
Multiple Imputation by Fully Conditional Specification for 
Dealing with Missing Data in a Large Epidemiologic Study

Yang Liu1,2,* and Anindya De2

1Division of Analysis, Research, and Practice Integration, National Center for Injury Prevention 
and Control, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30341, USA

2Division of Global HIV/AIDS, Center for Global Health, U.S. Centers for Disease Control and 
Prevention, Atlanta, Georgia, 30333, USA

Abstract

Missing data commonly occur in large epidemiologic studies. Ignoring incompleteness or handling 

the data inappropriately may bias study results, reduce power and efficiency, and alter important 

risk/benefit relationships. Standard ways of dealing with missing values, such as complete case 

analysis (CCA), are generally inappropriate due to the loss of precision and risk of bias. Multiple 

imputation by fully conditional specification (FCS MI) is a powerful and statistically valid method 

for creating imputations in large data sets which include both categorical and continuous variables. 

It specifies the multivariate imputation model on a variable-by-variable basis and offers a 

principled yet flexible method of addressing missing data, which is particularly useful for large 

data sets with complex data structures. However, FCS MI is still rarely used in epidemiology, and 

few practical resources exist to guide researchers in the implementation of this technique. We 

demonstrate the application of FCS MI in support of a large epidemiologic study evaluating 

national blood utilization patterns in a sub-Saharan African country. A number of practical tips 

and guidelines for implementing FCS MI based on this experience are described.
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 1. INTRODUCTION

Missing data are a pervasive problem in large epidemiologic studies. Incomplete data may 

arise due to refusal, attrition, measurement errors and miscommunication. Missing data 

result in a loss of precision and are also a source of bias if observations are not missing 

completely at random (MCAR) [1–3]. The most widely adopted strategy for dealing with 

missing data is to omit observations having missing values and perform a complete case 

analysis (CCA). In certain circumstances (e.g. when there is less than 5% missingness and 

the missing is MCAR), CCA may be an acceptable approach. In practice, however, these 

circumstances rarely occur [4]. The cumulative effect of missing data in several variables 

often leads to exclusion of a substantial proportion of the original sample, which in turn 

causes a substantial loss of precision and power. CCA may suffer from a loss of information 

in the incomplete cases and risk of bias if the missing data are not MCAR. More general 

objections to CCA are that it lacks an underlying statistical rationale and that it is difficult to 

determine when CCA will yield reasonable results [5]. Other method, like single imputation 

(SI), simply replaces the missing value with either a mean value or another appropriate value 

from a similar unit or “neighbor,” to create a ‘complete’ data set [3,4]. SI underestimates the 

uncertainty introduced by imputation, which may cause the generation of inappropriately 

small variances and potentially biased estimates. None of these above ad hoc approaches is 

statistically valid in general and they can lead to serious bias.

Statistical methods for addressing missing values have been actively pursued in recent years, 

including maximum likelihood (ML) estimation [6], Bayesian estimation [7] and multiple 

imputation (MI) [8], all of which are based on the assumption that data are missing at 

random (MAR) [9]. These approaches are especially useful when the data contain many 

patterns of missing values, or when both categorical and continuous random variables are 

involved. However, MI is the only technique that is computationally straightforward, 

versatile, relatively easy to apply, and increasingly available in standard statistical software, 

including SAS PROC MI and R MICE (Multiple Imputation by Chained Equations) package 

[10]. For general missing data patterns, there are two major iterative methods for doing 

multiple imputation: the joint modeling (JM) and the fully conditional specification (FCS) 

method [11]. Joint modeling is based on the assumption of joint multivariate normality of all 

variables, which implies that valid imputations may be generated by linear regression 

equations. It is ill-suited for imputing categorical variables since it assumes normality and 

linearity [12, 13]. FCS relaxes that assumption and is rapidly emerging as a commonly used 

method for handling missing data [14–16]. FCS MI specifies the multivariate imputation 

model on a variable-by-variable basis by a set of conditional densities, one for each 

incomplete variable. This permits a great deal of flexibility, since an appropriate regression 

model can be selected for each variable (e.g. linear regression for continuous variables, 

logistic regression for categorical variables) [10, 17]. Simulation studies provide evidence 

that FCS MI generally yields estimates that are unbiased and provide appropriate coverage 

[11, 18]. However, FCS is still rarely used in epidemiology, perhaps in part because 

relatively little practical guidance is available for implementing and evaluating this method. 

Only few studies have looked at practical questions about how to implement MI in large data 

sets used for diverse purposes [19–21].
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The present study aims to provide an introduction to FCS MI with a focus on practical 

aspects and challenges in using this method for dealing with multivariate missing data. We 

introduce the basic concepts and general methodology, and provide detailed guidance based 

on our experience with a large epidemiologic study evaluating national blood utilization 

patterns in Namibia, a country in southern Africa. Studying blood utilization patterns is 

essential for forecasting and predicting future blood stock requirements. However, broader 

analyses which evaluate blood utilization at a national level are lacking [22]. To our 

knowledge, this study is the first multi-year evaluation of national blood component use in 

an African country [23].

 2. METHOD

 2.1. Blood Transfusion Service of Namibia (NAMBTS) Nationally Representative Census

NAMBTS is the only organization authorized to collect, process and distribute blood and 

blood components intended for transfusion in Namibia. Clinical and demographic data from 

46 transfusion centers were reviewed for a four year period from August 1, 2007 through 

July 31, 2011. A total of 39,313 blood requests (each representing a transfusion event) were 

submitted to NAMBTS during the study period [23]. Since these data are primarily used for 

billing purposes, clinical and patient demographic variables captured on the paper-based 

blood request form (e.g., diagnosis, age and sex) were sometimes, but not always, entered 

into a national electronic database. To standardize the analysis, data on diagnoses reported 

by clinicians were matched to broad diagnostic categories in the WHO International 

Classification of Disease (ICD-10) system. As shown in Table 1, records were 100% 

complete for location and date, as well as number and type of blood component ordered. 

However, 23.2%, 19.6% and 9.9% of records were missing for Diagnosis, Age and Gender, 

respectively. Due to the cumulative effect of missing data in these variables, 32.4% of the 

total 39,313 blood requests had at least one missing value. To create a full national census 

for the four year study period, and to minimize bias due to any systematic differences 

between complete records and those with missing data, FCS MI was performed to impute 

estimated values. Based on the imputed datasets obtained by this method, we further 

analyzed blood utilization patterns stratified by diagnosis, gender and age, and developed a 

unique portrait of blood use in Namibia.

 2.2. Imputation

 Assumptions—The risk of bias due to missing data depends on the reasons why data 

are missing. Three types of missing data are commonly classified: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR 

indicates that the probability of an observation being missing does not depend on the value 

of any variables under study, which is a fairly strong assumption and tends to be relatively 

rare. MAR indicates the probability of missing depend only on the subset of complete cases, 

and is less restrictive than MCAR. Most MI methods, including FCS MI, generally assume 

that the data is at least MAR, and therefore remains valid if observations are MCAR.

MNAR indicates the probability that a missing value is associated with the missing variable 

itself and with other variables. It can be difficult to determine whether variables are MNAR, 
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because the information that would confirm that values are MNAR is unobserved. As a 

result, the decision to treat data as MNAR is often made based on theoretical and/or 

substantive information, rather than information present in the data itself. Therefore, biases 

caused by data that are MNAR can be addressed only by sensitivity analyses examining the 

effect of different assumptions about the missing data mechanism.

 Algorithms—The key step of the MI procedure is the specification of the imputation 

model. Two general approaches for imputing multivariate missing data have emerged: joint 

modeling (JM) and FCS. JM involves specifying a multivariate distribution for the missing 

data, and drawing imputation from their conditional distributions by Markov Chain Monte 

Carlo (MCMC) techniques [10]. This methodology is attractive if the multivariate 

distribution is a reasonable description of the data. However, in practice, the data often 

consists of variables with different scales, and quite complex relations between variables 

may occur that are hard to capture in an explicitly specified joint distribution for the entire 

data. Instead of drawing the imputations from a pre-specified joint distribution, FCS 

imputations are generated sequentially by specifying an imputation model for each variable 

given the other variables. Let Y be the partially observed complete sample, consisting of p 
variables, from the multivariate distribution P(Y|θ). Further, let Y−j be all variables in the 

data except Yj, j = 1, …, p. We assume that the multivariate distribution of Y is completely 

specified by θ, a vector of unknown parameters. The posterior distribution of θ is obtained 

by iteratively sampling from conditional distributions of the form

The parameters θ1,…, θp are specific to the respective conditional densities and are not 

necessarily the product of a factorization of the “true’ joint distribution P(Y|θ). FCS starts 

with an initial imputation and draws imputations by iterating over the conditional densities 

and sequentially filling in the current draws of each variable. The tth iteration of the Gibbs 

sampler is

where  is the imputed value for the variable j at the tth iteration [24]. 

After the cycle reaches convergence, the current draws are taken as the first set of imputed 

values. The cycle is then repeated until the desired number of imputations has been 

achieved.
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 FCS MI Using SAS PROC MI—SAS PROC MI performs the imputation stage and can 

be used with either monotone or arbitrary missing patterns. The FCS statement is a new 

addition to the PROC MI in SAS version 9.3. This procedure does not start with a specified 

multivariate posterior distribution of observed data, but instead uses a separate conditional 

distribution of each imputed variable. It is attractive because of its ability to impute both 

continuous and categorical variables appropriately. It can also incorporate features such as 

the specification of upper or lower bounds for variables, and a rounding option for imputed 

values. The general coding procedure for PROC MI using FCS statement is shown in 

Supporting Materials.

The discriminant function, logistic regression, regression, and predictive mean matching 

methods are available in the FCS statement. For continuous variables, the regression (REG) 

and predictive mean matching (REGPPM) methods can be used to impute missing values. 

The logistic regression (LOGISTIC) method can be used for variables having binary or 

ordinal responses, and the discriminant function (DISCRIM) method is used for variables 

having binary or nominal responses.

Generally the imputation model should include all the variables likely to be used in the 

subsequent analyses [25]. For the imputation of a particular variable, the model should 

include variables in the complete-data model, variables that are correlated with the imputed 

variable, and variables that are associated with the missingness of the imputed variable. The 

dependent variable(s) must be included in the imputation model. Otherwise the imputed 

values will not have the same relationship to the dependent variable that the observed values 

do. Typically m = 4–20 imputations are created, resulting in 4–20 “complete” imputed data 

sets, though more are computationally feasible and better characterize the variability 

introduced into the results due to the imputation process [26]. In our case, the FCS statement 

included a specific modelling approach to impute missing values for both continuous (Age) 

and categorical variables (Diagnosis and Gender) with arbitrary missing patterns.

 Imputation Diagnostics—Once the imputation model has been specified and the 

initial imputations created, the quality of imputations should be examined. Graphic and 

numeric diagnostics are commonly used for identifying problematic variables and detecting 

possible implausible values [27]. Imputations can be checked by using a standard of 

reasonability: the differences between the observed and imputed values, and the distribution 

of the completed data as a whole, can be checked to see whether they make sense in the 

context of the problem being studied. These diagnostics are applied to one randomly 

selected completed data set constructed by FCS imputations and then repeated with another 

one to confirm if similar results are obtained. Kernel density estimate plots are used to 

visually compare the distributions of the observed, imputed and completed values of each 

variable. When there is large number of variables, it may be difficult to carefully examine 

graphical summaries of each variable. Numerical summaries that compare differences in 

means and standard deviations are an additional approach to identifying problematic 

variables and may be more feasible within the context of large datasets. For numeric 

diagnostic, nonparametric Kolmogorov-Smirnov (KS) test is used to numerically compare 

the marginal distribution and test statistically significant differences (p-value). When p-value 

is less than 0.05, we would reject the hypothesis that there is no significant difference 

Liu and De Page 5

Int J Stat Med Res. Author manuscript; available in PMC 2016 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between two empirical distributions. Imputation diagnostics should be used to identify 

potentially problematic variables. Then information regarding the missingness, along with 

substantive knowledge, can be used to determine whether the imputations are in fact 

reasonable or whether the procedure needs to be further modified [19].

 FCS MI Analysis—The m imputations are intended to represent a plausible range of 

values that approximate the missing value, had it not been missing. The variability of values 

within this range allows the uncertainty in the imputation process to be quantified and 

integrated into the analysis. Each of the m “complete” data sets is analyzed using a standard 

analytic method that will estimate the quantities of scientific interest. Results on each data 

set will vary due to the difference in values during the multiple imputations. Then the 

estimates from the imputed data sets are combined or pooled to generate a single set of 

estimates. The overall estimate is the average of the estimates. The variance of that overall 

estimate is a function of variance within each imputed data set and the variance across the 

data sets:

The strength of MI is that any analysis model can be applied to the imputed data sets. In 

SAS, the command PROC MIANALYZE is used to combine results across datasets 

automatically. This make the analysis of imputed datasets no more complicated than running 

a single regression in a single dataset. In our case, multinomial logistic regression model was 

applied to each imputed data set to compute the conditional proportions (p) and 95% 

Confidence Interval (CI) for three blood unit types (RBC, Platelet and FFP). Finally the 

results were combined using PROC MIANALYZE to give the valid estimates. FCS MI 

results in statistically valid estimates with confidence intervals that account for the 

uncertainty caused by the missing data as well as the sampling error of the estimates using 

CCA [14].

 Comparison of FCS MI and CCA—MI is widely advocated as an improvement over 

CCA. However, it is often implemented without adequate consideration of whether it offers 

any advantage over CCA for the research question of interest, or whether potential gains 

may be offset by bias from a poorly fitting imputation model, particularly as the amount of 

missing data increases. For these reasons, it has been recommended to carry out a CCA in 

parallel when using MI for handling missingness [5]. Where CCA and MI analysis give 

different results, the analyst should attempt to understand why, and this should be reported in 

publications.

 3. RESULTS

Table 1 shows the frequency analysis of three missing variables (Diagnosis, Age and 

Gender) in original NAMBTS data sample. Due to the cumulative effect of missing data in 

three variables, 32.4% of total blood requests had at least one missing value. FCS MI was 

then performed to handle missing data and create a full four year NAMBTS national census. 

The imputation model included all the variables likely to be used in the subsequent analyses 
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to ensure that all of the information in the large dataset was used. The imputation number 

was chosen as 20 and finally 20 complete data sets were obtained.

To examine the quality of imputation, one imputed data set was selected randomly for 

imputation diagnostics, and the missing variable Age was used as an example for imputation 

diagnostics. As shown in Figure 1, the shape of the Age distribution of the imputed values 

(blue line) differed from that of the observed values (green line), while the distribution 

between the observed (green line) and the completed data (red line) was quite similar. 

Numeric diagnostics were further applied to numerically compare the empirical distributions 

of Age in the observed, imputed and completed data and test the statistically significant 

differences (p-value). We could identify quickly the differences of Age distribution among 

three different data sets. Figure 2 shows a simple example if we choose a ‘good’ or ‘bad’ 

imputation model, what will happen in imputation diagnostics. Since the Age distribution is 

not normal, REGPMM model is chosen as an appropriate model (blue line) for imputing 

Age, instead of using REG model (red line) which assumes normality. For imputing 

Diagnosis and Gender which both had nominal responses, thus the discriminant function 

(DISCRIM) method was used to impute these categorical variables.

To evaluate the blood utilization pattern, the conditional proportion (p) of each blood unit 

type (RBC, Platelet and FFP) was computed to develop a unique portrait of blood use in 

Namibia. Table 2 showed the counts of each type of blood component unit associated with 

each transfusion event, stratified by component types. A total of 39,313 events accounted for 

91,389 blood component units. 91,389 and 60,632 total blood component units were counted 

from FCI MS and CCA respectively. Table 3 (Supporting Tables 4, 5) showed the total 

number of RBC (FFP and platelet) units requested during the study period were further 

stratified by diagnosis, age and gender (Supporting Tables 4 and 5 shown in Supporting 

Materials). The predominant four ICD categories associated with three blood component 

units were listed for comparison. For example, Table 3 showed the top four diagnoses in the 

“Diseases of the blood and blood-forming organs and certain disorders involving the 

immune mechanism (D50-D89)”, “Infectious Disease (A00-B99)”, “Pregnancy (O00-O99)”, 

and “Gastrointestinal (K20-K93)” accounted for 38.9%, 14.8%, 11.1% and 6.1% of RBC 

units issued, respectively. The remaining 30% of units issued were associated with 15 other 

ICD categories, none of which individually accounted for more than 5% of all units, and six 

of which accounted for <1% of all units. These 15 other ICD categories were classified as 

“All others”. Studying blood utilization patterns is essential for forecasting and predicting 

future blood stock requirements and it may help set realistic national blood collection goals 

[23].

 4. DISCUSSION

To obtain valid inferences or statistical estimates of interest from imputed data, imputation 

should preserve the structure in the data, as well as any uncertainty about this structure, and 

account for any reasons related to the process that generated the missing data. FCS MI 

specifies the multivariate imputation model on a variable-by-variable basis by a set of 

conditional densities, one for each incomplete variable. It is particularly appealing in settings 
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in which a number of variables have missing data, some of which are continuous and some 

of which are categorical [26, 28].

Checking of imputation models is necessary because it can identify model defects and 

facilitate model improvement. Some deviations of the observed and imputed data can be 

expected under MAR (Figure 1). But that is not necessarily a problem because the 

distributions should be similar only if the data are MCAR. In fact, these differences may be 

indicative of the bias that imputation is trying to address. However, we can see dramatic 

distribution differences between observed and imputed data if the ‘bad’ REG model is 

chosen for imputing Age (Figure 2). This large difference in imputation diagnostics is a sign 

for a potential problem, meaning further assessment of the imputation model is required. 

The best practice may be to repeat the analysis under different imputation models to see if, 

and how, changes in the imputation model result in changes in the final results. Choosing a 

good imputation model is important since the quality of the imputation model will influence 

the quality of the final results.

Once the imputation model has been specified and the initial imputations created, imputation 

diagnostics are commonly used for identifying problematic variables and detecting possible 

implausible values. More complex imputation diagnostics method can be found [27], in 

which residuals from regression models were used to determine which differences in 

distribution were reasonable. Methods for addressing imputation diagnostics are an area of 

on-going statistical research. Further research is needed to incorporate the imputation 

diagnostics directly into common MI software packages [29].

Comparing results from FCS MI and CCA may provide clues about the nature of the data. It 

also provides reassurance if inference from the two are similar, but may highlight issues with 

one or both approaches if results differ substantially. As shown in Table 3 (Supporting 

Tables 4, 5), FCS MI and CCA were conducted to estimate the conditional proportions for 

three blood unit uses (RBC, Platelet and FFP) stratified by Diagnosis, Age and Gender. 

While resorting to complete cases is simple, CCA suffers from a loss of information in the 

incomplete cases and risk of bias if the missing data is not MCAR. FCS MI may reduce bias 

in estimates while accounting for the uncertainty in the imputation process, preserving study 

power and holding less restrictive but more plausible MAR assumption.

Although attractive, FCS MI is not without drawbacks [17]. First, FCS MI is based on the 

assumption of MAR. For missing data which is MNAR, new methods generating MIs under 

MNAR model will be required for handing such kind of missing data [30, 31], which is out 

of the interest of this study. Another way is to preclude MNAR data to MAR by changing 

the study design. For example, when MNAR attrition is anticipated, we could ask one more 

question at each occasion of measurement for each participant, “How likely are you to drop 

out this study before next session?” Collecting this additional covariate and including it in 

the imputation model will effectively convert an MNAR situation to MAR [3]. Thus, FCS 

MI can still be used. Second, for FCS MI, each conditional density has to be specified 

separately, so substantial modeling effort can be needed for data sets with many variables. 

Third, FCS MI lacks the theoretical justification of some other well developed imputation 

approaches like MCMC. Relatively little is known about the quality of the resulting 
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imputations because the implied joint distributions may not exist theoretically and that 

convergence criteria are ambiguous [11].

In conclusion, FCS MI is a powerful and statistically valid method for creating imputations 

in large data sets with complex data structures. This paper provides a detailed guidance for 

using FCS MI method to deal with multivariate missing data in large data sets, with the aim 

of helping researchers to implement and use this method for their own data.
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Figure 1. 
Imputation diagnostics (Graphic and Numeric).
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Figure 2. 
Comparison of imputation models: Blue line represents the Age distribution of imputed data 

by an appropriate REGPMM model (Imputed_Good); Red line represents the Age 

distribution of imputed data by an inappropriate REG model (Imputation_Bad); Green line 

represents the Age distribution of the observed data set.
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