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Abstract 

Multiple imputation is used to handle missing at random (MAR) data.  Despite warnings from statisticians, continuous 

variables are often recoded into binary variables.  With MI it is important that the imputation and analysis models are 

compatible; variables should be imputed in the same form they appear in the analysis model.  With an encoded binary 

variable more accurate imputations may be obtained by imputing the underlying continuous variable.  We conducted a 

simulation study to explore how best to impute a binary variable that was created from an underlying continuous variable.  

We generated a completely observed continuous outcome associated with an incomplete binary covariate that is a 

categorised version of an underlying continuous covariate, and an auxiliary variable associated with the underlying 

continuous covariate.  We simulated data with several sample sizes, and set 25% and 50% of data in the covariate to MAR 

dependent on the outcome and the auxiliary variable. We compared the performance of five different imputation methods: 

1) imputation of the binary variable using logistic regression; 2) imputation of the continuous variable using linear 

regression, then categorising into the binary variable;  3&4) imputation of both the continuous and binary variables using 

fully conditional specification (FCS) and multivariate normal imputation (MVNI); 5) substantive-model compatible (SMC) 

FCS. Bias and standard errors were large when the continuous variable only was imputed.  The other methods performed 

adequately.  Imputation of both the binary and continuous variables using FCS often encountered mathematical difficulties. 

We recommend the SMC-FCS method as it performed best in our simulation studies. 
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1. Introduction 

Public health and medical research commonly involves the converting of continuous variables into 

dichotomous variables for analysis. For example, body mass index (BMI) is often categorised into normal 

weight and obese, and blood pressure  into normotensive or hypertensive (Royston, et al., 2006).    

 

Missing data is a common problem in all medical research.  Multiple imputation is one principled technique 

that addresses the uncertainty inherent in data analysis where data are missing and assumed to be missing at 

random (MAR) (Harel and Zhou, 2007; Rubin, 1987), that is when the probability of dropout is related to the 

observed data, but not unobserved data (Rubin, 1976). 

 

Multiple imputation starts by specifying a joint distribution for the variables in the analysis model and other 

variables that are associated with the incomplete variables, known as the imputation model.  This model is then 

fitted to the observed data to obtain initial estimates of the model parameters.  The parameters of the 

imputation model are then updated by drawing a sample from their posterior distribution and these models are 

used to impute the missing values.  This process is repeated to create multiple imputed datasets, which are then 

analysed using the analysis model as for complete case analysis. Finally, the estimates from the analysis 

models are then combined across the multiple datasets using the formulae suggested by Rubin (1987).   

 

Since 1994, it has been highlighted that multiple imputation inference requires congeniality in order to be valid 

(Meng, 1994). Compatibility means that the imputation and analysis models can both be derived from a well-

defined joint model for all the variables involved.  The analysis model cannot include variables or relationships 

between variables, such as interactions, that were not included in the imputation model (Carpenter and 

Kenward, 2013; Enders, 2010; Harel and Zhou, 2007; Raghunathan, 2016).  For a large number of imputed 

datasets, compatibility of the imputation procedure and the analysis model ensures that inference on multiple 

imputation data approximates the maximum likelihood procedure. Simplistically, the compatibility requirement 

means that variables should be imputed in the same form as they appear in the analysis model.  

 

It is reasonable to belief that continuous variables contain more information about the underlying construct 

than binary variables (Royston, et al., 2006) potentially resulting in more accurate imputations, improved 

model performance and statistical inference.  In addition, imputation of binary variables directly e.g. using 

logistic regression can encounter mathematical difficulties problems during the multiple imputation process.  

These two facts combined raises the question regarding how best to impute a binary variable of interest when it 

is derived from an underlying continuous variable.  

 

The aim of this research was to explore how best to impute a binary variable that has been created from an 

underlying continuous variable when the binary variable is required in the analysis model.  We focus on the 

setting where there is missing data in a key exposure variable or risk factor and we are interested in estimating 

the relationship with a completely observed continuous outcome. We compare 1) imputation of the binary 

variable using logistic regression; 2) imputation of the underlying continuous variable using linear regression, 

then categorising into the binary variable;  3 and 4) imputation of both the continuous and binary variables 
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using fully conditional specification (FCS) and multivariate normal imputation (MVNI), respectively using a 

simulation study and a real data example. 

 

2. Methods 

2.1 Notation 

Let     denote the values of a continuous covariate, and    , a completely observed continuous outcome 

variable, for subject   (       ).         is a binary variable derived from     using a specific cut-off; if      then        , else       = 0.    ,    and     denote the values of an auxiliary variable, and a 

continuous and binary covariate, respectively.  

 

2.2 Simulation study 

We conducted a simulation study to evaluate the performance of five possible multiple imputation methods 

that could be used in this context.  In all simulations we simulated 1000 datasets with three different sample 

sizes (1000, 500, and 200) chosen to represent realistic sample sizes used in the literature.  The number of 

simulations performed was based on the desired accuracy of the regression coefficient using the formula given 

in  Burton, et al. (2006). If the variance was approximately 1 then 1000 simulations are required to produce an 

estimate to within 1% accuracy of the true regression coefficient of 6 with a significance level of 0.05.  

 

2.3 Simulation of complete data 

The binary covariate,     was created, with half the sample being in the first category and half the sample in the 

second category, e.g. a variable such as sex.  The continuous covariate,     was created as a random variable 

from a normal distribution with a mean of 80 and a standard deviation of 10.  The continuous variable of 

interest     was then generated from a linear equation of the binary covariate,     the continuous covariate,   , 
and a normally distributed error term, thus for any individual:                  
 

We set     ,        and generated    from a       (   ) distribution, which represent strong but 

potentially realistic relationships between these variables.  An auxiliary variable,   , was simulated to be 

associated with   , using          
where    was generated from a Normal(0,7) distribution, in order to create a larger spread of values.  In this 

simulation study, we deliberately generated the covariates and auxiliary variable to be associated with the 

continuous variable    as we believe this would more likely be the true relationship in practice and to ensure 

that there truly is “more information” to be gained in the continuous version of    during multiple imputation.   

 

Next the binary version ,      , was generated in two scenarios; in the first scenario 15% of the dataset was set 

to be in the extreme category (this can be thought of as diseased/obese/high blood pressure) by using a cut-off 
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of 25 (corresponding to the cut-off for overweight on BMI). In the second scenario 30% of the dataset was set 

to the extreme category, using a cut-off of 19.  

 

Finally,    was simulated as                               
where α = 60,     ,     ,        and    is simulated from a       (   ) distribution, where the    and   were selected to be reasonably large but realistic and α was selected to provide a reasonable range for   . In 

the data generation model we set    to depend on       rather than on    because we wanted to ensure that we 

were fitting the correct analysis model.   

 

2.4 Imposing missing data 

All variables were completely observed, with the exception of    and      where missingness was imposed on 

the data.  Three different missing data mechanisms were simulated.  The first was assuming that missing data 

was missing completely at random (MCAR).  In this scenario 25% of    and the corresponding       variables 

were set to missing randomly, regardless of the values of any of the variables.   

 

In the second and third scenarios data were set MAR, where the probability of missingness in    was 

determined by a logistic regression model dependent on    and         (     )                 and    was set to 0.693, corresponding to an odds ratio of 2, a reasonably strong, but potentially realistic 

association with missingness and   was set to ensure approximately 25% and 50% missingness, respectively.  

If    was missing,       was also set to missing.  

 

2.5 Multiple imputation models evaluated 

We compare the performance of five different multiple imputation models, which can all easily be 

implemented in standard software. All analyses were conducted in Stata, version 14.2:  

i) Imputation of the binary variable of interest using logistic regression.  Using this approach, “mi impute 

logit” was used to impute the binary variable directly. This approach involves first creating the binary 

variable for the non-missing observations and then imputing the binary variable. This imputation model is 

compatible with the analysis model.  

ii) Imputation of the underlying continuous variable using linear regression, then deriving the incomplete 

binary variable using the pre-specified cut-point to the imputed continuous variable.  This was 

implemented using “mi impute regress” in Stata. This imputation model is not compatible with the 

analysis model.   

iii) Imputation of both the continuous and binary variables using FCS, also known as multiple imputation 

using chained equations (MICE). Imputing two derivations of the same variable as separate variables in 

this way is referred to as “Just Another Variable” (JAV).  In this method the binary variable is imputed 

using a logistic regression model and the underlying continuous variable is imputed using a linear 
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regression model in a sequential fashion.  The model cycles through the variables, imputing missing 

values in each variable in turn using a model for the distribution of that variable conditional on all the 

other variables in the imputation model.  This was implemented using “mi impute chained” in Stata. 

This imputation model is compatible with the analysis model.  

iv) Imputation of both the continuous and binary variables using JAV with multivariate normal imputation 

(MVNI) where all the variables in the imputation model are assumed to be jointly normally distributed. 

This was implemented using “mi impute mvn”. Following MI, the imputed       variable was not 

categorised, but the non-integer values were used in the analysis.  This method could also have been 

evaluated by imputing both variables using linear regression in FCS. This imputation model is not 

compatible with the analysis model.  

v) Imputation using substantive model compatible (SMC) FCS which imputes missing values using a 

modified version of FCS where each partially observed covariate is imputed from an imputation model 

that is compatible with the analysis model (Bartlett, et al., 2015).  In this method missing    is imputed 

from a joint model, then       is derived as         if      is larger than the specified cut-off. Rejection 

sampling is then used to draw a value which is bounded by a quantity depending on the substantive 

model. This imputation model is compatible with the analysis model.  

 

For all five methods the imputation models included the outcome, the covariate and the auxiliary variables and 

we imputed 50 datasets. Note, the imputed values of       and    will not necessarily be consistent with each 

other in the last two multivariable methods. 

 

We also carried out a complete data analysis for each simulation scenario, before any data was set to missing. 

We also carried out a naïve complete case analysis for each scenario which included only cases who did not 

have missing data in      . 

 

The analysis model was an adjusted linear regression model for    on      ;                                
We compared inferences regarding the    coefficient compared with the true value used to generate the data 

(i.e. 6). In our simulation study we investigated the bias in the    coefficient estimation, the empirical standard 

error, the percentage error in the model based standard error using the empirical standard error as comparison 

and the coverage of the 95% confidence interval for    calculated using Rubin’s Rules.  

 

2.6 Motivating example 

The Longitudinal Study of Australian Children (LSAC) began in 2004 as a nationally-representative sample of 

5107 0-1 year old Australian children followed every 2 years.  The cross-sectional biophysical Child Heath 

CheckPoint module was nested between waves 6 and 7 of LSAC from February 2015 to March 2016 and 

assessed multiple physical health outcomes including BMI and sleep. Both LSAC (Edwards, 2014) and 

CheckPoint (Wake, et al., 2014) are described in more detail elsewhere.  
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There is strong evidence that short sleep duration  is associated with obesity in both children and adults 

(Cappuccio, et al., 2008).  We used the data collected in CheckPoint to investigate this association; with child 

BMI z-score as outcome and short sleep duration as predictor, adjusting for child sex and age. 

 

BMI was calculated as kg/m
2
 from measurements taken by trained staff and transformed into z-scores using 

CDC population normative data (Kuczmarski, et al., 2000).  Objectively-measured sleep characteristics were 

collected using tri-axial, wrist-worn GENEActiv accelerometers worn on the child’s non-dominant wrist for 

eight consecutive days. Sleep time characteristics were derived from raw accelerometer data, using self-reported 

records of bedtime and wake-time as a guide to locating sleep onset and offset. Data were processed using 

Cobra custom software. Sleep duration was calculated as the difference between sleep onset (the start of the first 

three consecutive minutes scored as sleep) and offset (the end of the last five consecutive minutes scored as 

sleep).  

 

To illustrate the analysis when the binary category included 15% and 30%, respectively, short duration of sleep 

was defined using a cut-off at the 15
th

 and 30
th

 percentile of the observed data; 520 minutes (8.7 hours) and 545 

minutes (9.1 hours), respectively.  We applied the five methods tested in the simulation study to this dataset.  

 

3. Results 

3.1 Results of simulation study 

[ Table 1 about here ] 

 

For all scenarios, bias and percentage error in the standard error were large when the underlying continuous 

variable was imputed only, while the coverage of the 95% confidence interval was small.  This was even the 

case when the data were MCAR (Table 1).  

 

When imputation was conducted using logistic regression (Model i), imputed both continuous and binary 

variables using FCS (Model iii), or SMC FCS (Model v) all performed well.  These were the scenarios where 

the imputation model was compatible with the analysis model. As expected these three methods performed 

better for larger sample sizes than for smaller sample sizes, with less missing data (25% vs 50%), and when 

more observations were in the diseased category (30% vs 15%).  All three of these models had coverage of the 

95% confidence interval close to 95%. In general SMC FCS performed better than the other approaches. 

It is interesting to compare the performance of the two JAV methods.  In most of the simulation studies the 

bias was larger when using MVNI than using FCS, while coverage was better for FCS than for MVNI.  The 

exceptions were when the missingness was MCAR and the sample size was relatively small (n=200).  

 

Imputing just the binary variable and imputing both variables using FCS had smaller bias than the complete 

case analysis in MAR settings, except when sample size was only 200.  Imputing both variables using MVNI 

had similar or larger bias than the complete case analysis. 
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However, bias and coverage might not be the only considerations to take into account in practical settings 

when analysing real data.  Some of the models experienced numerical difficulties during the imputation model 

fitting step such that Stata does not produce imputed values and parameter estimates due to prefect 

prediction of the binary exposure variable.  As expected, this was more prevalent with smaller sample sizes, 

larger percentage of missing data and only occurred when 15% of the simulated subjects were in the diseased 

category.  Table 2 summarises the percentage of models that had numerical difficulties for each of the 

imputation approaches in each of the simulation scenarios.  In the most extreme scenario; small sample size 

(200), small number of subjects in the disease category (15%), and large amount of data missing (50%), 65.8% 

of the imputations had numerical difficulties with only two of the multiple imputation methods used.  Of note, 

the SMC FCS models took a longer time to run than the other approaches, but did not experience numerical 

difficulties and could be implemented in all scenarios. 

 

[ Table 2 about here  ] 

 

The easiest imputation model to fit, with small bias, namely to impute the binary variable using logistic 

regression was also the model most likely to have numerical problems.  This can be an issue in practice if it is 

not possible to obtain estimates.  The method where a continuous variable is imputed never had numerical 

problems, but had unacceptably high bias and low coverage. 

 

3.2 Results of motivating example 

Of the 1874 children who attended the CheckPoint assessments, 1371 had sleep data collected, thus 27% has 

missing data. Two children were excluded from this analysis because they did not have BMI measured.  We 

used logistic regression to investigate whether missingness depended on any variables. In an exploratory 

analysis of the data, the following variables were found to be associated with missingness: sampling stratum, 

age, socioeconomic status, maternal smoking status.  

 

For the scenario where 15% of children were classified as having sleep of short duration, the complete case 

analysis gave a regression coefficient of 0.21 (95% CI: 0.06-0.35; p-value=0.006); meaning that children who 

had short sleep duration had a 0.21 higher BMI z-score than children who sleep adequately.  In the analysis 

where the binary variable is imputed using logistic regression the regression coefficient was 0.22 (95% CI: 

0.07-0.36; p-value=0.003).  In the analysis where the continuous variable is imputed using linear regression the 

regression coefficient was 0.18 (95% CI: 0.04-0.32; p-value=0.012).  The results from the FCS imputation and 

MVNI were 0.14 (95% CI: -0.002-0.29; p-value=0.05) and 0.21 (95% CI:0.06-0.36 ; p-value=0.006); 

respectively.  The results from the SMC FCS imputation was 0.21 (95% CI: 0.07-0.36; p-value=0.004). The 

results are fairly similar with all multiple imputation methods and the complete case analysis, except for FCS 

and imputing the continuous variable using linear regression (Figure 1).  

 

[ Figure 1: Results of multiple imputation using five different methods for the CheckPoint example. Regression 

coefficients with 95% confidence intervals for the association of BMI z-score with short sleep duration ] 
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For the scenario where 30% of children were classified as having sleep of short duration the complete case 

regression coefficient was 0.12 (95% CI: 0.004-0.23; p-value=0.042). In the analysis where the binary variable 

is imputed using logistic regression the regression coefficient was 0.13 (95% CI: 0.01-0.24; p-value=0.028).  In 

the analysis where the continuous variable is imputed using linear regression the regression coefficient was 

0.12 (95% CI: 0.01-0.23; p-value=0.037). The results from the FCS imputation and MVNI were 0.08 (95% CI: 

-0.02-0.19; p-value=0.130) and 0.12 (95% CI: 0.004-0.23; p-value=0.042); respectively.  The results from the 

SMC FCS imputation was 0.12 (95% CI: 0.00-0.24; p-value=0.049).  The results are fairly similar with all 

multiple imputation methods and the complete case, except for FCS which had a smaller effect size (Figure 2). 

 

4. Discussion 

Through simulation we compared various approaches to impute an incomplete binary variable of interest which 

is derived from an underlying continuous variable.  We showed that imputing the continuous variable and 

calculating the binary variable after imputation leads to severely biased results. Our results suggest that it is 

much better to impute the binary variable directly, even if intuitively this means throwing away potentially 

useful data. Another approach is to impute both the continuous and binary versions of the variable, using either 

FCS or MVNI or better still to use SMC FCS where each partially observed variable is imputed from an 

imputation model that is compatible with the analysis model   

 

This finding that it is important to impute the variable in the same form as required for analysis is not novel.  

Since 1994 statisticians have recommended that the imputation model and the analysis model should be 

compatible for results to be valid (Meng, 1994).  More recently Xie and Meng expanded on the importance of 

congeniality between the imputation and analysis models for validity of results (Xie and Meng, 2017). They 

used a general estimating equation decomposition theorem to present multiple imputation inference as a 

combination of the true model (God’s model), the imputer’s knowledge and the analyst’s knowledge.  Our 

results investigate one specific example of an analysis and imputation model that are not compatible and 

reiterate the findings of others.  Others have evaluated other instances of incompatible models, for example 

models including quadratic and interactions terms, and found similar results (Seaman, et al., 2012).  

 

Although imputing the binary variable directly resulted in the lowest bias these models often had numerical 

difficulties such that parameter estimates were not obtained for the simulated dataset.  This is not ideal in 

practice as it would mean that an alternative approach may well be needed anyway.  The summaries of 

simulations in Table 1 only include the models that did not have numerical problems, potentially biasing the 

summaries towards these models. The simulation study we did is a very simple scenario.  In real life, the 

multiple imputation models would be even more complex, with more incomplete variables, and thus be more 

likely to fail.  

 

The imputed values of       and    are not necessarily consistent with each other with either MVNI or FCS.  

Von Hippel (2009) claimed that the inconsistency did not matter for the estimation of the parameters in the 
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analysis model under the MAR assumption.  However, Seaman et al (2012) argued that the stronger condition 

of MCAR is required for these JAV models to give consistent estimation of the parameters of the analysis 

model.  

 

The JAV models seem to be a good compromise between models that do not have numerical problems and 

models that have low bias.  Of the two JAV models the model fitted using FCS had lower bias than the model 

using MVNI; and the same bias as the logistic regression imputation model.  However, the JAV model using 

FCS fits a logistic regression model for the binary outcome and thus similar numerical problems were 

experienced as when just the binary variable was imputed.  This FCS model therefore does not appear to 

provide any advantage over simply imputing the binary variable. In contrast, the MVNI approach to impute 

both the binary and the continuous variable had larger bias and few numerical problems. The SMC FCS model 

overcame both these problems by providing a model with low bias and good coverage without having 

numerical problems.  The only disadvantage of the SMC FCS model was the long computation time.  

 

Our example illustrated the effect of non-compatible imputation and analysis models in a very simple scenario.  

In practice the analysis model can be much more complicated, for example including quadratic terms, 

transformed variables (for example log transformed variables) or interactions (Von Hippel, 2009).  An 

exploration of multiple imputation in these more complex scenarios was conducted by Seaman et al (2012) 

where they evaluated multiple imputation with three methods; imputing, then transforming, using predictive 

mean matching and JAV models; when non-linear effects (quadratic effects) or interactions were present.  

They also came to the conclusion that “Given the current state of available software, JAV is the best of a set of 

imperfect methods for linear regression with quadratic or interaction effect” (Seaman, et al., 2012).  Mitani et 

al (2015) discussed multiple imputation in the context of an analysis model with multi-level categorical 

interaction effects by comparing joint models and FCS models through a simulation study.  They investigated 

both imputing the interaction term as JAV or imputing the main effects and then deriving the interactions 

(passive imputation).  They compared the joint modelling approach to FCS using the JAV methods and 

evaluated an improved passive imputation approach under FCS. The improved passive imputation using FCS 

was superior to the other approaches investigated. Tilling also showed that imputation models that did not 

include interactions in the imputation model that were present in the analysis model resulted in biased 

estimates (Tilling, et al., 2016).  Bartlett, et al. (2015) suggested the SMC FCS method which utilised FCS 

where each imputation model is compatible with the analysis model.  In a series of simulation studies they 

showed this method to give consistent estimates, as was also the case in the simulation study presented here.   

 

One caution is that the results of this simulation study should not be read as promoting the arbitrary 

dichotomising of continuous variables for analysis.  This dichotomisation can arbitrarily dichotomise a 

relationship which is often on a continuum, and leads to a loss of information, with an accompanying loss of 

statistical power and the need for larger sample sizes compared to analysis of the continuous variable (Fedorov, 

et al., 2009), as well as increasing the risk of false positive results (Royston, et al., 2006).  Others have written 

extensively on the loss of information that occurs when continuous variables are analysed as binary information 

(Altman and Royston, 2006; MacCallum, et al., 2002; Naggara, et al., 2011; Royston, et al., 2006).  In our 
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simulated example, the data were generated so that the binary version of the variable of interest was associated 

with the outcome and thus the analysis model considered was the correct analysis models.  In most real life 

situations that is not the case and the continuous variable would be a better choice to fit. In practice, the 

assumption that the correct analysis model includes the categorised version of a continuous variable rather than 

the continuous version should be critically investigated in each application and might not hold in the majority of 

cases.   Not only providing advantages in terms of power and statistical efficiency, but also enabling the use of 

linear regression models during the multiple imputation step, thus removing the problems encountered when 

models had numerical problems. The researcher should consiwe only cvder the nature of the relationship 

between the variables and only analyse a binary variable when appropriate and there is evidence of a threshold 

effect.  

 

Our simple simulation study had several limitations.  We only consider a contrived, extremely simple example 

with missingness in one variable only to ensure that we could tease out the effects of the different imputation 

approaches without getting entangled with the complexity of real data scenarios. We did limited simulations of 

a small number of scenarios.  The goal was to compare, in a controlled environment, what the effect of 

different simulation strategies would be.  If approaches do not perform well in this simple scenario, it will only 

perform worse in more complicated scenarios.  Further investigation, with different scenarios, and different 

forms of non-compatible models is needed.  We acknowledge that in practice situations would be more 

complicated than in this example, although that generally exacerbates any issues with the MI process. 

 

We recommend the message to researchers doing multiple imputation should be that having a multiple 

imputation model with the continuous variable is severely biased with low coverage and should not be done.  

The first step should be to transform the variable to a binary variable and attempt to do the multiple imputation 

with a logistic regression model using this binary version of the variable.  An alternative, particularly if faced 

with numerical difficulties due to perfect prediction, it to use SMC FCS which was found to have acceptably 

low bias and good coverage. 
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Table 1:  Bias, empirical standard error, relative % error in the standard error and 
coverage of the 95% confidence interval for the various simulated missing data 
scenarios using a complete case analysis and each of the four multiple imputation 
methods 

 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

Sample size 

1000  

    Sample size 1000 

MCAR; 25% 

missing 

    MCAR; 25% missing 

Complete 

case 

analysis 

0.00 0.27 -2.48  94.7 0.00 0.20 1.02  95.8 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.01 
0.24 -1.22  94.6 -0.00 0.18 2.16  95.6 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

0.82 
0.25 26.24  19.8 -0.70 0.19 31.48  11.4 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.01 
0.24 -0.96  94.8 -0.00 0.18 2.19  95.3 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

-

0.00 
0.25 -1.89  95.0 -0.01 0.19 2.09  95.3 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

Substantive 

model 

compatible 

(SMC) FCS 

-

0.00 
0.23 1.16 96.1 0.01 0.18 -1.40 94.0 

MAR; 25% 

missing 
       

MAR; 25% missing 

Complete 

case 

analysis 

-

0.16 
0.30 -3.19  91.1 -0.14 0.20 1.60  89.9 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.01 
0.24 0.82  95.5 -0.00 0.18 2.70  95.9 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

1.02 
0.25 33.25  7.2 -0.63 0.18 29.12  19.5 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.01 
0.24 1.41  95.2 -0.00 0.18 2.69  96.0 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

0.23 0.29 -7.06  83.7 -0.10 0.18 3.55  92.2 

Substantiv

e model 

compatible 

(SMC) FCS 

-

0.00 
0.23 6.50 96.4 0.01 0.18 -1.01 94.4 

MAR; 50%        MAR; 50% missing 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

missing 

Complete 

case 

analysis 

-

0.20 
0.38 -1.69  91.8 -0.20 0.25 -3.82  86.7 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.06 
0.25 38.01  97.4 -0.02 0.18 5.45  96.2 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

1.95 
0.30 42.03 0 -1.21 0.21 37.13  0.1 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.06 
0.25 40.11  97.0 -0.02 0.18 3.28  96.3 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

0.45 0.39 -10.97  71.2 -0.18 0.21 2.30  85.9 

Substantiv

e model 

compatible 

(SMC) FCS 

0.00 0.25 4.57 96.3 0.01 0.18 -0.93 94.4 

Sample size 

500 
       

Sample size 500 

MCAR; 25% 

missing 
       

MCAR; 25% missing 

Complete 

case 
0.03 0.37 -0.68  95.0 -0.02 0.30 -2.83  94.5 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

analysis 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.02 
0.31 24.00  97.5 -0.03 0.26 2.08  95.6 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

0.80 
0.35 26.99  57.1 -0.72 0.27 28.29  43.1 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.02 
0.31 21.62  96.9 -0.03 0.26 1.19  95.9 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

0.00 0.34 1.80  96.1 -0.04 0.28 -1.99  93.8 

Substantiv

e model 

compatible 

(SMC) FCS 

-

0.00 
0.33 -0.28 95.4 0.003 0.25 0.63 94.7 

MAR; 25% 

missing 
       

MAR; 25% missing 

Complete 

case 

analysis 

-

0.17 
0.41 -0.24  93.8 -0.15 0.29 -0.41  91.5 

Impute 

binary 

variable 

only using 

logistic 

-

0.05 
0.30 34.67  97.8 -0.03 0.26 0.24  95.4 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

regression 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

1.02 
0.34 38.75  38.6 -0.65 0.26 28.92  50.8 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.05 
0.30 32.64  97.8 -0.03 0.26 0.33  95.4 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

0.22 0.39 -1.44  90.9 -0.13 0.26 2.13  92.6 

Substantiv

e model 

compatible 

(SMC) FCS 

-

0.00 
0.32 0.85 95.7 0.004 0.25 1.11 94.2 

MAR; 50% 

missing 
       

MAR; 50% missing 

Complete 

case 

analysis 

-

0.20 
0.53 1.70  93.8 -0.21 0.35 -1.45  89.9 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.28 
0.36 117.20  98.3 -0.06 0.26 15.96  96.7 

Impute 

continuous 

variable 

only using 

linear 

-

1.96 
0.41 45.72  2 -1.24 0.29 40.89  6.1 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

regression 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.29 
0.35 122.56  98.0 -0.06 0.26 14.28  96.1 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

0.42 0.52 -3.14  85.3 -0.22 0.29 3.24  89.4 

Substantiv

e model 

compatible 

(SMC) FCS 

-

0.01 
0.32 1.04 95.6 0.001 0.26 0.86 94.2 

Sample size 

200 
       

Sample size 200 

MCAR; 25% 

missing 
       

MCAR; 25% missing 

Complete 

case 

analysis 

0.01 0.58 2.92  95.7 -0.02 0.47 -0.30  94.4 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.38 
0.50 92.72  97.5 -0.12 0.41 37.31  96.3 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

0.84 
0.53 33.65  85.5 -0.73 0.42 29.21  79.4 

Impute 

both 

continuous 

-

0.36 
0.49 94.12  97.5 -0.13 0.40 37.31  96.2 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

and binary 

variable 

using FCS 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

-

0.04 
0.56 2.09  95.1 -0.06 0.43 1.33  95.8 

Substantiv

e model 

compatible 

(SMC) FCS 

0.01 0.53 0.30 94.7 -0.02 0.40 1.11 95.8 

MAR; 25% 

missing 
       

MAR; 25% missing 

Complete 

case 

analysis 

-

0.16 
0.64 3.44  94.7 -0.16 0.46 -0.72  93.3  

Impute 

binary 

variable 

only using 

logistic 

regression 

-

0.45 
0.51 79.12  96.7 -0.12 0.41 43.86  96.5 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

1.08 
0.56 38.28  78.2 -0.67 0.43 26.34  81.9 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

0.45 
0.51 81.07  96.5 -0.11 0.39 43.04  96.5 

Impute 

both 

continuous 

0.19 0.64 -0.20  93.9 -0.16 0.42 1.23  94 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

and binary 

variable 

using MVNI 

Substantiv

e model 

compatible 

(SMC) FCS 

0.00 0.52 1.64 94.7 -0.02 0.41 -0.49 95.2 

MAR; 50% 

missing 
       

MAR; 50% missing  

Complete 

case 

analysis 

-

0.20 
0.90 0.53  94.5 -0.20 0.54 2.21 

 93.6 

Impute 

binary 

variable 

only using 

logistic 

regression 

-

1.14 
0.61 111.07  94.2 -0.27 0.46 92.41 

 97.6 

Impute 

continuous 

variable 

only using 

linear 

regression 

-

2.04 
0.68 43.34  41.4 -1.29 0.49 35.11 

 50.8 

Impute 

both 

continuous 

and binary 

variable 

using FCS 

-

1.13 
0.61 111.94  94.5 -0.27 0.44 95.02 

 97.4 

Impute 

both 

continuous 

and binary 

variable 

using MVNI 

0.31 0.90 -0.94  92.4 -0.30 0.47 3.31 

 91.8 

Substantiv

e model 

compatible 

-

0.01 
0.55 0.65 94.7 -0.03 0.42 -0.87 

95.1 
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 Proportion data in disease category: 

15% 

Proportion data in disease category: 

30% 

 Bia

s  

Empirica

l SE 

Relative 

% error 

in SE 

Coverage  Bias  Empirical 

SE 

Relative 

% error 

in SE 

Coverage  

(SMC) FCS 

Coverage =Coverage of nominal 95% confidence interval, SD = Standard deviation; SE = standard 
error; MCAR = missing completely at random; MAR = missing at random; FCS using fully conditional 
specification; MVNI = multivariate normal imputation; Relative % error in SE is defined as the 
percentage error in the model based standard error using the empirical SE as comparison 
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Table 2: Percentage of simulated datasets that encountered numerical problems 
during the multiple imputation step 

  

Proportion data in disease category: 

15% 

Proportion data in 

disease category: 30% 

MCAR; 25% missing Sample 

size 1000 

Sample 

size 500 

Sample 

size 200 

All sample sizes 

Impute binary variable only 

using logistic regression 

0 1.1 35.3 0 

Impute continuous variable 

only using linear regression 

0 0 0 0 

Impute both continuous and 

binary variable using FCS 

0 1.1 35.3 0 

Impute both continuous and 

binary variable using MVNI 

0 0 0 0 

Substantive model 

compatible (SMC) FCS 

0 0 0 0 

MAR; 25% missing   0  

Impute binary variable only 

using logistic regression 

0 2.6 43.5 0 

Impute continuous variable 

only using linear regression 

0 0 0 0 

Impute both continuous and 

binary variable using FCS 

0 2.6  43.5 0 

Impute both continuous and 

binary variable using MVNI 

0 0 0 0 

Substantive model 

compatible (SMC) FCS 

0 0 0 0 

MAR; 50% missing   0  

Impute binary variable only 

using logistic regression 

0.8 19.2 65.8 0 

Impute continuous variable 

only using linear regression 

0 0 0 0 

Impute both continuous and 

binary variable using FCS 

0.8  19.2 65.8 0 

Impute both continuous and 

binary variable using MVNI 

0 0 0 0 
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Proportion data in disease category: 

15% 

Proportion data in 

disease category: 30% 

Substantive model 

compatible (SMC) FCS 

0 0 0 0 

MCAR = missing completely at random; MAR = missing at random; FCS using fully conditional 
specification; MVNI = multivariate normal imputation 
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