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Multiple Importance Sampling for First- and
Second-Order Polarization-Mode Dispersion

Sarah L. Fogal, Gino Biondini, and William L. Kath

Abstract—A simulation method that targets all possible com-
binations of first- and second-order polarization-mode dispersion
(PMD) is described. Use of this method in importance-sampled
Monte Carlo simulations yields a more comprehensive determi-
nation of PMD-induced system penalties than first-order biasing
alone and significantly speeds up the calculation of outage prob-
abilities, particularly when PMD compensation is employed. The
technique is demonstrated by using it to calculate the probability
distribution function (pdf) of second-order PMD and the joint pdf
of the magnatude of first- and second-order PMD.

Index Terms—Importance sampling, Monte Carlo simulation,
optical fiber communications, polarization-mode dispersion.

I. INTRODUCTION

OUTAGE probabilities due to polarization-mode disper-
sion (PMD) are typically required to be very small. This

constraint makes it extremely difficult to use either Monte
Carlo simulations or laboratory experiments to determine the
outage probability of a system, because of the extremely large
number of configurations that must be explored in order to
obtain reliable estimates. The rare events where PMD is unusu-
ally large are the ones most responsible for generating system
outages. Recently, we have applied importance sampling (IS)
[2] to numerical simulations of PMD [3]. The method works
by biasing Monte Carlo simulations so that the configurations
producing large differential group delays (DGDs) are realized
much more frequently. This makes it possible to directly
calculate the outage probability of systems for which first-order
PMD is of primary significance [4].

A natural measure of PMD is the PMD vector[1], the
magnitude of which is the DGD. The PMD vector is frequency
dependent, of course, and therefore the DGD at any given
frequency is not the sole determiner of system outages. In par-
ticular, second-order PMD, which includes both depolarization
and polarization-dependent chromatic dispersion (PCD), is
known to produce additional system penalties [5], [6]. Thus,
when using IS to calculate outage probability of a system, it is
often important to generate large values of the frequency deriva-
tive of the PMD vector, , which quantifies the second-order
PMD. Here we describe an IS technique that employs multiple
biasing schemes to generate arbitrary combinations of first-
and second-order PMD. As a result, the method generates
much more complete PMD statistics than first-order biasing
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alone. This is especially important when PMD compensation is
applied, since first-order PMD is typically reduced to moderate
values (or perfectly cancelled at a particular frequency). Note
also that a compensator comprised of a polarization controller
and a variable delay line can compensate not only first-order,
but also higer order PMD [7]. In these cases, it is possible for
second-order PMD to become the primary cause of system
penalties [8], [9]. We demonstrate the method by numerically
calculating the probability distribution function (pdf) of the
magnitude of the second-order PMD vector and the joint pdf
of the magnitude of the first- and second-order PMD vectors.
Extensions to large PCD events are also possible (but will be
present elsewhere).

II. IS FORBOTH FIRST- AND SECOND-ORDER PMD

Various numerical and experimental PMD generation tech-
niques use a concatenation of birefringent elements (such as
high-birefringence fibers or birefringent waveplates), either
connected by polarization controllers (i.e., “scramblers”) or
rotatable relative to one another. The PMD vector and
its derivative at a specific frequency after the st
section are obtained from their respective PMD concatenation
equations [1], which for linearly birefringent elements can be
written as

R (1)

R (2)

Here, is the differential PMD vector of the st sec-
tion andR is the Müller matrix of the st section. For
fixed length sections, the magnitude of is fixed, and only
its direction varies. For linearly birefringent elements,
lies on the equatorial plane of the Poincaré sphere.

When polarization controllers are present, an additional rota-
tion matrixQ left multiplies and in (1), (2). It is
possible to factor outQ from the concatenation equations;
the resulting equations are formally equivalent to (1), (2) with
a new rotation matrixR R Q , except that the new
contributions Q are uniformly distributed
on the Poincaré sphere. This property facilitates the implemen-
tation of IS with polarization scramblers, the case we describe
first. We refer to the situation where there are no polarization
controllers as the case of rotatable waveplates.

As shown in [3], the appropriate variables to control when ap-
plying IS are the orientations of the individual PMD vectors of
each section. IS works by biasing these toward specific
directions which maximally increase the particular quan-
tity of interest. We characterize the vector relative to the
orthonormal frame of reference formed by the unit vectors
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Fig. 1. The unit vectorsu ;u ;u and the directionb used to bias
the simulations.

, where is parallel to is par-
allel to (the component of perpendicular to ), and

, as illustrated in Fig. 1. The magnitudes of
(the component of parallel to ) and quantify

the PCD and the depolarization, respectively.
First-order biasing [3] is achieved by choosing to be

preferentially aligned with the previous PMD vector , i.e.,
for . When multiple biasing strengths are used [3],
this choice of biasing generates values ofand within re-
gion 1 in Fig. 2. (The actual in each Monte Carlo trial is
randomly chosen around . Increasing the biasing strength
has the effect of generating samples that are more narrowly
concentrated around .) First-order biasing yields the largest
values of DGD. It does not, however, produce particularly large
values of , because when is parallel to the contri-
bution to is zero. Random variations add second-order
PMD, but large values are not specifically targeted.

Over a single section, the choice that maximizes the contri-
bution to is to align with . The rate at which

increases, however, also depends on, and thus, when
optimizing over many sections, the growth of must also be
considered.

When the number of sections in the emulator is large, a
continuum approximation can be used to find the determin-
istic configuration that generates the maximum second-order
PMD. Specifically, we let . The
magnitude of describes the relative rate at which PMD
is added by the birefringent sections. For simplicity, we will
present the case const., but the calculations can
be easily generalized to any prescribed function (which
corresponds to the case of nonequal length sections). In this
continuum limit, for polarization scramblers one obtains

(3)

(4)

(5)

where are the components of in the coordinate
frame . This system of equations can be solved exactly for
any . The maximum second-order PMD is generated when

, i.e., when lies in the - plane. Calculus of varia-
tions can then be used to find the optimal choice ofand .
The maximum growth of second-order PMD is found to occur
when , where ,
with . With multiple biasing strengths, this choice
produces region 3 in Fig. 2. We refer to this choice, which yields
the largest values of , as optimal second-order biasing.

Fig. 2. The regions of thej��� j-j��� j plane targeted by the various biasing
methods. Region 1 corresponds to first-order biasing(� = 0), region 3
to pure second-order biasing(� = �=2), and regions 2, 4, and 5 to
� = �=4; 3�=4 and�, respectively. The dashed line shows the much
smaller region obtained with unbiased samples.

Of course, a more complete coverage of the- plane is
often needed. In this case, intermediate biasing choices must
also be used. These intermediate choices can be obtained by
using calculus of variations to maximize a linear combination
of and . The resulting form of is the same as above,
except that the value of the final angle ranges between 0
and , depending upon the specific combination of first- and
second-order PMD being maximized. A selection of angles, to-
gether with the resulting regions in the - plane, is illus-
trated in Fig. 2. The advantage of using multiple biasing—as
opposed to just pure first- or second-order biasing or no biasing
at all—is evident. Each value of generates samples lying
in a region that emanates in a roughly radial fashion from the
location where the joint pdf is maximum as the biasing strength
is increased. Together, a set of angles covers the entire

- plane.
Once the deterministic directions have been selected,

the contributions are randomly chosen to be preferen-
tially aligned with . This is done by using a biased distribu-
tion for the polar angle between and [3], while the
remaining angle (describing the azimuthal rotation of
about ) is kept uniform in . When birefringent wave-
plates are used, must lie the equatorial plane of the
Poincaré sphere. In this case, the biasing direction is obtained
by projecting the vector determined above onto the equa-
torial plane, and is biased toward this direction.

The simultaneous use of different biasing methods is called
multiple importance sampling[10], and several ways exist to
combine results coming from the various biasings. Here, we
used thebalance heuristic[11], which is asymptotically close
to optimal when the number of realizations is large. Of course,
the output of each individual Monte Carlo realization is always
adjusted for the biasing using the IS likelihood ratio [2], [3].

III. N UMERICAL RESULTS

As a specific example, we consider a concatenation of 50 sec-
tions with 0.5 ps of DGD per section. Fig. 3 shows, for scram-
blers (squares) and waveplates (circles), the pdfs of first- and
second-order PMD, obtained with optimal first- and second-
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Fig. 3. The pdf of second-order PMD for a concatenation of 50 sections
with 0.5-ps DGD each, using scramblers (squares) or waveplates (circles).
Bottom-left inset: The pdf on a linear scale. Top-right inset: The pdf of the
DGD. The solid lines show the pdfs for real fiber. A total of2 � 10 Monte
Carlo realizations were used.

Fig. 4. Contour plots of the joint pdf for a concatenation of 50 sections with
0.5-ps DGD each and polarization scramblers. The contours are at 10with
n = 30; 25; 20;15;10;8; 6; 5; 4; 3; 2:25;2; 1:75, and 1:5. A total of 10
Monte Carlo realizations were used.

order biasing, respectively. The solid lines show the analytical
pdfs for real fiber [12]. As in [3], a relatively small number of
realizations allows us to calculate extremely low probabilities.

For both scramblers and waveplates, the pdfs deviate from
the real fiber distributions in the tails, since here the PMD is
generated by an emulator with a finite number of birefringent
sections, which by necessity has finite maximums for both
and . (Similarly, such a device has unaccessible regions in
the - plane. The emulator should be chosen so that these
regions are uninfluential in determining the outage probability
of the systems to be tested.) For a device with equal length
birefringent sections, an approximate value for the maximum
second-order PMD is obtained from the exact solution of the
continuum model, evaluated for optimal second-order biasing:

, where is the number of sections and
is the DGD of each section. Of course, .

Fig. 4 shows the joint pdf of the magnitude of first- and
second-order PMD (a two-dimensional reduction of the full
three-dimensional joint pdf of first- and second-order PMD

[13]) for an emulator with polarization scramblers, as calculated
with the multiple biasing technique. The characteristic function
for PMD in an optical fiber (the limit of an infinite number of
infinitesimal birefringent sections) was found in [13], but, to
our knowledge, no exact analytical expression exists for the
joint pdf. (An approximate pdf was given in [13] for the case
where second-order PMD is a small perturbation compared to
first-order.) Similarly, the joint pdf for PMD emulators with a
finite number of sections is not known analytically.

IV. CONCLUSION

We have presented a simulation method that efficiently gen-
erates arbitrary combinations of first- and second-order PMD.
Used in conjunction with importance sampling, this technique
offers a much more complete coverage of rare PMD events than
previously possible, thus enabling a much more accurate deter-
mination of system outage probabilities. We have demonstrated
the method by calculating the pdf of second-order PMD as well
as the joint pdf of the magnitude of first- and second-order PMD.
Nontrivial combinations of first- and second-order PMD are ex-
pected to be potentially significant in realistic situations.
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