent as discussed in item 1, above.

4. Procedures based on the maxT and minP adjusted p–values control the FWER weakly under

all conditions. Strong control of the FWER also holds under the assumption of subset pivotality
(Westfall & Young 1993, p. 42). The distribution of unadjusted p–values (P1, . . . , Pm) is said to

have the subset pivotality property if the joint distribution of the sub–vector {Pj : j ∈ Λ0} is identi-
cal under the restrictions ∩j∈Λ0Hj and HC

0 = ∩m
j=1Hj, for all subsets Λ0 of {1, . . . , m}. The subset

pivotality condition is important because it ensures that procedures based on adjusted p–values

computed under the complete null provide strong control of the FWER. A practical consequence of
this property is that resampling for computing adjusted p–values may be done conveniently under

the complete null rather than the partial null hypotheses. Without subset pivotality, multiplicity
adjustment is more complex.

5. The maxT p–values are easier to compute than the minP p–values and are equal to the minP

p–values when the test statistics Tj are identically distributed. However, the two procedures gener-
ally produce different adjusted p–values, and considerations of balance, power, and computational
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feasibility should dictate the choice between the two approaches. In the case of non–identically
distributed test statistics Tj (e.g. t–statistics with different degrees of freedom), not all tests con-

tribute equally to the maxT adjusted p–values and this can lead to unbalanced adjustments (Beran
1988, Westfall & Young 1993, p. 50). When adjusted p–values are estimated by permutation (Sec-
tion 2.6) and a large number of hypotheses are tested, procedures based on the minP p–values tend

to be more sensitive to the number of permutations and more conservative than those based on
the maxT p–values. Also, the minP p–values require more computations than the maxT p–values,

because the unadjusted p–values must be computed before considering the distribution of their
successive minima (Ge & Dudoit 2002).

2.4.2 Step–down procedures

While single–step procedures are simple to implement, they tend to be conservative for control of

the FWER. Improvement in power, while preserving strong control of the FWER, may be achieved
by step–down procedures. Below are the step–down analogs, in terms of their adjusted p–values, of

the four procedures described in the previous section. Let pr1 ≤ pr2 ≤ ... ≤ prm denote the observed
ordered unadjusted p–values, and Hr1 , Hr2, . . . , Hrm the corresponding null hypotheses. For control
of the FWER at level α, the Holm (1979) procedure proceeds as follows. Define

j∗ = min
{

j : prj
>

α

m− j + 1

}

and reject hypotheses Hrj
, for j = 1, . . . , j∗ − 1. If no such j∗ exists, reject all hypotheses. The

step–down Holm adjusted p–values are thus given by

p̃rj
= max

k=1,...,j

{
min

(
(m− k + 1) prk

, 1
)}

. (5)

Holm’s procedure is less conservative than the standard Bonferroni procedure which would multiply

the p–values by m at each step. Note that taking successive maxima of the quantities min
(
(m−k+

1) prk
, 1

)
enforces monotonicity of the adjusted p–values. That is, p̃r1 ≤ p̃r2 ≤ ... ≤ p̃rm, and one

can only reject a particular hypothesis provided all hypotheses with smaller unadjusted p–values
were rejected beforehand. Similarly, the step–down Šidák adjusted p–values are defined as

p̃rj
= max

k=1,...,j

{
1− (1− prk

)(m−k+1)
}
. (6)

The Westfall & Young (1993) step–down minP adjusted p–values are defined by

p̃rj
= max

k=1,...,j

{
pr

(
min

l∈{rk,...,rm}
Pl ≤ prk

| HC
0

)}
, (7)

and the step–down maxT adjusted p–values are defined by

p̃rj
= max

k=1,...,j

{
pr

(
max

l∈{rk,...,rm}
|Tl| ≥ |trk

| | HC
0

)}
, (8)

where |tr1 | ≥ |tr2| ≥ ... ≥ |trm| denote the observed ordered test statistics. Note that computing

the quantities in (7) under the assumption that Pl ∼ U [0, 1] and using the upper bound provided
by Boole’s inequality yields Holm’s p–values. Procedures based on the step–down minP adjusted

p–values are thus less conservative than Holm’s procedure. For a proof of the strong control of
the FWER for the maxT and minP procedures the reader is referred to Westfall & Young (1993,

Section 2.8). Step–down procedures such as the Holm procedure may be further improved by taking
into account logically related hypotheses as described in Shaffer (1986).

9
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2.4.3 Step–up procedures

In contrast to step–down procedures, step–up procedures begin with the least significant p–value,

prm, and are usually based on the following probability result of Simes (1986). Under the complete
null hypothesis HC

0 and for independent test statistics, the ordered unadjusted p–values P(1) ≤
P(2) ≤ ... ≤ P(m) satisfy

pr
(
P(j) > αj/m, ∀ j = 1, . . . , m | HC

0

)
≥ 1− α,

with equality in the continuous case. This inequality is known as the Simes inequality. In important

cases of dependent test statistics, Simes showed that the probability was larger than 1−α, however
this does not hold generally for all joint distributions.

The Hochberg (1988) procedure, based on the Simes inequality, can be viewed as a step–up modifi-
cation of Holm’s step–down procedure, since the ordered p–values are compared to the same critical

values in both procedures. For control of the FWER at level α, define

j∗ = max
{
j : prj

≤ α

m− j + 1

}

and reject hypotheses Hrj
, for j = 1, . . . , j∗. If no such j∗ exists, reject no hypothesis. The step–up

Hochberg adjusted p–values are thus given by

p̃rj
= min

k=j,...,m

{
min

(
(m− k + 1) prk

, 1
)}

. (9)

Related procedures include those of Hommel (1988) and Rom (1990). Step–up procedures have
often been found to be more powerful than their step–down counterparts; however, it is important to

keep in mind that all procedures based on the Simes inequality rely on the assumption that the result
proved under independence yields a conservative procedure for dependent tests. More research is

needed to determine circumstances in which such methods are applicable, and in particular, whether
they are applicable for the types of correlation structures encountered in microarray experiments.

Troendle (1996) proposed a permutation–based step–up multiple testing procedure which takes into
account the dependence structure among the test statistics and is related to the Westfall & Young
(1993) step–down maxT procedure.

2.5 Control of the false discovery rate

A different approach to multiple testing was proposed in 1995 by Benjamini & Hochberg. These
authors argue that, in many situations, control of the FWER can lead to unduly conservative pro-

cedures and one may be prepared to tolerate some Type I errors, provided their number is small in
comparison to the number of rejected hypotheses. These considerations led to a less conservative

approach which calls for controlling the expected proportion of Type I errors among the rejected
hypotheses – the false discovery rate, FDR. More specifically, the FDR is defined as FDR = E(Q),

where Q = V/R if R > 0, and 0 if R = 0, i.e., FDR = E(V/R | R > 0)pr(R > 0). Under
the complete null, given the definition of 0/0 = 0 when R = 0, the FDR is equal to the FWER;

procedures controlling the FDR thus also control the FWER in the weak sense. Note that earlier
references to the FDR can be found in Seeger (1968) and Sorić (1989).
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Benjamini & Hochberg (1995) derived the following step–up procedure for (strong) control of the
FDR for independent test statistics. Let pr1 ≤ pr2 ≤ ... ≤ prm denote the observed ordered

unadjusted p–values. For control of the FDR at level α define

j∗ = max
{
j : prj

≤ j

m
α
}

and reject hypotheses Hrj
, for j = 1, . . . , j∗. If no such j∗ exists, reject no hypothesis. Correspond-

ing adjusted p–values are

p̃rj
= min

k=j,...,m

{
min

(m

k
prk

, 1
)}

. (10)

Benjamini & Yekutieli (2001) proved that this procedure controls the FDR under certain depen-
dence structures (positive regression dependency). They also proposed a simple conservative modi-
fication of the procedure which controls the false discovery rate for arbitrary dependence structures.

For control of the FDR at level α, define

j∗ = max
{
j : prj

≤ j

m
∑m

j=1 1/j
α
}

and reject hypotheses Hrj
, for j = 1, . . . , j∗. If no such j∗ exists, reject no hypothesis. Correspond-

ing adjusted p–values are

p̃rj
= min

k=j,...,m

{
min

(m
∑m

j=1 1/j

k
prk

, 1
)}

. (11)

For a large number m of hypotheses, the penalty in this conservative procedure is about log m, as

compared to the Benjamini & Hochberg (1995) procedure. Note that the Benjamini & Hochberg
procedure can also be conservative, even in the independence case, as it was shown that for this

step–up procedure E(Q) ≤ m0
m α ≤ α . Until recently, most FDR controlling procedures were either

designed for independent test statistics or did not make use of the dependency structure among

the test statistics. In the spirit of the Westfall & Young (1993) resampling procedures for FWER
control, Yekutieli & Benjamini (1999) proposed new FDR controlling procedures which use resam-

pling based adjusted p–values to incorporate certain types of dependency structures among the test
statistics (the procedures assume among other things that the unadjusted p–values for the true null

hypotheses are independent of the p–values for the false null hypotheses).

In the microarray setting, where thousands of comparisons are performed simultaneously and a

fairly large number of genes are expected to be differentially expressed, FDR controlling procedures
present a promising alternative to more conservative FWER approaches. In this context, one may

be willing to bear a few false positives as long as their number is small in comparison to the number
of rejected hypotheses. The problematic definition of 0/0 = 0 is also not as important in this case.

2.6 Resampling

In many situations, the joint (and marginal) distribution of the test statistics is unknown. Re-
sampling methods (bootstrap or permutation) can be used to estimate unadjusted and adjusted

p–values while avoiding parametric assumptions about the joint distribution of the test statistics.
In the microarray setting, the joint distribution under the complete null hypothesis of the test

statistics (T1, . . . , Tm) can be estimated by permuting the columns of the gene expression data
matrix X . Permuting entire columns of this matrix creates a situation in which the response or
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covariate Y is independent of the gene expression levels, while attempting to preserve the cor-
relation structure and distributional characteristics of the gene expression levels. Depending on

the sample size n, it may be infeasible to consider all possible permutations, and in such a case
a random subset of B permutations (including the observed) may be considered. The manner in
which the responses/covariates are permuted depends on the experimental design, for example, for

a two–factor design, one should permute the levels of the factor of interest within the levels of the
other factor (see Scheffé (1959), Section 9.3, and Section 3.2.2 for an example).

Box 1. Permutation algorithm for unadjusted p–values.

For the bth permutation, b = 1, . . . , B

1. Permute the n columns of the data matrix X .

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

The permutation distribution of the test statistic Tj for hypothesis Hj , j = 1, . . . , m,
is given by the empirical distribution of tj,1, . . . , tj,B. For two–sided alternative

hypotheses, the permutation p–value for hypothesis Hj is

p∗j =

∑B
b=1 I

(
|tj,b| ≥ |tj|

)

B
,

where I(·) is the indicator function, equaling 1 if the condition in parentheses is

true, and 0 otherwise.

Permutation adjusted p–values for the Bonferroni, Šidák, Holm, and Hochberg procedures can be
obtained by replacing pj by p∗j in equations (1), (2), (5), (6), and (9). The permutation unadjusted
p–values can also be used for the FDR controlling procedures described in Section 2.5. For the

step–down maxT adjusted p–values of Westfall & Young (1993), the null distribution of successive
maxima maxl∈{rj,...,rm} |Tl| of the test statistics needs to be estimated (the single–step case is simpler

and omitted here as we only need the distribution of the maximum maxl∈{r1,...,rm} |Tl|).
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Box 2. Permutation algorithm for step–down maxT adjusted p–values
– based on Algorithms 2.8 and 4.1 in Westfall & Young (1993).

For the bth permutation, b = 1, . . . , B

1. Permute the n columns of the data matrix X .

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

3. Next, compute successive maxima of the test statistics

um,b = |trm,b|
uj,b = max

(
uj+1,b, |trj,b|

)
for j = m− 1, . . . , 1,

where rj are such that |tr1| ≥ |tr2 | ≥ ... ≥ |trm| for the original data.

The adjusted p–values are estimated by

p̃∗rj
=

∑B
b=1 I

(
uj,b ≥ |trj

|
)

B
,

with the monotonicity constraints enforced by setting

p̃∗r1
← p̃∗r1

, p̃∗rj
← max

(
p̃∗rj

, p̃∗rj−1

)
for j = 2, . . . , m.

The reader is referred to Ge & Dudoit (2002) for a fast permutation algorithm for estimating minP

adjusted p–values.

2.7 Recent proposals for microarray experiments

Efron et al. (2000), Golub et al. (1999), and Tusher et al. (2001) have recently proposed resampling

algorithms for multiple testing in microarray experiments. However, these procedures were not
presented within the standard statistical framework for multiple testing. In particular, the Type I

error rates considered were rather loosely defined, thus making it difficult to assess the properties
of the multiple testing procedures. These recent proposals are reviewed next, within the framework

introduced in Sections 2.2 and 2.3.

2.7.1 Neighborhood analysis of Golub et al.

Golub et al. (1999) were interested in identifying genes that are differentially expressed in pa-
tients with two type of leukemias, acute lymphoblastic leukemia (ALL, class 1) and acute myeloid
leukemia (AML, class 2) (the study is described in greater detail in Section 3.2.3). In their so–called

neighborhood analysis, the authors compute a test statistic tj for each gene (P (g, c) in their paper)

tj =
x̄1j − x̄2j

s1j + s2j
,

where x̄kj and skj denote respectively the average and standard deviation of the expression levels

of gene j in the class k = 1, 2 samples. This statistic is based on an ad hoc definition of correlation,
and resembles a t–statistic with an unusual standard error calculation (note 16 in Golub et al.). It
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is not pivotal, i.e., its null distribution depends on parameters of the distribution which generated
the data, and a standard two–sample t–statistic should be preferred (note that this definition of

pivotality is different from subset pivotality in Section 2.4). Statistics such as tj have been used in
meta–analysis to measure effect sizes (National Reading Panel 1999).

Golub et al. use the term “neighborhood” to refer to sets of genes with test statistics Tj greater
in absolute value than a given critical value c, that is, sets of rejected hypotheses {j : Tj ≥ c} or

{j : Tj ≤ −c} (these sets are denoted by N1(c, r) and N2(c, r) in note 16 of Golub et al.). The
ALL/AML labels were permuted B = 400 times to estimate the complete null distribution of the

numbers R(c) = V (c) =
∑m

j=1 I(Tj ≥ c) of false positives for different critical values c (similarly for
the other tail, with Tj ≤ −c). Figure 2 in Golub et al. contains plots of the observed R(c) = r(c)

and permutation quantiles of R(c) against critical values c for one–sided tests 2. A critical value c
is then chosen so that the chance of exceeding the observed r(c) under the complete null is equal

to a prespecified level α, that is,

G(c) = pr
(
R(c) ≥ r(c) | HC

0

)
= α. (12)

Golub et al. provide no further guidelines for selecting the critical value c or discussion of the Type

I error control of their procedure. Like some PFER, PCER, or FWER controlling procedures,
the neighborhood analysis considers the complete null distribution of the number of Type I errors

V (c) = R(c), however, instead of controlling E(V (c)), E(V (c))/m, or pr(V (c) ≥ 1), it seeks to
control a different quantity, pr(R(c) ≥ r(c)|HC

0 ), which can be thought of as a p–value under

HC
0 for the number of rejected hypotheses R(c) and is thus a random variable. For simplicity,

consider continuous test statistics and two–sided hypotheses. Then, conditional on the observed

ordered absolute test statistics, |t|(1) ≥ . . . ≥ |t|(m), the function G(c) is left–continuous, with
discontinuities at |t|(j), j = 1, . . . , m, that is,

G(c) =





pr
(
R(c) ≥ m | HC

0

)

pr
(
R(c) ≥ j | HC

0

)

pr
(
R(c) ≥ 0 | HC

0

) =





pr
(
|T |(m) ≥ c | HC

0

)
, if c ≤ |t|(m),

pr
(
|T |(j) ≥ c | HC

0

)
, if |t|(j+1) < c ≤ |t|(j), 1 ≤ j ≤ m− 1,

1, if |t|(1) < c.

Here, |T |(j) denote the ordered absolute test statistics, |T |(1) ≥ . . . ≥ |T |(m), and, in principle,
different realizations of |T |(j) could correspond to different hypotheses. Although G(c) is decreas-

ing in c within intervals (|t|(j+1), |t|(j)], it is not in general decreasing overall, and there may be
several values of c with G(c) = α. Hence, one must decide on an appropriate procedure for se-

lecting the critical value c. Two natural choices are given by stepwise procedures, as described next.

Step–down procedure. A step–down procedure would be to let c = |t|(j∗−1), where

j∗ = min
{

j : G(|t|(j)) > α
}

= min
{
j : pr

(
|T |(j) ≥ |t|(j) | HC

0

)
> α

}
,

and reject hypotheses H(j), for j = 1, . . . , j∗ − 1. If no such j∗ exists, reject all hypotheses. The
corresponding adjusted p–values are

p̃(j) = max
k=1,...,j

{
pr

(
|T |(k) ≥ |t|(k) | HC

0

)}
. (13)

2We are aware that our notation can lead to confusion when compared with that of Golub et al. We chose to
follow the notation of Sections 2.2 and 2.3 to allow easy comparison with other multiple testing procedures described
in the present article. For comparison with Golub et al. note that we use Tj to denote P (g, c), c to denote r, and
r(c) to denote the realization of R(c), that is, |N1(c, r)| + |N2(c, r)|.
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Hence, the step–down adjusted p–values for the neighborhood analysis of Golub et al. are based on
the p–values pr

(
|T |(j) ≥ |t|(j) | HC

0

)
for the order statistics. Note that, unlike the Westfall & Young

maxT procedure, where the adjusted p–values are based on pr
(
maxl∈{rj,...,rm} |Tl| ≥ |trj

| | HC
0

)
for

the fixed ordering {rj} of the observed test statistics, the maxima in equation (13) could be taken

over different sets of hypotheses for different realizations of Tj. Because of this difference, it is
unlikely that the step–down version of neighborhood analysis provides strong control of any Type

I error rate, as the subset pivotality condition is not satisfied. A straightforward argument shows
that the step–down procedure does, however, control the FWER weakly.

Step–up procedure. The corresponding step–up procedure would be to let c = |t|(j∗), where

j∗ = max
{

j : G(|t|(j)) ≤ α
}

= max
{
j : pr

(
|T |(j) ≥ |t|(j) | HC

0

)
≤ α

}
,

and reject hypotheses H(j), for j = 1, . . . , j∗. If no such j∗ exists, reject no hypothesis. The
corresponding adjusted p–values are

p̃(j) = min
k=j,...,m

{
pr

(
|T |(k) ≥ |t|(k) | HC

0

)}
. (14)

Again, it is unlikely that this procedure provides strong control of any Type I error rate, as the sub-

set pivotality condition is not met. Furthermore, because of the step–up nature of the procedure and
the non–monotonicity of the function G(c), the FWER is not even controlled weakly. In this step–
up procedure, hypothesis H(j) is rejected at nominal level α whenever pr

(
|T |(k) ≥ |t|(k) | HC

0

)
≤ α

for some k ≥ j, thus each hypothesis is given several chances at rejection.

Figures 4 and 5 display plots of the observed number of rejected hypotheses r(c) and 95th permu-
tation quantile of R(c) against the critical value c for data simulated from a model described in

Table 3. Also shown are plots of the “Type I error rate” G(c) vs. c. These figures illustrate the
non–monotonicity of G(c) and the possibility of having several values of c with G(c) = α. The

plots of the step–down and step–up adjusted p–values demonstrate the importance of selecting the
proper c in the case of several “crossings” of the observed r(c) with quantiles of R(c). For a fixed

criterion α = 0.05, the step–up procedure starts from the left and looks for the first time G(c)
dips below α = 0.05, while the step–down procedures starts from the right and looks for the first
time G(c) rises above α = 0.05. When G(c) is monotone in c, the two procedures should yield

the same results, otherwise, the step–up procedure generally produces a larger number of rejected
hypotheses, but does not provide weak control of the FWER.

As a final remark, note that the number of permutations B = 400 used in Golub et al. (1999) is

probably not large enough for reporting 99th quantiles in Figure 2. A better plot for Figure 2 of
Golub et al. might be of the error rate G(c) = pr(R(c) ≥ r(c) | HC

0 ) vs. the critical values c, as

this does not require a prespecified level α.

2.7.2 Significance Analysis of Microarrays (SAM) of Efron et al. and Tusher et al.

We consider two variants of the Significance Analysis of Microarrays or SAM multiple testing
procedure, the original version in Efron et al. (2000) and the more recent Tusher et al. (2001)
and Chu et al. (2000) version. Note that these manuscripts also address the question of choosing

appropriate test statistics for different types of responses and covariates. Here, we focus only on
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the proposed methods for dealing with the multiplicity problem and assume that a suitable test
statistic is computed for each gene. The two SAM procedures are described next.

1. Compute a test statistic tj for each gene j and define order statistics t(j) such that t(1) ≥
t(2) ≥ . . .≥ t(m)

3.

2. Perform B permutations of the responses/covariates y1, . . . , yn. For each permutation b com-
pute the test statistics tj,b and the corresponding order statistics t(1),b ≥ t(2),b ≥ . . . ≥ t(m),b.

Note that t(j),b may correspond to a different gene than t(j).

3. From the B permutations, estimate the expected value (under the complete null) of the order
statistics by t̄(j) = (1/B)

∑
b t(j),b.

4. Form a Quantile–Quantile plot (so–called “SAM plot”) of the observed t(j) vs. the expected
t̄(j).

5. – Efron et al. For a fixed threshold ∆, genes with |t(j)−t̄(j)| ≥ ∆ are declared “significant”,

i.e., the corresponding hypotheses H(j) are rejected.

– Tusher et al. For a fixed threshold ∆, let j0 = max{j : t̄(j) ≥ 0}, j1 = max{j ≤ j0 :
t(j) − t̄(j) ≥ ∆}, and j2 = min{j > j0 : t(j) − t̄(j) ≤ −∆} 4. All genes with j ≤ j1 are

called “significant positive” and all genes with j ≥ j2 are called “significant negative”.
Define the upper cut–point cutup(∆) = min{t(j) : j ≤ j1} = t(j1) and the lower cut–

point cutlow(∆) = max{t(j) : j ≥ j2} = t(j2). If no such j1 (j2) exists, set cutup(∆) =∞
(cutlow(∆) = −∞).

6. – Efron et al. For a given threshold ∆, the expected number of false positives is estimated

by applying step 5 to each of the B permuted datasets. That is, for each permutation b,
compute the number of genes with |t(j),b− t̄(j),b| ≥ ∆, where t̄(j),b =

∑
b′ 6=b t(j),b′/(B−1)

is the average of the order statistics excluding the bth permutation, and average this
number over permutations.

– Tusher et al. For a given threshold ∆, the expected number of false positives is esti-
mated by computing for each of the B permutations the number of genes with tj,b above

cutup(∆) or below cutlow(∆), and averaging this number over permutations.

7. A threshold ∆ is chosen to control the expected number of false positives, PFER, under the
complete null, at an acceptable level.

Both SAM procedures return for each value of the threshold ∆ the following quantities: the number

of rejected hypotheses

Refron(∆) =

m∑

j=1

I
(
|T(j) − t̄(j)| ≥ ∆

)
,

Rtusher(∆) =

m∑

j=1

(
I
(
Tj ≥ cutup(∆)

)
+ I

(
Tj ≤ cutlow(∆)

))
= j1 + m− j2 + 1,

3The notation for the ordered test statistics is different here than in Efron et al. (2000) and Tusher et al. (2001)
to be consistent with previous notation whereby we set t(1) ≥ t(2) ≥ . . . ≥ t(m) and p(1) ≤ p(2) ≤ . . . ≤ p(m).

4This is our interpretation of the description in the SAM manual (Chu et al. 2000): “For a fixed threshold ∆,
starting at the origin, and moving up to the right find the first i = i1 such that d(i) − d̄(i) ≥ ∆”. That is, we take the
“origin” to be given by the index j0.
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an estimate of the expected number of false positives, PFER, under the complete null

̂PFER
0

efron(∆) =
1

B

B∑

b=1

m∑

j=1

I
(
|t(j),b − t̄(j),b| ≥ ∆

)
,

̂PFER
0

tusher(∆) =
1

B

B∑

b=1

m∑

j=1

(
I
(
tj,b ≥ cutup(∆)

)
+ I

(
tj,b ≤ cutlow(∆)

))
,

and a “false discovery rate”

F̂DR
0

efron(∆) = ̂PFER
0

efron(∆)/Refron(∆),

F̂DR
0

tusher(∆) = ̂PFER
0

tusher(∆)/Rtusher(∆).

At first glance, there does not seem to be a big difference between the two versions of SAM. Both
procedures should reject the same sets of hypotheses (genes) for a given value of the threshold ∆,

if |t(j) − t̄(j)| ≥ ∆ whenever j ≤ j1 or j ≥ j2, that is, whenever t(j) − t̄(j) is monotone in j. A
fundamental difference exists, however, in the estimation of the expected number of Type I errors,
PFER = E(V |HC

0 ), which leads to the choice of ∆ in each version. In Efron et al., the PFER is

estimated by applying exactly the same steps to the original and permuted data, i.e., the PFER is
estimated by counting the number of genes with order statistics at least ∆ away from the expected

order statistics. In contrast, Tusher et al. compute order statistics only for the original data to
obtain global cut–offs for the test statistics. These cut–offs are actually random variables, as they

depend on the observed test statistics. In the permutation, the cut–offs are kept fixed and the
PFER is estimated by counting the number of genes with test statistics above/below these global

cut–offs. Figure 6 gives a graphical representation of the two variants: in the Quantile–Quantile
plot of the test statistics, the Efron cut–offs are parallel to the identity line and the Tusher cut–offs

are horizontal lines. For a fixed threshold ∆, the two procedures produce different estimates of the
PFER. Next, we derive adjusted p–values for the Efron et al. and Tusher et al. procedures. For
simplicity, it is assumed that the test statistics are continuous and hence that there are no ties.

Also, rather than working with the PFER, we work with the PCER, which is simply the PFER
divided by the total number of hypotheses and is a number between 0 and 1.

Adjusted p–values for Efron et al. SAM procedure. For the Efron et al. procedure, let

PCER0
efron(∆) = E(Vefron(∆) | HC

0 )/m =
∑m

j=1 pr
(
|T(j)− t̄(j)| ≥ ∆ | HC

0

)
/m denote the expected

proportion of false positives under the complete null for a given threshold ∆. Here, t̄(j) is taken to

be a fixed estimate of E(T(j)|HC
0 ). One may then express the procedure in terms of the following

adjusted p–values

p̃(j) = PCER0
efron(|t(j) − t̄(j)|), (15)

which can be estimated by permutation. Rejection of H(j) for p̃(j) ≤ α controls the PCER at level
α in the weak sense. Since the Efron et al. procedure is based on the distribution of the order

statistics T(j) under the complete null, the subset pivotality condition of Westfall & Young (1993)
does not hold. Note that the adjusted p–values p̃(j) are not necessarily monotone in j, as the

differences |t(j) − t̄(j)| are not necessarily monotone. Thus, a test statistic Ti could possibly have
a smaller adjusted p–value than a more “extreme” test statistic Tj with |Tj| ≥ |Ti|. A stepwise

17

Hosted by The Berkeley Electronic Press



version of the Efron et al. procedure could be devised to deal with this feature.

Adjusted p–values for Tusher et al. SAM procedure. Similarly, for the Tusher et al.

procedure, let PCER0
tusher(∆) = E(Vtusher(∆) | HC

0 )/m =
∑m

j=1

(
pr

(
Tj ≥ cutup(∆) | HC

0

)
+

pr
(
Tj ≤ cutlow(∆) | HC

0

))
/m denote the expected proportion of false positives under the complete

null for a given threshold ∆. One may then express the procedure in terms of the following adjusted

p–values

p̃(j) = PCER0
tusher(∆(j)), (16)

where

∆(j) =

{
max{t(k) − t̄(k) : j ≤ k ≤ j0}, if j ≤ j0

max{t̄(k) − t(k) : j0 < k ≤ j}, if j > j0

for j0 = max{j : t̄(j) ≥ 0}. Due to the possibility that t(k) − t̄(k) < 0 for some k ≤ j0 or

t̄(k) − t(k) < 0 for some k > j0, it may happen that ∆(j) < 0 (this problem is not addressed in
Tusher et al.). In such cases, the null H(j) is never rejected and we define p̃(j) = 1. Rejection of

H(j) for p̃(j) ≤ α controls the PCER at level α in the strong sense. Note that the rejection regions
S∆ = (−∞, cutlow(∆)]∪ [cutup(∆),∞) are nested, that is, S∆′ ⊆ S∆ for ∆′ ≥ ∆. Furthermore, the
∆(j)’s are monotone in j in each of the tails, thus the adjusted p–values are monotone in j for each

tail (unlike the p–values for the Efron et al. procedure). The p–values are however not symmetric,
as t(j) = t and t(j) = −t could correspond to different ∆(j) and cut–offs (cutlow(∆(j)), cutup(∆(j))).

Both SAM procedures thus aim to control the PFER (or PCER), but the Efron et al. procedure

only controls this error rate in the weak sense. The only difference between the Tusher et al. version
of SAM and standard procedures which reject the null Hj for |tj| ≥ c is in the use of asymmetric

critical values chosen from the Quantile–Quantile plot (see Braver (1975) for the use of asymmetric
critical values). Otherwise, SAM does not provide any new definition of Type I error rate nor

any new procedure for controlling this error rate. In summary, the SAM procedure in Efron et al.
amounts to rejecting H(j) whenever |t(j)− t̄(j)| ≥ ∆, where ∆ is chosen to control the PFER weakly
at a given level. By contrast, the SAM procedure in Tusher et al. rejects Hj whenever tj ≥ cutup(∆)

or tj ≤ cutlow(∆), where cutlow(∆) and cutup(∆) are chosen from the Quantile–Quantile plot and
such that the PFER is controlled strongly at a given level.

Control of FDR. The term “false discovery rate” is misleading, as the definition in SAM is dif-

ferent than the standard definition of Benjamini & Hochberg (1995): the SAM FDR is estimating
E(V |HC

0 )/R and not E(V/R) as in Benjamini & Hochberg. Furthermore, the FDR in SAM can be

greater than one (cf. Table 3, p. 16 in Chu et al. (2000)). The issue of strong vs. weak control
is only mentioned briefly in Tusher et al. and the authors claim that “SAM provides a reasonably

accurate estimate for the true FDR”.

Additional comments. The Efron SAM procedure considers the distribution of the order statis-

tics T(j) under the complete null hypothesis and rejects the null hypothesis H(j) for large deviations
of T(j) from its expected value under the complete null. This approach could be refined by ac-

counting for the different variances of the order statistics under the complete null, i.e., by declaring
gene j differentially expressed if |t(j) − t̄(j)| ≥ sd(j)∆, where sd2

(j) =
∑

b(t(j),b− t̄(j))
2/B. A further
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refinement would be to consider p–values for the order statistics: p(j) = pr
(
|T |(j) ≥ |t|(j) | HC

0

)
.

These could be estimated by permutation as

p∗(j) =

∑
b I(|t|(j),b ≥ |t|(j))

B
.

Following such an approach would lead to procedures that are similar to the ones considered to

deal with the Golub et al. (1999) proposal. Since these procedures are based on the distribution of
order statistics under the complete null, they only achieve weak control of Type I error rate under
consideration. However, procedures based on |T |(1) might yield good tests of the complete null

hypothesis HC
0 and of the null hypothesis corresponding to the largest order statistic |T |(1). They

are not appropriate for testing other hypotheses while controlling the Type I error rate strongly.

3 Data

3.1 Simulated data

Artificial gene expression profiles x and binary responses y were generated as in Box 3 below.

Box 3. Type I error rate and power calculations for simulated data.

1. For the ith response group, i = 1, 2, generate ni independent m–vectors or
“artificial gene expression profiles” x from the Gaussian distribution with mean

µi and covariance matrix Σ. The m0 “genes” for which µ1 = µ2 are not
differentially expressed and correspond to the true null hypotheses (see Table

3 for the model parameters used in the simulation).

2. For each of the m “genes”, compute a two–sample t–statistic (with equal
variances in the two response groups) comparing the gene expression levels in
the two response groups. Apply the multiple testing procedures of Section 2

to determine which genes are differentially expressed for prespecified Type I
error rates α (see Table 2 for a summary of the multiple testing procedures

applied in the simulation).

3. For each procedure, record the number Rb of genes declared differentially ex-
pressed, the numbers Vb and Tb of Type I and II errors, and the false discovery

rate Qb = Vb/Rb if Rb > 0 and 0 if Rb = 0.

Repeat steps 1–3 B times and estimate the Type I error rates and average power

for each of the procedures as follows

PCER =

∑
b Vb/m

B
,

FWER =

∑
b I(Vb ≥ 1)

B
,

FDR =

∑
b Qb

B
,

Average power = 1−
∑

b Tb/(m−m0)

B
.
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The 18 multiple testing procedures described in Table 2 were applied to each of the simulated
datasets. Unadjusted p–values for each of the genes were computed in two ways: by permutation

of the n responses and from the t–distribution with n1 + n2 − 2 degrees of freedom. Table 3 lists
the different parameters used in the simulation.

3.2 Microarray data

3.2.1 Apo AI experiment, Callow et al.

The apo AI experiment was carried out as part of a study of lipid metabolism and artherosclerosis

susceptibility in mice (Callow et al. 2000). Apolipoprotein AI (apo AI) is a gene known to play
a pivotal role in HDL metabolism, and mice with the apo AI gene knocked–out have very low

HDL cholesterol levels. The goal of the experiment was to identify genes with altered expression
in the livers of the apo AI knock–out mice compared to inbred control mice. The treatment group

consisted of eight mice with the apo AI gene knocked–out and the control group consisted of eight
control C57Bl/6 mice. For each of these 16 mice, target cDNA was obtained from mRNA by re-

verse transcription and labeled using a red–fluorescent dye, Cy5. The reference sample used in all
hybridizations was prepared by pooling cDNA from the eight control mice and was labeled with a
green–fluorescent dye, Cy3. Target cDNA was hybridized to microarrays containing 6,356 cDNA

probes, including 257 related to lipid metabolism. Each of the 16 hybridizations produced a pair of
16–bit images, which were processed using the software package Spot (Buckley 2000). The resulting

fluorescence intensities were normalized as described in Dudoit et al. (2002). For each microarray
i = 1, . . . , 16, the base 2 logarithm of the Cy5/Cy3 fluorescence intensity ratio for gene j represents

the expression response xji of that gene in either a control or treatment mouse.

Differentially expressed genes were identified by computing two–sample Welch’s t–statistics for each
gene j

tj =
x̄2j − x̄1j√

s2
1j

n1
+

s2
2j

n2

,

where x̄1j and x̄2j denote the average expression level of gene j in the n1 control and n2 treatment

hybridizations, respectively. Similarly, s2
1j and s2

2j denote the variances of gene j’s expression level in
the control and treatment hybridizations, respectively. Large absolute t–statistics suggest that the

corresponding genes have different expression levels in the control and treatment groups. In order
to assess the statistical significance of the results, we considered the multiple testing procedures
of Section 2 and estimated unadjusted and adjusted p–values based on all possible

(16
8

)
= 12, 870

permutations of the treatment/control labels.

3.2.2 Bacteria experiment, Boldrick et al.

Boldrick et al. (2002) performed an in vitro study of the gene expression response of human periph-
eral blood mononuclear cells (PBMCs) to infection by pathogenic bacteria. One of the experiments

(dose–response dataset) monitored the effect of three factors on the expression response of PBMCs:
bacteria type, dose of the bacterial infection, and time after infection. Two types of bacteria were

considered: the Gram–negative B. pertussis and the Gram–positive S. aureus; four doses of the
pathogens were administered: 1X, 10X, 100X, and 1000X, where X represents the number of par-

ticles per cell (X=0.002 for the Gram–positive and X=0.004 for the Gram–negative); and the gene
expression response was measured at five timepoints after infection: 0.5, 2, 4, 6, and 12 hours (extra
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timepoints at 1 and 24 hours were recorded for dose 100X). A total of 44 hybridizations (2× 4× 5
plus 1 and 24 hour measurements for dose 100X) were performed using the Lymphochip, a special-

ized microarray comprising 18,432 elements enriched in genes that are preferentially expressed in
lymphoid cells or which are of known immunological or oncological importance. In each hybridiza-
tion, fluorescent cDNA targets were prepared from PBMC mRNA (red–fluorescent dye Cy5) and

a reference sample derived from a pool of mRNA from 6 immune cell lines (green–fluorescent dye
Cy3). The microarray scanned images were analyzed using the GenePix package and the resulting

intensities were preprocessed as described in Boldrick et al.. For each microarray i = 1, . . . , 44, the
base 2 logarithm of the Cy5/Cy3 fluorescence intensity ratio for gene j represents the expression

response xji of that gene in PBMCs infected by the Gram–positive or negative bacteria for one of
the 22 dose × time combinations. The analysis below is based on a subset of 2,562 genes that were

well–measured in both the dose–response and the diversity datasets (cf. Boldrick et al. for details
on the preselection of the genes).

One of the goals of this experiment was to identify genes that have a different expression response
to infection by the Gram–positive and the Gram–negative bacteria. As there are clearly dose and

time effects on the expression response, the null hypothesis of no bacteria effect was tested for each
gene based on a paired t–statistic. For any given gene, let di denote the difference in the expression

response to infection by the Gram–negative and Gram–positive bacteria for the ith dose × time

block, i = 1, . . . , 22. The paired t–statistic is defined as t = d̄/
√

s2
d/n, where d̄ is the average of the

n = 22 differences di and s2
d is the variance of these 22 differences. In order to assess the statistical

significance of the results, we considered the multiple testing procedures of Section 2 and estimated
unadjusted and adjusted p–values based on all possible 222 = 4, 194, 304 permutations of responses

within the 22 dose × time blocks.

3.2.3 Leukemia study, Golub et al.

Golub et al. (1999) were interested in identifying genes that are differentially expressed in pa-
tients with two type of leukemias, acute lymphoblastic leukemia (ALL, class 1) and acute myeloid

leukemia (AML, class 2). Gene expression levels were measured using Affymetrix high–density
oligonucleotide chips containing p = 6, 817 human genes. The learning set comprises n = 38 sam-

ples, 27 ALL cases and 11 AML cases (data available at
http://www.genome.wi.mit.edu/MPR). Following Golub et al. (personal communication, Pablo
Tamayo), three preprocessing steps were applied to the normalized matrix of intensity values avail-

able on the website: (i) thresholding: floor of 100 and ceiling of 16,000; (ii) filtering: exclusion
of genes with max / min ≤ 5 or (max−min) ≤ 500, where max and min refer respectively to the

maximum and minimum intensities for a particular gene across mRNA samples; (iii) base 10 log-
arithmic transformation. Boxplots of the expression levels for each of the 38 samples revealed the

need to standardize the expression levels within arrays before combining data across samples. The
data were then summarized by a 3, 051× 38 matrix X = (xji), where xji denotes the expression

level for gene j in mRNA sample i.

Differentially expressed genes in ALL and AML patients were identified by computing two–sample
Welch’s t–statistics for each gene j as in Section 3.2.1. In order to assess the statistical significance
of the results, we considered the multiple testing procedures of Section 2 and estimated unadjusted

and adjusted p–values based on 500, 000 random permutations of the ALL/AML labels.
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4 Results

4.1 Simulated data

Figures 7 – 10 display plots of Type I error rates and power for different multiple testing procedures
in the simulation study (see Box 3, Tables 2 and 3 for a description of the procedures and simulation

parameters). For each procedure, adjusted p–values were computed as detailed in Section 2 and
null hypotheses were rejected whenever their adjusted p–value was less than a prespecified level α.
With the exception of SAM efron, Golub sd, and Golub su, all procedures controlled the claimed

Type I error rate in the strong sense. As expected, procedures controlling the FWER were the
most conservative, followed by procedures controlling the FDR.

Procedures controlling the FWER. The simulation study allowed us to compare the perfor-

mance of single–step vs. stepwise procedures (i.e., Bonferroni vs. Holm and Hochberg procedures,
and single–step maxT vs. step–down maxT procedures). Although stepwise procedures are gener-

ally less conservative than single–step procedures, we found that with a very large number of hy-
potheses m the difference was minute. This is to be expected, as for large m the ratios m/(m−k+1)

are very close to 1 for moderate k. In contrast, incorporating the dependence structure among the
genes, as in the maxT procedures, led in some situations to substantial gains in power over the
Bonferroni, Holm, and Hochberg procedures. The largest gains in power were achieved for small

samples sizes when the unadjusted p–values used in the Bonferroni, Holm, and Hochberg proce-
dures were estimated by permutations (n1 = n2 = 5, Figure 10).

Procedures controlling the FDR. As expected, for a fixed nominal level α = 0.05, the two FDR

procedures provided substantial increases in power compared to the more conservative FWER pro-
cedures, but were in general less powerful than procedures controlling the PCER. The Benjamini

& Yekutieli (2001) FDR procedure was more conservative than the Benjamini & Hochberg (1995)
procedure (up to a 30% difference in power in Figure 10) and controlled the FDR much below the

nominal 5% level (the actual FDR was usually less than 1%). For the simulation models, the stan-
dard Benjamini & Hochberg procedure controlled the FDR at the nominal 5% level, in spite of the
correlation between the test statistics. The gene expression levels were simulated from multivariate

Gaussian distributions; thus the t–statistics have a multivariate t–distribution. Although the mul-
tivariate t–distribution does not satisfy the positive regression dependency condition of Benjamini

& Yekutieli, the standard step–up procedure nonetheless seems to control the FDR in our example.

SAM procedures. The adjusted p–values considered in the comparison study are based on the
PCER, which is simply the PFER estimated by SAM divided by the number of hypotheses. Al-

though SAM efron controls the PCER in the weak sense, i.e., under the complete null (Figures 7–8),
it is clear that it does not control the PCER in the strong sense (Figures 9–10). In the simulation in

Figure 9, the actual PCER is twice the nominal PCER; in some of the simulations, the actual PCER
was up to three times the nominal PCER. In contrast, the SAM tusher procedure (implemented in
the SAM software package http://www-stat.stanford.edu/ tibs/SAM/index.html) treats each

gene separately in the permutation and thus controls the PCER in the strong sense. The bottom

left panels of Figures 7 – 10 display the average of the nominal SAM FDR, F̂DR
0

b = ̂PFER
0

b/Rb, as
well as the average of the actual SAM FDR, Qb, over the B simulations. In some of the simulations,

the nominal SAM FDR was much smaller than the actual FDR; in other instances, the SAM FDR
was actually greater than 1. The two SAM versions, especially the Tusher et al. version, are very
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similar in power to standard procedures which control the PCER in the strong sense (PCER ss t,
PCER ss perm, as described in Table 2).

Neighborhood analysis. As shown in Figures 7 – 10, the step–down procedure controls the
FWER under the complete null (weak control), but fails do so when there are false null hypotheses.

The step–up version of the Golub procedure does not control any known type of error rate, not
even the PCER, and can lead to very high Type I error rates.

Nominal vs. permutation p–values. Because the gene expression levels were simulated as

Gaussian random variables, the two–sample t–statistics should have a t–distribution with n1+n2−2
degrees of freedom. The simulation suggests that procedures based on permutation p–values can

be much more conservative than procedures based on the nominal p–values from the t–distribution,
the largest difference being for small sample sizes (n1 = n2 = 5, Figures 8, 10). The smaller the

sample sizes n1 and n2, the smaller the total number of possible permutations, B =
(n1+n2

n1

)
, and

hence the larger the smallest possible unadjusted p–value, 2/B. Procedures most affected by the
discreteness of the permutation unadjusted p–values were the FDR procedures and the Bonferroni,

Holm, and Hochberg procedures. Procedures based on the maxT adjusted p–values, which are
based on the test statistics rather than the unadjusted p–values, did not suffer from this problem.

4.2 Microarray data

The procedures described in Section 2 were applied to the three microarray datasets of Section 3.
Genes with permutation adjusted p–values p̃∗j ≤ α were declared differentially expressed at level

α for the Type I error rate controlled by the procedure under consideration. For each dataset,
ordered adjusted p–values were plotted for each procedure in panels (a) and (b) of Figures 11, 12,

and 13. The number R of genes declared differentially expressed was recorded for different values
of the nominal Type I error rate α and plotted against α in panels (c) and (d) of the same figures.

Panel (e) displays plots of adjusted p–values (on a log scale) vs. t–statistics. Finally, panel (f) dis-
plays Quantile–Quantile plots of the t–statistics. Results for the Golub et al. (1999) neighborhood

analysis were not plotted in these figures, because it led to rejection of virtually all hypotheses for
two–sided alternatives (i.e., for tests based on absolute t–statistics). The results from the neigh-
borhood analysis are discussed in greater detail below. As expected, the number of genes declared

differentially expressed, R, was the greatest for procedures controlling the PCER (SAM procedures,
procedures based on unadjusted p–values) and the smallest for procedures controlling the FWER

(Bonferroni, Holm, Hochberg, maxT). The Efron et al. SAM method yielded the largest number
of rejected hypotheses (in the thousands for the leukemia and bacteria datasets, for nominal Type

I error rates as low as 10%), but, as suggested by the simulation study, this happens at the cost
of an increased Type I error rate compared to the nominal SAM error rate. Also as expected, the

Tusher et al. SAM variant and the standard p–value based procedures for controlling the PCER
(unadjusted permutation p–values) produced very similar results. As in the simulation study, the

Benjamini & Yekutieli (2001) FDR procedure was much more conservative than the standard Ben-
jamini & Hochberg (1995) FDR procedure. Procedures based on the step–down maxT adjusted
p–values generally provided a less conservative test than either the Bonferroni, Holm, or Hochberg

procedures. The Bonferroni procedure yielded similar results as its step–down (Holm) and step–up
(Hochberg) analogs.

The different multiple testing procedures behaved similarly for the leukemia and bacteria datasets;
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however, their behavior on the apo AI dataset was quite different due to the smaller sample sizes.
Aside from the PCER procedures, only the maxT and standard Benjamini & Hochberg (1995) pro-

cedures rejected any hypothesis at levels α ≤ 20%. With sample sizes n1 = n2 = 8, the total number
of permutations is only

(
16
8

)
= 12, 870, and hence the two–sided unadjusted p–values must be at

least 2/12, 870. As a result, the Bonferroni adjusted p–values must be at least 6, 356×2/12, 870≈ 1.

This dataset clearly highlights the power of the maxT procedure over standard Bonferroni–like pro-
cedures or even some FDR procedures.

SAM procedures. For the SAM Efron and Tusher procedures, Figure 14 displays plots of t–

statistics t(j), adjusted p–values p̃∗(j), and associated thresholds ∆(j) and cut–offs

(cutlow(∆(j)), cutup(∆(j))). For the apo AI experiment, the thresholds ∆(j) and adjusted p–values
p̃∗(j) for the Efron procedure are not monotone in j (panel (a)). The thresholds ∆(j) and adjusted

p–values p̃∗(j) for the Tusher procedure are monotone in j, but a number of ∆(j)s resulted in infinite

upper cut–offs (red plotting symbols in panel (c)). As could be expected from the Quantile–Quantile

plot of Figure 11, the cut–offs (cutlow(∆(j)), cutup(∆(j))) are not symmetric (panel (e)). Further-
more, the problematic issue of negative thresholds ∆(j) arises near the origin for this dataset: this
happens, for example, when the expected order statistics are positive and the observed order statis-

tics are less than their expected values. In this case, the corresponding null hypotheses are never
rejected by SAM Tusher; we thus assign adjusted p–values of 1 to these hypotheses. Panels (b),

(d), and (f) display analogous plots for the leukemia study. In contrast to the apo AI experiment,
the SAM Tusher cut–offs for these data are fairly symmetric.

Neighborhood analysis. For the leukemia study, Figure 15, panel (a), displays plots of the

step–down and step–up adjusted p–values for the neighborhood analysis of Golub et al. (1999).
The p–values were calculated for three different types of test statistics: absolute t–statistic |tj|
(two–sided alternative), t–statistic tj (one–sided alternative of over–expression in AML), and t–
statistic −tj (one–sided alternative of over–expression in ALL). The two–sided adjusted p–values
were unreasonably small, leading to rejection of virtually all hypotheses. The one–sided p–values

were larger, but again led to a very large number of rejections: over a thousand for a Golub Type
I error rate G(c) of 0.05. Figure 15, panel (b), displays plots of the Golub Type I error rate, or

p–value for the number of rejections R(c), G(c) = pr(R(c) ≥ r(c) | HC
0 ), vs. critical values c, for

the three different types of alternatives. The adjusted p–values for the step–down and step–up

procedures in panel (a) are virtually identical because of the monotonicity of the Type I error rate
G(c) in panel (b). Panels (c) – (e) are plots of the observed number of rejection R(c) = r(c) and

permutation quantiles of R(c) against critical values c for the three types of tests. One can clearly
see that even for a small Type I error rate G(c) = α, the critical value c is very small in magnitude.

Similar plots were presented in Figure 2 of Golub et al. for one–sided tests; again, the critical
values (given by the intersections of the curves for the observed and permutation quantiles of the
number of rejections R) were very close to zero. The same qualitative behavior was observed for

the other two datasets (figures not shown).

Apo AI experiment. In this experiment, eight spotted DNA sequences clearly stood out from
the remaining sequences and had maxT adjusted p–values less than 0.05. These eight sequences

correspond to only four distinct genes: apo AI (3 copies), apo CIII (2 copies), sterol C5 desaturase
(2 copies), and a novel EST (1 copy). All changes were confirmed by real–time quantitative PCR

(RT–PCR) as described in Callow et al. (2000). The presence of apo AI among the differentially
expressed genes is to be expected, as this is the gene that was knocked out in the treatment mice.
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The apo CIII gene, also associated with lipoprotein metabolism, is located very close to the apo
AI locus. Callow et al. showed that the down–regulation of apo CIII was actually due to genetic

polymorphism rather than lack of apo AI. The presence of apo AI and apo CIII among the dif-
ferentially expressed genes thus provides a check of the statistical method, if not a biologically
interesting finding. Sterol C5 desaturase is an enzyme which catalyzes one of the terminal steps in

cholesterol synthesis and the novel EST shares sequence similarity to a family of ATPases.

Bacteria experiment. In this experiment, 66 spotted DNA sequences had maxT adjusted p–
values less than 0.05 and several of these sequences actually corresponded to the same genes: CD64

(3 copies), Iκ B alpha (5 copies), SHP–1 (2 copies), plasma gelsolin (2 copies) (see Appendix A).
In contrast to the apo AI experiment, the spotted DNA sequences exhibited a continuum of change

and we could not identify a group of genes that clearly stood out from the rest. A detailed discus-
sion of the biological findings can be found in Boldrick et al. (2002).

Leukemia study. There was significant overlap between the gene lists in Golub et al. (1999) (p.
533 and Figure 3B) and the list of 92 genes with maxT adjusted p–values less 0.05 (see Appendix

B). The reader is referred to Golub et al. for a description of these genes and their involvement in
ALL and AML.

5 Discussion

In this article, we have discussed different approaches to large scale multiple hypothesis testing

in the context of microarray experiments. Standard multiple testing procedures, as well as recent
proposals for microarray experiments, were compared in terms of their Type I error rate control
and power, using gene expression and simulated datasets.

The comparison study highlighted five desirable properties of multiple testing procedures for large

multiplicity problems such as those arising in microarray experiments: (i) control of an appropriate
and precisely defined Type I error rate; (ii) strong control of the Type I error rate, i.e., control of

this error rate under any combination of true and false null hypotheses; (iii) taking into account
the joint distribution of the test statistics; (iv) reporting the results in terms of adjusted p–values;

(v) availability of efficient resampling algorithms for nonparametric procedures.

A number of recent articles have addressed the question of multiple testing in the context of microar-
ray experiments (Dudoit et al. 2002, Efron et al. 2000, Golub et al. 1999, Kerr et al. 2000, Manduchi
et al. 2000, Tusher et al. 2001, Westfall et al. 2001). However, not all proposed solutions were cast

in the standard statistical multiple testing framework and some procedures fail to provide adequate
Type I error rate control. In particular, the Type I error rates considered in some of these papers

were rather loosely defined, thus making it difficult to assess the properties of the multiple testing
procedures. Regarding item (i), control of the per–comparison error rate (PCER) is often not

adequate, as it does not really deal with the multiplicity problem. Although not stated explicitly
in Efron et al. (2000) and Tusher et al. (2001), both SAM procedures are based on computing the

PFER, a constant multiple of the PCER. Given the information provided in Golub et al. (1999), we
determined that the Type I error rate in the neighborhood analysis is G(c) = pr(R(c)≥ r(c) | HC

0 ),

that is, as a p–value for the number of rejected hypotheses under the complete null (in this case,
the number of Type I errors, V (c)). This is a rather unusual definition and a more detailed dis-
cussion of the procedure and its limitations is given below. In the microarray setting, where it is

25

Hosted by The Berkeley Electronic Press



very unlikely that no genes are differentially expressed, property (ii) of strong control of the Type
I error rate is essential, whether it be the FWER, PCER, or FDR. This was demonstrated in the

simulation study, where the Type I error rates for some of the procedures were no longer controlled
when a subset of null hypotheses were allowed to be false. The Efron et al. (2000) version of SAM
and the neighborhood analysis of Golub et al. (1999) both rely on the distribution of ordered test

statistics under the complete null hypothesis, and therefore only provide weak control of the Type
I error rate. Regarding point (iii), the comparison study highlighted the gains in power that can be

achieved by taking into account the joint distribution of the gene expression levels when assessing
statistical significance (maxT procedures vs. Bonferroni, Holm, and Hochberg procedures). Rather

than simply reporting rejection or not of the null hypothesis of no differential expression for a given
gene, we have found adjusted p–values (point (iv)) to be particularly useful and flexible summaries

of the strength of the evidence in favor of differential expression. The adjusted p–value for a partic-
ular gene reflects the overall false positive rate for the entire experiment when genes with smaller

p–values are declared differentially expressed. Adjusted p–values may also be used to summarize
and compare the results from different multiple testing procedures. Finally, as mentioned in item
(v), efficient resampling–based nonparametric multiple testing procedures are needed to take into

account the complex dependency structures between gene expression levels. Such procedures were
proposed in Westfall & Young (1993) for FWER control, however, due to the large–scale nature

of microarray experiments, computational issues remain to be addressed (Ge & Dudoit 2002), in
addition to methodological ones.

Procedures controlling the FWER. Results on both simulated and microarray datasets sug-

gest that the Westfall & Young (1993) step–down maxT procedure is well–adapted for microarray
experiments. Like the classical Bonferroni procedure, it provides strong control of the FWER.

However, it can be substantially more powerful than the Bonferroni, Holm, and Hochberg pro-
cedures, because it takes into account the dependence structure between the test statistics. In
addition, the maxT procedure performed very well compared to other procedures (including some

FDR procedures), when adjusted p–values were estimated by permutation. It does not suffer as
much as others from the small number of possible permutations associated with small sample sizes,

because the adjusted p–values are based on the test statistics rather than the unadjusted p–values.
For a detailed comparison of maxT and minP procedures, the reader is referred to Ge & Dudoit

(2002). The main advantage of the minP procedure is that it provides balanced adjustments; the
issue of balance is important when the test statistics for the different hypotheses are not identically

distributed (Beran 1988, Westfall & Young 1993, p. 50). However, estimation of the minP p–values
by resampling is more costly computationally than for maxT p–values, because the unadjusted

p–values must be computed before considering the distribution of their successive minima. Also,
when adjusted p–values are estimated by permutation and a large number of hypotheses are tested,
procedures based on the minP p–values tend to be more sensitive to the number of permutations

and more conservative than those based on the maxT p–values.

Procedures controlling the FDR. In the microarray setting, where thousands of comparisons
are performed simultaneously and a fairly large number of genes are expected to be differentially

expressed, procedures controlling the FDR present a promising alternative to more conservative
approaches controlling the FWER. In this context, one may be willing to bear a few false positives

as long as their number is small in comparison to the number of rejected hypotheses. Most FDR
controlling procedures proposed thus far either control the FDR under restrictive dependency struc-

tures (e.g. independence or positive regression dependency) or do not exploit the joint distribution
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of the test statistics. It would thus be useful to develop FDR controlling procedures, in the spirit of
the Westfall & Young (1993) minP and maxT procedures for FWER control, that strongly control

the FDR and take into account the dependence structure between test statistics. Such procedures
could lead to increased power, as in the case of FWER control. Initial work in this direction can be
found in Yekutieli & Benjamini (1999), assuming unadjusted p–values for the true null hypotheses

are independent of the p–values for the false null hypotheses. Reiner et al. (2001) applied different
FDR controlling procedures to the apo AI dataset.

SAM procedures. The Efron et al. (2000) and Tusher et al. (2001) versions of SAM seem very

similar at first glance. A fundamental difference exists, however, in the estimation of the expected
number of Type I errors, E(V |HC

0 ), leading to the choice of the threshold ∆. The difference lies in

the use of ordered test statistics in Efron et al. to estimate this error rate under the complete null
hypothesis. In the Efron et al. (2000) version, the PFER is thus only weakly controlled, while in the

Tusher et al. (2001) version it is strongly controlled. The only difference between the Tusher et al.
version of SAM and standard procedures which reject the null Hj for |tj | ≥ c is in the use of asym-
metric critical values chosen from a Quantile–Quantile plot. Otherwise, SAM does not provide any

new definition of Type I error rate, nor any new procedure for controlling this error rate. There are
a number of practical problems linked to the implementation of the Tusher et al. SAM procedure

(software package http://www-stat.stanford.edu/ tibs/SAM/index.html). The user does not
choose a significance level ahead of time; rather, the PFER is estimated for a fixed set of thresholds

∆. In some cases, it can be hard to select ∆ for a prespecified PFER. Using the adjusted p–values
derived in Section 2.7.2 provides a more flexible implementation of the procedure. A problem re-

mains, however, with the choice of the “origin” j0, when the differences t(j) − t̄(j) are negative to
the right of the origin or positive to the left of the origin. This can lead to negative thresholds ∆(j)

for the adjusted p–value calculations. In such cases, we set the p–values to one, as the correspond-
ing nulls are never rejected by SAM. As part of the SAM method Efron et al. (2000) and Tusher
et al. (2001) suggest test statistics for identifying differentially expressed genes for different types

of responses. These test statistics are based on standard t– or F–statistics, with a “fudge” factor
in the denominator to deal with the small variance problem encountered in microarray experiments

(Lönnstedt & Speed 2002). The “shrunken” statistics were not used in the comparison study of
Section 4, because we wanted to focus on control of Type I error for a given choice of test statistics.

Neighborhood analysis. Although not stated explicitly in Golub et al. (1999), the error rate

controlled by the neighborhood analysis is a p–value for the number of rejected hypotheses under
the complete null, that is, G(c) = pr(R(c) ≥ r(c) | HC

0 ). A critical value c is then chosen to control

this unusual error rate at a prespecified level α. Given the data, the function G(c) is not in general
monotone in c, and there are possibly several values of c with G(c) = α. The non–monotonicity
issue was not addressed in Golub et al.. In Section 2.7.1, we considered a step–down and a step–up

version of the neighborhood analysis to deal with this problem and derived corresponding adjusted
p–values. Because the neighborhood analysis is based on the distribution of the order statistics

under the complete null, only weak control of the Type I error rate can be achieved. In turns out
that the step–down version controls the FWER weakly, while the step–up version does not control

any standard error rate, not even the PCER. Application of the neighborhood analysis to the three
microarray datasets of Section 3 resulted in unreasonably long lists of genes declared differentially

expressed, especially for two–sided hypotheses. This can be seen also in Figure 2 of Golub et al.
(1999), where a critical value near zero is used for the test statistics and thousands of genes are

declared differentially expressed. Golub et al. applied the neighborhood analysis separately for
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each type of one–sided hypothesis (over–expression in AML compared to ALL and vice versa); it
is not clear how an overall Type I error rate can be obtained.

Open questions.

In the comparison study of Section 4, only two–sided tests were considered. In practice, however,
researchers are interested in determining the direction of rejection for the null hypotheses, i.e.,

in determining whether genes are over– or under–expressed in, say, treated cells compared to un-
treated cells. This raises the issue of Type III error rate control, where Type III error refers to

correctly declaring that a gene is differentially expressed, but deciding that it is over–expressed
when in fact it is really under–expressed, or vice versa. Control of these errors in addition to Type

I errors brings in additional complexities (Finner 1999), and will not be considered here.

We have considered thus far only one null hypothesis per gene. When comparing several treatments
or in the context of factorial experiments (Section 3.2.2), one may be interested in testing several
hypotheses simultaneously for each gene. For example, when monitoring the gene expression re-

sponse of a particular type of cells to K treatments, one may wish to consider all K(K − 1)/2
pairwise treatment comparisons and determine which correspond to significant treatment differ-

ences. A number of procedures are available to deal with such testing situations one gene at a time
(e.g. procedures of Tukey and Scheffé). An open problem is the extension of these methods to the

2D–testing problem where several hypotheses are tested simultaneously for each of thousands of
genes.

A related issue is the development of resampling methods for estimating adjusted p–values in the

context of factorial experiments, which impose some structure on the columns of the gene expression
data matrix. For the 3–factor bacteria experiment, Gram–positive and Gram–negative labels were
permuted within the 22 dose × time blocks, to respect the blocking structure of the experiment

and allow the possibility of dose and time effects on the expression response of PBMCs. Permuta-
tion is only one of several resampling approaches which can be used to estimate adjusted p–values.

Bootstrap procedures, parametric and non–parametric, should also be investigated, as they may
allow estimation of adjusted p–values for more specific null hypotheses.

The methods described above operate on individual genes. However, it is well known that genes

are expressed in a coordinated manner, for example, through pathways or the sharing of the same
transcription factors. It would be interesting to develop multiple testing procedures for identifying

groups of differentially expressed genes, where the groups may be defined a priori, from the knowl-
edge of pathways, say, or by cluster analysis. Initial work in this area can be found in Tibshirani
et al. (2001).

Finally, we did not consider Bayesian approaches, which constitute an important class of methods

for the identification of differentially expressed genes (Efron et al. 2000, Manduchi et al. 2000, New-
ton et al. 2001). In such methods, the criterion for identifying differentially expressed genes is based

on the posterior probability of differential expression, i.e., the probability that a particular gene is
differentially expressed given the data for all genes. This is in contrast to the so–called frequentist

methods reviewed in this paper, which are based on adjusted p–values, i.e., on the joint distribu-
tion of the test statistics given suitably defined null hypotheses. It would be interesting to compare

and, when possible, reconcile these two approaches. Efron et al. (2001) and Storey (2001) discuss
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Bayesian interpretations of the FDR.

Most multiple testing procedures considered in this paper are implemented in an R package (Ihaka
& Gentleman 1996), multtest, which may be downloaded from
http://www.R-project.org.
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Table 1: Properties of multiple testing procedures.

Procedure Type I Strong or Stepwise Dependence

error rate weak control structure

Bonferroni FWER Strong Single General/Ignore

Šidák FWER Strong Single Positive orthant dependence
minP FWER Strong Single Subset pivotality

maxT FWER Strong Single Subset pivotality
Holm (1979) FWER Strong Down General/Ignore

Step–down Šidák FWER Strong Down Positive orthant dependence
Step–down minP FWER Strong Down Subset pivotality

Step–down maxT FWER Strong Down Subset pivotality
Hochberg (1988) FWER Strong Up Some dependence (Simes)

Troendle (1996) FWER Strong Up Some dependence

Benjamini & Hochberg (1995) FDR Strong Up Positive regression dependence
Benjamini & Yekutieli (2001) FDR Strong Up General/Ignore

Yekutieli & Benjamini (1999) FDR Strong Up Some dependence

Unadjusted p–values PCER Strong Single General/Ignore
SAM Tusher et al. (2001) PFER (PCER) Strong Single General/Hybrid
SAM Efron et al. (2000) PFER (PCER) Weak Single General

Golub et al. (1999), step–down pr(R ≥ r|HC
0 ) (FWER) Weak Down General

Golub et al. (1999), step–up pr(R ≥ r|HC
0 ) Weak Up General

Note. By “General/Ignore”, we mean that a procedure controls the claimed Type I error rate for general dependency structures, but

does not explicitly take into account the joint distribution of the test statistics. For the Tusher et al. (2001) SAM version, the term
“General/Hybrid” refers to the fact only the marginal distribution of the test statistics is considered when computing the PFER. The
test statistics are considered jointly only to determine the cut–offs cutup(∆) and cutlow(∆) from the Quantile–Quantile plot.
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Table 2: Multiple testing procedures applied in simulation study.

Name Description
Bonf t Bonferroni procedure, reject Hj if p̃j ≤ α (equation (1)),

pj computed from t–distribution with n1 + n2 − 2 df.
Bonf perm Bonferroni procedure, reject Hj if p̃∗j ≤ α (equation (1)),

p∗j computed by permutation as in Box 1.
Holm t Holm procedure, reject Hrj

if p̃rj
≤ α (equation (5)),

pj computed from t–distribution with n1 + n2 − 2 df.
Holm perm Holm procedure, reject Hrj

if p̃∗rj
≤ α (equation (5)),

p∗j computed by permutation as in Box 1.

Hoch t Hochberg procedure, reject Hrj
if p̃rj

≤ α (equation (9)),
pj computed from t–distribution with n1 + n2 − 2 df.

Hoch perm Hochberg procedure, reject Hrj
if p̃∗rj

≤ α (equation (9)),

p∗j computed by permutation as in Box 1.
maxT ss single–step maxT procedure, reject Hj if p̃∗j ≤ α (equation (4)).
maxT sd step–down maxT procedure, reject Hrj

if p̃∗rj
≤ α (equation (8), Box 2).

FDR BH t Benjamini & Hochberg (1995) procedure, reject Hrj
if p̃rj

≤ α (equation (10)),
pj computed from t–distribution with n1 + n2 − 2 df.

FDR BH perm Benjamini & Hochberg (1995) procedure, reject Hrj
if p̃∗rj

≤ α (equation (10)),

p∗j computed by permutation as in Box 1.

FDR BY t Benjamini & Yekutieli (2001) procedure, reject Hrj
if p̃rj

≤ α (equation (11)),
pj computed from t–distribution with n1 + n2 − 2 df.

FDR BY perm Benjamini & Yekutieli (2001) procedure, reject Hrj
if p̃∗rj

≤ α (equation (11)),

p∗j computed by permutation as in Box 1.
PCER ss t Reject Hj if pj ≤ α,

pj computed from t–distribution with n1 + n2 − 2 df.
PCER ss perm Reject Hj if p∗j ≤ α,

p∗j computed by permutation as in Box 1.
SAM efron Efron et al. (2000) SAM procedure (Section 2.7.2),

reject H(j) if p̃∗(j) ≤ α, estimated by permutation (equation(15)).

SAM tusher Tusher et al. (2001) SAM procedure (Section 2.7.2),
reject H(j) if p̃∗(j) ≤ α, estimated by permutation (equation (16)).

Golub sd Golub et al. (1999) neighborhood analysis, step–down version (Section 2.7.1),
reject H(j) if p̃∗(j) ≤ α, estimated by permutation (equation (13)).

Golub su Golub et al. (1999) neighborhood analysis, step–up version (Section 2.7.1),
reject H(j) if p̃∗(j) ≤ α, estimated by permutation (equation (14)).
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Table 3: Simulation parameters. Here, an denotes an n–vector with entries equal to a and bn

denotes the n–vector 1.5 ∗ (1, 2, . . . , n)/n. Im denotes the m ×m identity matrix and Sm is the
m×m covariance matrix for a random subset of m genes in the Boldrick et al. experiment described

in Section 3.2.2.

Parameter Value

Number of “genes” m = 500
Mean vectors µ1 = 0m

µ2 = 0m

µ2 = [bm∗0.1,−bm∗0.1, 0m∗0.8]
Covariance matrix Σ = Im

Σ = Sm

Sample sizes n1 = n2 = 5

n1 = n2 = 25
Number of simulations B = 500

Number of permutations for SAM Bsam = 1, 000 or all
(n1+n2

n1

)

Number of permutations for neighborhood analysis Bgolub = 1, 000 or all
(
n1+n2

n1

)

Number of permutations for unadjusted p–values Bperm = 25, 000 or all
(n1+n2

n1

)

Nominal Type I error rate α = 0.05

(PCER, FWER, or FDR)
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Figure 1: Type I error rates, simple example. Plot of Type I error rates vs. number of hypotheses

m, for different proportions of true null hypotheses, m0/m = 1, 0.9, 0.8, 0.5, 0.2, 0.1. The model
and multiple testing procedures are described in Section 2.2. The individual test size is α = 0.05
and the parameter d was set to 1. The non–smooth behavior for small m is due to the fact that

it is not always possible to have exactly 90%, 80%, 50%, 20%, or 10% of true null hypotheses and
rounding to the nearest integer is necessary.
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Figure 2: Type I error rates, simple example. Plot of Type I error rates vs. individual test size α,
for different proportions of true null hypotheses, m0/m = 1 , 0.9, 0.8, 0.5, 0.2, 0.1. The model and
multiple testing procedures are described in Section 2.2. The number of hypotheses is m = 100

and the parameter d was set to 1.
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Figure 3: Type I error rates, simple example. Plot of Type I error rates vs. expected propor-
tion of rejected hypotheses E(R)/m, for different proportions of true null hypotheses, m0/m =
1 , 0.9, 0.8, 0.5, 0.2, 0.1. The model and multiple testing procedures are described in Section 2.2.

The number of hypotheses is m = 100 and the parameter d was set to 1.
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Figure 4: Neighborhood analysis, m = 10 hypotheses. Upper left panel: plot of observed number of
rejected hypotheses r(c) (black) and 95th quantile of R(c) (red) vs. critical value c; vertical dashed
lines correspond to observed values of |t|(j). Upper right panel: plot of G(c) = pr

(
R(c) ≥ r(c) | HC

0

)

vs. c. Lower left panel: plot of step–down adjusted p–values; the horizontal line corresponds to a
5% significance level. Lower right panel: plot of step–up adjusted p–values. Data were simulated

as in Table 3, with n1 = n2 = 20, m = 10, µ1 = 010, µ2 = [12, 08], Σ = I10. B = 500 permutations
of the class labels were used to estimate the quantiles of R(c) and the adjusted p–values.
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Figure 5: Neighborhood analysis, m = 50 hypotheses. Upper left panel: plot of observed number of
rejected hypotheses r(c) (black) and 95th quantile of R(c) (red) vs. critical value c; vertical dashed
lines correspond to observed values of |t|(j). Upper right panel: plot of G(c) = pr

(
R(c) ≥ r(c) | HC

0

)

vs. c. Lower left panel: plot of step–down adjusted p–values; the horizontal line corresponds to a
5% significance level. Lower right panel: plot of step–up adjusted p–values. Data were simulated

as in Table 3, with n1 = n2 = 20, m = 50, µ1 = 050, µ2 = [110, 040], Σ = I50. B = 500 permutations
of the class labels were used to estimate the quantiles of R(c) and the adjusted p–values.
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Figure 6: SAM cut–offs. Quantile–Quantile plot of t–statistics for the bacteria dataset. The t–
statistics for the observed data are plotted using black symbols, the t–statistics for a particular
permutation of the Gram–positive and negative labels are plotted using gray symbols. The red

lines correspond to the SAM cut–offs for the Efron variant with ∆ = 1.5, the blue horizontal lines
correspond to the SAM cut–offs for the Tusher variant with ∆ = 1.5. Note that in the permutation,

the Tusher cut–offs (blue) lead to more rejected hypotheses and hence a more conservative estimate
of the PFER than the Efron cut–offs (red), for the same threshold ∆.
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Figure 7: Simulation 0 – Complete null. PCER, FWER, and FDR for different multiple testing
procedures. The top panel displays PCER =

∑
b Rb/mB and simulation standard errors (2 SE);

the bottom panel displays FWER =
∑

b I(Rb ≥ 1)/B = FDR and simulation standard errors (2
SE). For each definition of the Type I error rate, the procedures which are designed to control this

error rate are highlighted in red. The blue line corresponds to a Type I error rate of α = 5%. In the
FDR panel, the simulation averages of the nominal SAM FDRs are plotted in blue (for SAM efron,

the nominal FDR is 3.25). The parameter values in Simulation 0 are B = 500, Bsam = 1, 000,
Bgolub = 1, 000, Bperm = 25, 000, α = 0.05, m = 500, µ1 = µ2 = 0m, Σ = Sm, and n1 = n2 = 25.
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Figure 8: Simulation 0b – Complete null. PCER, FWER, and FDR for different multiple testing
procedures. The top panel displays PCER =

∑
b Rb/mB and simulation standard errors (2 SE);

the bottom panel displays FWER =
∑

b I(Rb ≥ 1)/B = FDR and simulation standard errors (2
SE). For each definition of the Type I error rate, the procedures which are designed to control this

error rate are highlighted in red. The blue line corresponds to a Type I error rate of α = 5%. In the
FDR panel, the simulation averages of the nominal SAM FDRs are plotted in blue (for SAM efron,

the nominal FDR is 3.68). The parameter values in Simulation 0b are B = 500, Bsam =
(
10
5

)
= 252,

Bgolub = 252, Bperm = 252, α = 0.05, m = 500, µ1 = µ2 = 0m, Σ = Sm, and n1 = n2 = 5.
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Figure 9: Simulation 1 – 20% false nulls. PCER, FWER, FDR, and power for different multiple
testing procedures. The top left panel displays PCER =

∑
b Vb/mB and simulation standard errors

(2 SE); the top right panel displays FWER =
∑

b I(Vb ≥ 1)/B and simulation standard errors (2
SE); the bottom left panel displays FDR =

∑
b Qb/B and simulation standard errors (2 SE); the

bottom right panel displays Average power = 1−∑
b Tb/B(m−m0) and simulation standard errors

(2 SE). For each definition of the Type I error rate, the procedures which are designed to control

this error rate are highlighted in red. The blue line corresponds to a Type I error rate of α = 5%.
In the FDR panel, the simulation averages of the nominal SAM FDRs are plotted in blue. The

parameter values in Simulation 1 are B = 500, Bsam = 1, 000, Bgolub = 1, 000, Bperm = 25, 000,
α = 0.05, m = 500, µ1 = 0m, µ2 = [bm∗0.1,−bm∗0.1, 0m∗0.8], Σ = Sm, and n1 = n2 = 25.
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Figure 10: Simulation 1b – 20% false nulls. PCER, FWER, FDR, and power for different multiple
testing procedures. The top left panel displays PCER =

∑
b Vb/mB and simulation standard errors

(2 SE); the top right panel displays FWER =
∑

b I(Vb ≥ 1)/B and simulation standard errors (2
SE); the bottom left panel displays FDR =

∑
b Qb/B and simulation standard errors (2 SE); the

bottom right panel displays Average power = 1−∑
b Tb/B(m−m0) and simulation standard errors

(2 SE). For each definition of the Type I error rate, the procedures which are designed to control

this error rate are highlighted in red. The blue line corresponds to a Type I error rate of α = 5%.
In the FDR panel, the simulation averages of the nominal SAM FDRs are plotted in blue. The

parameter values in Simulation 1b are B = 500, Bsam =
(10

5

)
= 252, Bgolub = 252, Bperm = 252,

α = 0.05, m = 500, µ1 = 0m, µ2 = [bm∗0.1,−bm∗0.1, 0m∗0.8], Σ = Sm, and n1 = n2 = 5.
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Figure 11: Apo AI experiment. Panels (a) and (b): Plot of sorted adjusted p–values p̃∗rj
vs. j.

Panels (c) and (d): Number of genes declared differentially expressed, R, vs. nominal Type I error
rate, α. Panels (b) and (d) are enlargements of panels (a) and (c), respectively, for the 50 genes

with the smallest maxT adjusted p–values. Panel (e): Plot of adjusted p–values − log10 p̃∗j vs. t–
statistics tj. Panel (f): Quantile–Quantile plot of t–statistics; the dotted line is the identity line
and the dashed line passes through the first and third quartiles. Adjusted p–values were estimated

based on all Bperm =
(
16
8

)
= 12, 870 permutations of the treatment/control labels, except for the

two SAM procedures for which Bsam = 1, 000 random permutations were used. Note that the

results for the Bonferroni, Holm, and Hochberg procedures are virtually identical, similarly for the
unadjusted p–value and Tusher et al. SAM procedures.
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Figure 12: Bacteria experiment. Panels (a) and (b): Plot of sorted adjusted p–values p̃∗rj
vs. j.

Panels (c) and (d): Number of genes declared differentially expressed, R, vs. nominal Type I error
rate, α. Panels (b) and (d) are enlargements of panels (a) and (c), respectively, for the 100 genes

with the smallest maxT adjusted p–values. Panel (e): Plot of adjusted p–values − log10 p̃∗j vs. t–
statistics tj. Panel (f): Quantile–Quantile plot of t–statistics; the dotted line is the identity line
and the dashed line passes through the first and third quartiles. Adjusted p–values were estimated

based on all Bperm = 222 permutations of responses within the 22 dose × time blocks, except for
the two SAM procedures for which Bsam = 1, 000 random permutations were used. Note that the

results for the Bonferroni, Holm, and Hochberg procedures are virtually identical, similarly for the
unadjusted p–value and Tusher et al. SAM procedures.
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Figure 13: Leukemia study. Panels (a) and (b): Plot of sorted adjusted p–values p̃∗rj
vs. j. Panels

(c) and (d): Number of genes declared differentially expressed, R, vs. nominal Type I error rate, α.
Panels (b) and (d) are enlargements of panels (a) and (c), respectively, for the 100 genes with the

smallest maxT adjusted p–values. Panel (e): Plot of adjusted p–values − log10 p̃∗j vs. t–statistics
tj . Panel (f): Quantile–Quantile plot of t–statistics; the dotted line is the identity line and the
dashed line passes through the first and third quartiles. Adjusted p–values were estimated based

on Bperm = 500, 000 random permutations of the ALL/AML labels, except for the two SAM
procedures for which Bsam = 1, 000 random permutations were used. Note that the results for the

Bonferroni, Holm, and Hochberg procedures are virtually identical, similarly for the unadjusted
p–value and Tusher et al. SAM procedures.
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Figure 14: Apo AI experiment and leukemia study – SAM procedures. Panels (a) and (b): Efron
et al. SAM procedure, pairs plots of test statistics t(j), adjusted p–values p̃∗(j), and thresholds ∆(j)

used in the calculation of adjusted p–values. Panels (c) and (d): Tusher et al. SAM procedure,
pairs plots of test statistics t(j), adjusted p–values p̃∗(j), and thresholds ∆(j) used in the calculation

of adjusted p–values. Panels (e) and (f) : Tusher et al. SAM procedure, upper cut–offs cutup(∆(j))

(red) and lower cut–offs cutlow(∆(j)) (green) corresponding to thresholds ∆(j). Statistical signif-
icance was assessed based on Bsam = 1, 000 random permutations of the treatment/control or

ALL/AML labels.
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Figure 15: Leukemia study – Neighborhood analysis. Panel (a): plot of step–down and step–up

adjusted p–values for neighborhood analysis, for two–sided (red curve) and one–sided (blue curve
for over–expression in AML, green curve for over–expression in ALL) alternative hypotheses. Panel

(b): plots of the Golub Type I error rates G(c) = pr(R(c) ≥ r(c) | HC
0 ) versus critical values

c for the three different types of alternatives. Panels (c) – (e): plots of the observed number of

rejections R(c) = r(c) and permutation quantiles of R(c) against critical values c for the three types
of tests. Statistical significance was assessed based on Bgolub = 1, 000 random permutations of the

ALL/AML labels.
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A Differentially expressed genes in bacteria experiment

Genes with step–down maxT adjusted p–values less than 0.05 are listed below. The index in front

of the gene name indicates the ordering of the p–values, where an index of 1 corresponds to the most
significant p–value. Genes were separated into two sets: those with positive t–statistics, suggestive
of over–expression in S. aureus infected cells, and those with negative t–statistics, suggestive of

over–expression in B. pertussis infected cells.

Genes over--expressed in S. aureus

=================================

1 "19260 | 704783 | SHP-1=mutated in motheaten mouse=Protein tyrosine phosphatase, non-receptor

3 13213 | 1319034 | Similar to plasma gelsolin

6 "17729 | 843037 | Vitamin D (1,25- dihydroxyvitamin D3) receptor"

12 17331 | 795343 | CD64=high affinity immunogobulin gamma FC receptor I A form precursor=FC-ga

14 21718 | 7387 | Unknown

15 16932 | 470615 | CD64=high affinity immunogobulin gamma FC receptor I A form precursor=FC-ga

17 16687 | 297219 | cathepsin B

18 17696 | 470615 | CD64=high affinity immunogobulin gamma FC receptor I A form precursor=FC-ga

27 24520 | 1319034 | Similar to plasma gelsolin

30 "17817 | 248828 | Id3=Inhibitor of DNA binding 3, dominant negative helix-loop-helix protein

31 17789 | 137231 | mitogen-responsive phosphoprotein (DOC-2)

32 "16794 | 342927 | Protein tyrosine phosphatase, non-receptor type 9 (PTPase MEG2)"

33 18273 | 1235138 | CD31=PECAM-1

34 16658 | 290563 | Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclo

35 15851 | 768561 | MCP-1=MCAF=small inducible cytokine A2=JE=chemokine

38 16767 | 325072 | TIMP-2=Tissue inhibitor of metalloproteinase 2

39 19246 | 687129 | Hs.11500 ESTs

41 3487 | 685646 | Ro ribonucleoprotein autoantigen (Ro/SS-A)=autoantigen calreticulin

42 "17272 | 752785 | SHP-1=mutated in motheaten mouse=Protein tyrosine phosphatase, non-recepto

45 17234 | 724506 | gamma-interferon inducible gene IP-30

46 16981 | 489258 | Cysteine-rich protein 2=CRP2=ESP1 protein=LIM domain protein

47 16673 | 293742 | udp glucuronosyltransferase

49 19380 | 359769 | mss4=Zn2+ binding protein/guanine nucleotide exchange factor

52 4226 | 261517 | cathepsin B

54 16551 | 236282 | WASP=Wiskott-Aldrich syndrome protein

56 2313 | 712092 | X-CGD gene involved in chronic granulomatous

disease locat ed on chromosome X=Cytochrome B-245 light chain

component of microbicidal oxidase system in phagocytes

57 17033 | 526335 | MMP-9=Matrix metalloproteinase 9=92 kD Gelatinase B=92 KD type IV collagena

58 "14664 | 1355330 | Hs.13255 Homo sapiens mRNA for KIAA0930 protein, partial cds"

59 532 | 686554 | Hs.185058 ESTs

60 21465 | 1341319 | Hs.3337 transmembrane 4 superfamily member 1

61 17660 | 345103 | protein-tyrosine kinase EPHB2v (EPHB2)

62 16867 | 376942 | Ro ribonucleoprotein autoantigen (Ro/SS-A)=autoantigen calreticulin

63 16945 | 472180 | S100 calcium binding protein A4=Placental calcium binding protein=Calvascul

64 2336 | 712278 | c-fos

65 "18453 | 1306024 | CD11C=leukocyte adhesion protein p150,95 alpha subunit=integrin alpha-X"
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66 17650 | 343867 | allograft-inflammatory factor-1=interferon gamma

induced macrophage protein=Iba1=ionized calcium binding adapter

molecule 1

Genes over--expressed in B. pertussis

====================================

2 13023 | 1288054 | IkB alpha

4 16426 | 153355 | LD78 beta=almost identical to MIP-1 alpha=chemokine

5 4081 | 71 | IL-10

7 24829 | 825038 | IkB alpha

8 20417 | 825038 | IkB alpha

9 16967 | 487962 | B4-2 protein

10 16822 | 346550 | MIP-1 alpha=LD78 alpha=pAT464=Small inducible cytokine A3=macrophage inflam

11 1537 | 683517 | Hs.129923 ESTs

13 4112 | 98 | CD40 ligand

16 4376 | 153355 | LD78 beta=almost identical to MIP-1 alpha=chemokine

19 15850 | 205633 | MIP1 beta=SCAY2=G-26=HC21=pAT 744=LAG-1=Act-2=H400=SIS-gamma=chemokine

20 24499 | 1288054 | Similar to IkB alpha

21 24107 | 1967950 | Unknown

22 16434 | 156520 | TSG-6=tumor necrosis factor-inducible gene

23 1538 | 683519 | IkB alpha

24 16047 | 84295 | IL-1 receptor antagonist

25 21388 | 1336549 | Hs.82554 ESTs

26 9922 | 1185708 | Hs.163214 ESTs

28 17438 | 1074540 | G-CSF=Colony-stimulating factor 3

29 "22503 | 2072763 | Hs.56009 ESTs, Weakly similar to reverse transcriptase related protein [H

36 4089 | 79 | IL-6

37 842 | 703558 | Hs.172051 ESTs

40 4296 | 56 | MIP1 beta=SCAY2=G-26=HC21=pAT 744=LAG-1=Act-2=H400=SIS-gamma=chemokine

43 3760 | 684742 | adenosine deaminase

44 "16916 | 447509 | Major histocompatibility complex, class II, DN alpha"

48 24600 | 1350626 | Similar to (U64842) F25B4.2 gene product

50 16905 | 429238 | BRCA2 region EST-1

51 1515 | 683218 | CD38

53 16427 | 153768 | STAT induced STAT inhibitor-3=CIS3

55 287 | 684794 | Hs.104358 EST

B Differentially expressed genes in leukemia study

Genes with step–down maxT adjusted p–values less than 0.05 are listed below. The index in front

of the gene name indicates the ordering of the p–values, where an index of 1 corresponds to the most
significant p–value. Genes were separated into two sets: those with positive t–statistics, suggestive

of over–expression in AML cells, and those with negative t–statistics, suggestive of over–expression
in ALL cells.

Genes over--expressed in AML
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===========================

1 X95735_at Zyxin

2 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

3 M55150_at FAH Fumarylacetoacetate

4 M16038_at LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog

5 L09209_s_at APLP2 Amyloid beta (A4) precursor-like protein 2

16 U50136_rna1_at Leukotriene C4 synthase (LTC4S) gene

17 Y12670_at LEPR Leptin receptor

19 Y00787_s_at INTERLEUKIN-8 PRECURSOR

22 U82759_at GB DEF = Homeodomain protein HoxA9 mRNA

23 M23197_at CD33 CD33 antigen (differentiation antigen)

24 M63138_at CTSD Cathepsin D (lysosomal aspartyl protease)

26 X62654_rna1_at ME491 gene extracted from H.sapiens gene for Me491/CD63 antigen

27 X07743_at PLECKSTRIN

33 D88422_at CYSTATIN A

34 L08246_at INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1

35 U67963_at Lysophospholipase homolog (HU-K5) mRNA

37 M28130_rna1_s_at Interleukin 8 (IL8) gene

42 M19045_f_at LYZ Lysozyme

43 U46499_at GLUTATHIONE S-TRANSFERASE, MICROSOMAL

44 D14874_at ADM Adrenomedullin

48 X04085_rna1_at Catalase (EC 1.11.1.6) 5’flank and exon 1 mapping to chromosome 11, band p13

61 M21551_rna1_at Neuromedin B mRNA

62 X85116_rna1_s_at Epb72 gene exon 1

67 J03801_f_at LYZ Lysozyme

68 M81695_s_at ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polypeptide)

69 X17042_at PRG1 Proteoglycan 1, secretory granule

73 M62762_at ATP6C Vacuolar H+ ATPase proton channel subunit

79 M22960_at PPGB Protective protein for beta-galactosidase (galactosialidosis)

84 X61587_at ARHG Ras homolog gene family, member G (rho G)

87 X14008_rna1_f_at Lysozyme gene (EC 3.2.1.17)

91 M69043_at MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING PROTEIN MAD3

92 X62320_at GRN Granulin

Genes over--expressed in ALL

===========================

6 M31523_at TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)

7 X74262_at RETINOBLASTOMA BINDING PROTEIN P48

8 Z15115_at TOP2B Topoisomerase (DNA) II beta (180kD)

9 L47738_at Inducible protein mRNA

10 U22376_cds2_s_at C-myb gene extracted from Human (c-myb) gene, complete primary cds, and fiv

11 HG1612-HT1612_at Macmarcks

12 M91432_at ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain

13 L41870_at RB1 Retinoblastoma 1 (including osteosarcoma)

14 U72936_s_at X-LINKED HELICASE II

15 X51521_at VIL2 Villin 2 (ezrin)

18 X74801_at T-COMPLEX PROTEIN 1, GAMMA SUBUNIT
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20 J05243_at SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)

21 U26266_s_at DHPS Deoxyhypusine synthase

25 M12959_s_at TCRA T cell receptor alpha-chain

28 M31211_s_at MYL1 Myosin light chain (alkali)

29 U62136_at Putative enterocyte differentiation promoting factor mRNA, partial cds

30 X15949_at IRF2 Interferon regulatory factor 2

31 U32944_at Cytoplasmic dynein light chain 1 (hdlc1) mRNA

32 L07758_at IEF SSP 9502 mRNA

36 S50223_at HKR-T1

38 M92287_at CCND3 Cyclin D3

39 U29175_at Transcriptional activator hSNF2b

40 U49020_cds2_s_at MEF2A gene (myocyte-specific enhancer factor 2A, C9 form) extracted from Hu

41 M89957_at IGB Immunoglobulin-associated beta (B29)

45 U73737_at GTBP DNA G/T mismatch-binding protein

46 M29696_at IL7R Interleukin 7 receptor

47 M94633_at GB DEF = Recombination acitivating protein (RAG2) gene, last exon

49 M83233_at TCF12 Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)

50 X59350_at CD22 CD22 antigen

51 M11722_at Terminal transferase mRNA

52 X62535_at DAGK1 Diacylglycerol kinase, alpha (80kD)

53 X63753_at SON SON DNA binding protein

54 X82240_rna1_at TCL1 gene (T cell leukemia) extracted from H.sapiens mRNA for Tcell leukemia/

55 M77142_at NUCLEOLYSIN TIA-1

56 Z69881_at Adenosine triphosphatase, calcium

57 U79285_at GLYCYLPEPTIDE N-TETRADECANOYLTRANSFERASE

58 Y08612_at RABAPTIN-5 protein

59 U27460_at Uridine diphosphoglucose pyrophosphorylase mRNA

60 M29536_at Translational initiation factor 2 beta subunit (elF-2-beta) mRNA

63 X63469_at GTF2E2 General transcription factor TFIIE beta subunit, 34 kD

64 D38073_at MCM3 Minichromosome maintenance deficient (S. cerevisiae) 3

65 U05259_rna1_at MB-1 gene

66 M60527_at DCK Deoxycytidine kinase

70 D14658_at KIAA0102 gene

71 U20998_at SRP9 Signal recognition particle 9 kD protein

72 U47077_at DNA-dependent protein kinase catalytic subunit (DNA-PKcs) mRNA

74 D88270_at GB DEF = (lambda) DNA for immunoglobin light chain

75 M13792_at ADA Adenosine deaminase

76 L05148_at Protein tyrosine kinase related mRNA sequence

77 D87078_at KIAA0235 gene, partial cds

78 U72342_at PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE 45 KD SUBUNIT

80 D26156_s_at Transcriptional activator hSNF2b

81 X56468_at 14-3-3 PROTEIN TAU

82 D86967_at KIAA0212 gene

83 X68560_at SP3 Sp3 transcription factor

85 U38846_at Stimulator of TAR RNA binding (SRB) mRNA

86 L28010_at HnRNP F protein mRNA

88 U49844_at Protein kinase ATR mRNA
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89 U31556_at E2F5 E2F transcription factor 5, p130-binding

90 L25931_s_at LBR Lamin B receptor
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