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MULTIPLE IMPUTATION OF
INCOMPLETE CATEGORICAL
DATA USING LATENT CLASS
ANALYSIS

Jeroen K. Vermunt*
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We propose using latent class analysis as an alternative to log-
linear analysis for the multiple imputation of incomplete cate-
gorical data. Similar to log-linear models, latent class models
can be used to describe complex association structures between
the variables used in the imputation model. However, unlike log-
linear models, latent class models can be used to build large im-
putation models containing more than a few categorical variables.
To obtain imputations reflecting uncertainty about the unknown
model parameters, we use a nonparametric bootstrap procedure as
an alternative to the more common full Bayesian approach. The
proposed multiple imputation method, which is implemented in
Latent GOLD software for latent class analysis, is illustrated with
two examples. In a simulated data example, we compare the new
method to well-established methods such as maximum likelihood
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estimation with incomplete data and multiple imputation using a
saturated log-linear model. This example shows that the proposed
method yields unbiased parameter estimates and standard errors.
The second example concerns an application using a typical social
sciences data set. It contains 79 variables that are all included in
the imputation model. The proposed method is especially useful
for such large data sets because standard methods for dealing with
missing data in categorical variables break down when the number
of variables is so large.

1. INTRODUCTION

Multiple imputation (MI) has become a widely accepted method for
dealing with missing data problems (Rubin 1987:2–4). One of its attrac-
tive features is that it allows the handling of the missing data problem
prior to the actual data analysis; that is, once the missing values are
replaced by imputed values, the statistical analyses of interest can be
performed using standard techniques. Another attractive feature of MI
is that, contrary to single imputation, the multiply imputed versions of
a data set reflect uncertainty about the imputed values, which is a re-
quirement for obtaining unbiased standard errors in statistical analyses.

MI requires the specification of an imputation model, the exact
choice of which will typically depend on the scale types of the variables in
the data set. For (approximately) continuous variables, the most widely
used imputation model is the multivariate normal model (Schafer 1997),
which is available in SAS PROC MI (Yuan 2000) and in the missing-
data library of S-plus (2006), as well as in stand-alone programs such as
NORM (Schafer 1999) and AMELIA (King et al. 2001; Honaker, King,
and Blackwell 2007). Graham and Schafer (1999) showed that MI under
the multivariate normal model is rather robust to violations of normal-
ity. The most appropriate imputation model for categorical variables is
the log-linear model (Schafer 1997), which is also implemented in the
missing-data library of S-plus (2006). For data sets containing both cat-
egorical and continuous variables, Schafer (1997) proposed imputation
using the general location model, a combination of a log-linear and a
multivariate normal model implemented in the missing-data library of
S-plus.

MI based on log-linear modeling provides an elegant and
sound solution for many missing-data problems concerning categorical



IMPUTATION USING LATENT CLASS ANALYSIS 371

variables. This was confirmed in simulation studies by Ezzati-Rice et al.
(1995), Schafer et al. (1996), and Schafer (1997), who showed that log-
linear imputation yields unbiased statistical inference, and it is robust
against departures from the assumed imputation model. The main lim-
itation of MI under the log-linear model is, however, that it can be ap-
plied only when the number of variables used in the imputation model
is small—that is, only when we are able to set up and process the full
multi-way cross-tabulation required for the log-linear analysis. Whereas
social science data sets with 100 variables or more are very common,
it is impossible to estimate a log-linear model for say a frequency table
cross-classifying 100 trichotomous variables: The resulting table with
3100 (=5.15378e47) cell entries is much too large to be stored and pro-
cessed. Note that the necessity to process each cell in the maximum
likelihood estimation of log-linear models holds even if the specified
model is very restricted—for example, if the model contains only two-
and three-way association terms. An exception is the situation in which
the log-linear model is collapsible (Agresti 2002), but it is unlikely that
one will use such a model for imputation.

A first possible solution to the problem of a limited number of
variables associated with the log-linear approach is to ignore the cate-
gorical nature of the variables and use an imputation model for contin-
uous data instead, where discrete imputed values may be obtained by
rounding the non-integer imputed values to the nearest feasible integer.
Van Ginkel, Van der Ark, and Sijtsma (2007a; 2007b) found that MI
under the multivariate normal model with rounding produces reliable
results in discrete (ordinal) psychological test data—for example, in the
estimation of Cronbach’s alpha. Other authors, however, showed that
rounding continuous imputations to the nearest admissible integer val-
ues may lead to serious bias (Allison 2005; Horton, Lipsitz, and Parzen
2003), especially if the variables concerned are used as independent vari-
ables in a regression analysis. This was confirmed by Bernaards, Belin,
and Schafer (2007), who showed that the bias may be reduced by using
a more sophisticated (adaptive) rounding procedure. Despite the fact
that this approach may sometimes work well with dichotomous and
ordinal categorical variables, it is clearly much more problematic when
used with nominal variables.

A second possible solution is to use hot-deck imputation (Rubin
1987:9) rather than a statistical imputation model. This nonparamet-
ric imputation method involves a search for complete cases that have
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(almost) the same values on the observed variables as the case with
missing values, and then imputes the missing values of the latter by
drawing from the empirical distribution defined by the former. Hot-
deck imputation, which is available in the SOLAS program (2001), can
be used for data sets containing large numbers of categorical variables.
Whereas the standard hot-deck does not yield proper imputation, a vari-
ant called approximate Bayesian bootstrap (Rubin and Schenker 1986)
does. However, Little and Rubin (2002:69) indicated the following about
the nearest neighbor hot-deck procedure: “Since imputed values are rel-
atively complex functions of the responding items, quasi-randomization
properties of estimates derived from such matching procedures remain
largely unexplored.” This means that it is difficult to demonstrate that
estimates will be unbiased under the missing at random (MAR) as-
sumption. A simulation study by Schafer and Graham (2002) showed
that hot-deck imputation may produce biased results irrespective of the
missing data mechanism.

A third possible solution is to use one of the recently proposed
sequential regression imputation methods, which include the MICE and
ICE methods (Van Buuren and Oudshoorn 2000; Raghunathan et al.
2001; Van Buuren et al. 2006). Rather than specifying a model for the
joint distribution of the variables involved in the imputation, the impu-
tation model consists of a series of models for the univariate conditional
distributions of the variables with missing values. For categorical vari-
ables, this will typically be a series of logistic regression equations. We
found that for large numbers of variables the specification of the series
of imputation models is rather difficult and time-consuming. Especially
problematic is that, unlike log-linear imputation, sequential imputation
does not pick up higher-order interactions, unless these are included
explicitly in the imputation model. This means that it is likely that one
misses important interactions that may seriously bias subsequent anal-
yses. Also, unlike the log-linear approach, sequential regression impu-
tation methods lack a strong statistical underpinning; that is, there is
no guarantee that iterations will converge to the posterior distribution
of the missing values.

Alternatively, we propose using the latent class (LC) model as an
imputation model for categorical data. It is a statistically sound cate-
gorical data method that resolves the most important limitation of the
log-linear approach; that is, that it can be applied to data sets containing
more than a few variables. An LC model can be viewed as a mixture
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model of independent multinomial distributions. Mixture models have
been shown to be very flexible tools for density estimation because they
can be used to approximate any type of distribution by choosing the
number of mixture components (latent classes) sufficiently large (e.g.,
McLachlan and Peel 2000:11–14). Using the LC model as an imputa-
tion model resembles the use of LC models by Vermunt and Magidson
(2003), who proposed using the LC model as a prediction or classifica-
tion tool. As is explained in more detail below, the local independence
assumption (Lazarsfeld 1950a, 1950b; Goodman, 1974) makes it pos-
sible to obtain maximum likelihood estimates of the parameters of LC
models for large numbers of categorical variables with missing values.

Multiple imputations should reflect uncertainty about not only
the missing values but also the unknown parameters of the imputation
model. This parameter uncertainty is typically dealt with by using a full
Bayesian approach: random imputations are based on random draws of
the parameters from their posterior distribution (Rubin 1987; Schafer
1997). An alternative that allows staying within a frequentist framework
is to use the nonparametric bootstrap, as is done in the Amelia II soft-
ware (King et al. 2001; Honaker et al. 2007). This is also the approach
used in this article and implemented in the syntax version of Latent
GOLD program (Vermunt and Magidson 2008).

The remainder of this article will focus on the following: First,
we introduce the basic principles of MI. Second, we discuss MI using
LC analysis (from here on abbreviated as LC MI) and also discuss issues
such as dealing with parameter uncertainty, model selection, and model
identifiability. Third, a constructed example is presented comparing LC
MI with complete-case analysis, maximum likelihood estimation with
incomplete data and log-linear MI, as well as demonstrating the validity
of LC MI. Fourth, a large real-data example is discussed that illustrates
LC MI for a situation in which log-linear MI is no longer feasible.
We offer conclusions about the proposed LC MI approach and discuss
possible extensions of this tool.

2. THE BASIC PRINCIPLE OF MULTIPLE IMPUTATION

This section describes the basic principles of MI. Let us first introduce
the relevant notation. Let Y denote the N × J data matrix of interest
with entries yij, where N is the number of cases and J the number of
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variables, with indices i and j such that 1 ≤ i ≤ N and 1 ≤ j ≤ J. In the
presence of missing data, the data matrix has an observed part and a
missing part. These two parts are denoted as Yobs and Ymis, respectively,
where Y = (Yobs, Ymis). The unknown parameters that govern Y are
collected in vector θ. Let R be a response-indicator matrix with entries
rij, where rij = 0 if the value of yij is missing and 1 otherwise. The
unknown parameters that govern R are collected in vector ξ.

The basic idea of multiple imputation is to construct multiple,
say M, complete data sets by random imputation of the missing values
in Ymis. The researcher interested in a particular analysis model—say
a linear regression model—can estimate the analysis model with each
of these M complete data sets using standard complete data methods.
The M results can be combined into a single set of estimates and stan-
dard errors reflecting the uncertainty about the imputed missing values
(Rubin 1987:76–79).

What is needed to construct multiply imputed data sets is an
imputation model: a model for the joint distribution of the response
indicators and the survey variables in the data set, which is denoted as
P(R,Yobs,Ymis;θ,ξ). When defining a model for P(R,Yobs,Ymis;θ,ξ), one
typically separates the model for Y from the model for the missing data
mechanism. This is achieved by the following decomposition:

P(R, Yobs, Ymis;θ, ξ) = P(Yobs, Ymis;θ)P(R|Yobs, Ymis; ξ), (1)

where P(Yobs,Ymis;θ) is the marginal distribution of the survey vari-
ables and P(R|Yobs,Ymis;ξ) is the conditional distribution of the re-
sponse indicators given the survey variables. It can easily be seen that
the decomposition in equation (1) transforms the definition of a model
for P(R,Yobs,Ymis;θ,ξ) into the definition of two submodels, one for
P(Yobs,Ymis;θ) and one for P(R| Yobs,Ymis;ξ). Specification and estima-
tion of the imputation model can be simplified further by making the
additional assumption that the probability of having a certain pattern
of missing values is independent of the variables with missing values
conditionally on the observed; that is,

P(R|Yobs, Ymis;θ) = P(R|Yobs;θ). (2)

If equation (2) holds, then the missing data are said to be missing at ran-
dom (MAR; Rubin 1976; Little and Rubin 2002:12). When in addition



IMPUTATION USING LATENT CLASS ANALYSIS 375

the submodels for P(Yobs,Ymis;θ) and P(R|Yobs,Ymis;ξ) do not have com-
mon parameters, the submodel for the missing data mechanism can be
ignored when estimating the model for P(Yobs,Ymis;θ). The MAR as-
sumption will be violated either when there are direct effects of variables
with missing values on the response indicators after controlling for Yobs,
or when there are variables that are not in the imputation model affect-
ing both Ymis and R. In these cases, the missingness mechanism is not
MAR (i.e., it is NMAR), and the validity of the results from likelihood-
based methods cannot be guaranteed, unless the correct NMAR model
for the missingness mechanism is specified.

It may be noted that the MAR assumption becomes more plau-
sible when a larger number of variables are included in the imputation
model (Schafer 1997:28). If the set Yobs becomes larger, it becomes less
likely that dependencies remain between R and Ymis after conditioning
on Yobs (Schafer 1997:28). The main advantage of imputation meth-
ods compared to parameter estimation with incomplete data is that we
can put more effort into building a model that is in agreement with the
MAR assumption. Incomplete-data likelihood methods usually make
use of a smaller set of variables, typically only the variables needed in
the analysis model of interest.

To minimize the risk of bias, Schafer (1997:143) advocated using
an imputation model that is as general as possible—for example, an
unrestricted multivariate normal model or a saturated model. At worst,
standard errors of the parameters derived from MI may slightly increase
when the imputation model contains associations that can be attributed
to sampling fluctuations (Schafer 1997:140–44). On the other hand, if
the imputation model is too restrictive, results may be biased because
the MAR assumption is violated (Schafer 1997:142–43). For this reason,
Schafer recommended generating imputed values that are as much as
possible in accordance with the observed data, so that the imputed
values behave “neutral” in the subsequent statistical analyses.

The actual imputation of the missing values involves generating
random draws from the distribution P(Ymis|Yobs), which is defined as
follows (Rubin 1987; Schafer 1997):

P(Ymis|Yobs) =
∫

P(Ymis|Yobs;θ)P(θ|Yobs)dθ

=
∫

P(Yobs, Ymis;θ)
P(Yobs;θ)

P(θ|Yobs)dθ. (3)
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The most popular way to perform this sampling is by Bayesian Markov
chain Monte Carlo methods (Schafer 1997:105; Tanner and Wong
1987), which involves a two-step procedure. In the first step, values
of θ are drawn from the posterior distribution of the parameters P(θ|
Yobs). These values of θare used in the actual imputation step to ob-
tain draws from P(Ymis | Yobs;θ). Since each imputed data set is based
on new draws from P(θ | Yobs), the multiple imputations will reflect not
only uncertainty about Ymis but also uncertainty about the parameters
of the imputation model, yielding what Rubin referred to as proper
imputations.

Schafer (1997:289–331) proposed using log-linear analysis as an
imputation tool for categorical data. The strong points of log-linear
models are that they yield an accurate description of P(Yobs,Ymis;θ) and
that they can easily be estimated with incomplete data. A serious limi-
tation of the log-linear modeling approach is, however, that it can only
be used with small numbers of variables, whereas imputation should
preferably be based on large sets of variables. To overcome this draw-
back, we propose using LC analysis as a tool for the imputation of
incomplete categorical data. The LC model is a categorical data model
that can be used to describe the relationships between the survey vari-
ables as accurately as needed. Parameter estimation of LC models does
not break down when the number of variables is large. Moreover, the
model parameters can be easily estimated in the presence of missing
data.

3. MULTIPLE IMPUTATION UNDER
A LATENT CLASS MODEL

3.1. Latent Class Analysis with Incomplete Data

This section deals with MI using latent class models. We first intro-
duce latent class models for incomplete categorical data, where special
attention is paid to issues that are relevant when using these models
in the context of MI. Then we discuss model selection and the exact
implementation of the LC-based imputation procedure.

Let yi denote a vector containing the responses of person i on
J categorical variables, xi a discrete latent variable, K the number of
categories of xi or, equivalently, the number of latent classes, and k a
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particular latent class (k = 1, . . . , K). The model we propose for impu-
tation is an unrestricted LC model, in which P(yi; θ), the joint probabil-
ity density of yi, is assumed to have the following well-known form
(Lazarsfeld 1950a, 1950b; Goodman 1974; Vermunt and Magidson
2004):

P(yi ;θ) =
K∑

k=1

P(xi = k;θx)P(yi |xi = k;θy)

=
K∑

k=1

P(xi = k;θx)
J∏

j=1

P(yi j |xi = k;θyj ), (4)

where θ = (θx, θy) or θ = (θx, θy1, . . . ,θyj , . . . ,θyJ ). The indices in
θx, θy, and θyj indicate to which set of multinomial probabilities the
unknown parameters concerned belong. Equation (4) shows the two
basic assumptions of the latent-class model:

1. The density P(yi; θ) is a mixture—or weighted average—of class-
specific densities P(yi | xi = k; θy), where the unconditional latent
class proportions P(xi = k; θx) serve as weights.

2. Responses are independent within latent classes, such that the joint
conditional density P(yi | xi = k; θy) equals the product of the J
univariate densities P(yij | xi = k;θyj ). Note that P(yij | xi = k;θyj )
is the probability that person i provides response yij to variable j
conditional on membership of class k. This is generally referred to
as the local independence assumption.

By choosing the number of latent classes sufficiently large, like any type
of mixture model, an LC model will accurately pick up the first, sec-
ond, and higher-order observed moments of the J response variables
(McLachlan and Peel 2000:11–14). In the context of categorical vari-
ables, these moments are the univariate distributions, bivariate associa-
tions, and the higher-order interactions.

It is important to emphasize that we are using the LC model not
as a clustering or scaling tool but as a tool for density estimation—that
is, as a practical tool to obtain a sufficient exact representation of the
true P(yi; θ), even for large J. This has the following implications:
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1. Contrary to typical LC applications, there is no need to find inter-
pretable latent classes or clusters. In fact, there is no need to interpret
the parameters of the LC imputation model at all. This is not spe-
cific for LC analysis imputation. Also when using a multivariate
normal or a log-linear imputation model, the parameters will not
be interpreted.

2. Overfitting the data is less of a problem than underfitting; that is,
picking up certain random fluctuations that are sample specific is
less problematic than ignoring important association or interactions
between the variables in the imputation model. Note that overfitting
an LC model is similar to using a log-linear imputation model that
includes nonsignificant parameters. This is likely to occur when us-
ing a saturated log-linear model. Underfitting an LC model is com-
parable to using a nonsaturated log-linear model in which important
higher-order interactions are omitted.

3. It is well-known that LC models may be unidentified when the num-
ber of classes is large compared with the number of observed vari-
ables (for example, see Goodman 1974). Unidentifiability means
that different values of θ yield the same P(yi; θ), which makes the
interpretation of theθ parameters problematic. However, in the con-
text of imputation, this is not a problem since we are interested only
in P(yi;θ), which is uniquely defined even if theθ parameters are not.

4. For large K, a solution may be obtained that is a local instead of
a global maximum of the incomplete data log-likelihood function.
Even if we increase the number of start sets to say 100—as we did
in our analysis with the automated starting values procedure of
Latent GOLD—there is no guarantee that we will find the global
maximum likelihood solution. Whereas this is problematic if we
wish to interpret the model parameters, in the context of MI this
does not seem to be a problem, especially because a local maximum
will typically give a representation of P(yi; θ) that is nearly as good
as the global maximum.

We will use a simulated data example to illustrate these issues below.
Equation (4) describes the LC model, neglecting the missing data.

However, for parameter estimation using maximum likelihood, as well
as for the derivation of P(Ymis |Yobs; θ) needed for the actual imputation
(see equation 3), the LC model must be expressed as a model for the
observed data density P(yi,obs; θ); that is,
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P(yi,obs;θ) =
K∑

k=1

P(xi = k;θx)P(yi,obs|xi = k;θy)

=
K∑

k=1

P(xi = k;θx)
J∏

j=1

[
P(yij|xi = k;θyj )

]ri j
, (5)

where again rij = 0 if the value of yij is missing and 1 otherwise. Note
that for a respondent with a missing value on variable j (i.e., rij = 0),
[P(yij|xi = k;θyj )]

rij = 1, and thus the corresponding term cancels from
equation (5). This illustrates how missing values are dealt with in the
estimation of an LC model: Case i contributes to the estimation of the
unknown model parameters only for the variables that are observed.

Maximum likelihood (ML) estimates of the parameters of an
LC model can be obtained by maximizing the sum of the log of equa-
tion (5) across all cases—for example, by means of the EM algorithm
(Goodman 1974; Dempster, Laird, and Rubin 1977). Because of the lo-
cal independence assumption, the problem is collapsible, which implies
that the M step of the EM algorithm involves processing J two-way xi by
yij cross-classifications. Thus, even for large J, ML estimation remains
feasible. Except for very specific situations, log-linear analysis, on the
contrary, requires processing the full J dimensional table.

3.2. Model Selection

As was already mentioned, mixture models can approximate a wide
variety of distributions (McLachlan and Peel 2000:11–14). For LC-
based MI, this means that the imputation model will accurately ap-
proximate the distribution of yi by choosing K sufficiently large. Fol-
lowing Schafer’s (1997:140–44) advise to use an imputation model that
describes the data as accurately as possible, we should thus use a large
number of latent classes.

There is one particular question of interest: What is a sufficiently
large value for K? We propose using the Bayesian information crite-
rion (BIC; Schwarz 1978), Akaike’s information criterion (AIC; Akaike
1974), and a variant of AIC called AIC3 (Bozdogan 1993; Andrews
and Currim 2003), which are typically used for model selection in LC
analysis with sparse tables. These measures have in common that they
combine model fit (log-likelihood value, LL) and parsimony (number of
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parameters, Npar) into a single value. The model with the lowest BIC,
AIC, or AIC3 value is the preferred one. The three information criteria
are defined as follows:

BIC = −2LL + log(N) × Npar, (6)

AIC = −2LL + 2 × Npar, (7)

AIC3 = −2LL + 3 × Npar. (8)

Equations (6), (7), and (8) show that the three criteria differ only
with respect to the weight attributed to parsimony. Because the log of
the sample size—log(N)—is usually larger than 3, BIC tends to select a
model with fewer latent classes than AIC and AIC3. Simulation studies
by Lin and Dayton (1997), Andrews and Currim (2003), and Dias (2004)
showed that BIC tends to underestimate the number of classes, whereas
AIC tends to select a model with too many classes. Andrews and Currim
(2003) and Dias (2004) also showed that for selecting K in LC models,
AIC3 provides a good compromise between BIC and AIC.

3.3. Imputation Procedure

Multiple imputation involves obtaining M draws from P(yi,mis | yi,obs)
(see equation 3). This requires obtaining draws from P(θ | yi,obs) and
subsequently from P(yi,mis | yi,obs; θ). As is also done in the AMELIA II
software (King et al. 2001; Honaker et al. 2007), we propose obtaining M
sets of parameters θ using a nonparametric bootstrap procedure. (For
a general introduction in the bootstrap procedure and an application
in LC analysis see Efron and Tibshirani [1993] and Dias and Vermunt
[forthcoming], respectively.) First, M nonparametric bootstrap samples
from Y are obtained and denoted as Y∗

1, . . .,Y∗
m, . . ., Y∗

M . Second, for
each bootstrap sample an LC model is estimated resulting in M sets
of parameters θ∗

1, . . ., θ∗
m, . . ., θ∗

M . For imputed data set m, we sample
from P(yi,mis | yi,obs; θ = θ∗

m) for m = 1, . . .M. In this way, we take the
uncertainty of the parameter estimates into account.

In an LC model, the conditional distribution P(yi,mis | yi,obs;θ)
can be written as
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P(yi,mis|yi,obs;θ) =
K∑

k=1

P(xi = k, yi,mis|yi,obs;θ)

=
K∑

k=1

P(xi = k|yi,obs;θ)P(yi,mis|xi = k;θy)

=
K∑

k=1

P(xi = k|yi,obs;θ)
J∏

j=1

[
P(yij|xi = k;θyj

]1−rij

. (9)

In the first row of equation (9), we introduce the discrete latent variable
xi. The second row is obtained using the local independence assumption
between yi,mis and yi,obs given xi. The last row uses again the local depen-
dence assumption, but now among the variables with missing values. It
should be noted that P(xi = k | yi,obs; θ) is a subject’s latent classification
probability for class k, which is part of the standard output of an LC
analysis. These probabilities, which are also referred to as posterior class
membership probabilities, can be obtained as follows:

P(xi = k|yi,obs;θ) = P(xi = k;θy)P(yi,obs|xi = k;θy)
P(yi,obs;θ)

, (10)

The terms in equation (10) were defined in equation (5).
Equation (9) suggests how to sample from P(yi,mis | yi,obs; θ) in

LC MI; that is, in a first step, assigning a person randomly to one
of the K latent classes using P(xi = k | yi,obs; θ) (see Goodman 2007)
and subsequently, in a second step, sampling yi,mis conditionally on
the assigned class using P(yi,mis | xi = k; θ). This second step can be
performed separately for each variable with a missing value; that is, by
means of independent draws from univariate multinomial distributions
with probabilities P(yij | xi = k;θyj ).

The possibility to perform the second step for each variable sep-
arately shows that the LC imputation method is applicable to large
data sets and has the additional advantage that it can be implemented
using standard software for LC analysis with missing data, such as
Latent GOLD 4.0 (Vermunt and Magidson 2005), LEM (Vermunt
1997), Mplus (Muthén and Muthén 2006), and the R library poLCA
(Linzer and Lewis 2007). Each of these packages provides both the latent
classification probabilities P(xi = k | yi,obs; θ) and the response proba-
bilities P(yij | xi = k;θyj ) as output. Using these probabilities one can
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draw random values for the missing data with pseudo random number
generators that are readily available in general statistical packages. The
new syntax module of the Latent GOLD 4.5 implements the procedure
described above, including the nonparametric bootstrap, fully automat-
ically. We provide more details about the implementation of LC MI in
Latent GOLD 4.5 in the appendix.

4. EXAMPLES

In this section, LC MI is illustrated and compared with other methods
using two examples. The first uses a simulated data set, which makes
it possible to compare the obtained results with the known truth. The
second example uses a large real data set with many categorical variables
with missing values.

4.1. A Simulated Data Example

In the introduction we already described various simulation studies
showing that (proper) MI—say, under a correctly specified log-linear
model—is able to yield unbiased parameter estimates and unbiased
asymptotic standard errors for the analysis model of interest (e.g.,
Ezzati-Rice et al. 1995; Schafer et al. 1996; Schafer 1997). Also, the
effect of sample size and the effect of different types of violations of the
MAR assumption have been studied. Therefore, rather than performing
an extended simulation study in which the same issues are investigated
for LC MI, we concentrate on those aspects that are specific for the LC
MI method proposed in this paper.

The main question is this: How does the proposed LC MI method
compare to ML estimation with incomplete data and MI using a (sat-
urated) log-linear model? There are also two more specific questions:
What happens if we select too few latent classes? What happens if we
select too many latent classes?

We simulated one large data set (N = 10,000) from a population
model with the following characteristics:

� Six dichotomous variables: y1 to y6; y1 to y5 were the independent
variables and y6 was the dependent variable.
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� For the relationship among the independent variables, we assumed
a log-linear model with, under dummy coding, one-variable terms
equal to −2.0 and two-variable associations equal to 1.0; that is,

logP(y1, y2, y3, y4, y5) ∝
5∑

s=1

−2.0ys +
5∑

s=1

5∑
t=s+1

1.0ys yt.

This is equivalent to a model defined under effect coding with all
one-variable terms equal to 0.0 and all two-variable terms equal to
.25.

� For the dependent variable, we assumed a logit model containing
main effects of the independent variables as well as a two-way in-
teraction between y2 and y3. Using dummy coding, the population
logit equation was defined as follows:

logit P(y6) = −3.0 + 1.0y1+ 2.0y2 + 2.0y3 + 1.0y4+ 1.0y5 − 2.0y2 y3.

� Both y1 and y2 were assumed to have MAR missing values, where the
missingness on y1 depended on y3 and y4—missingness probabilities
were .1, .4, .4, and .7, respectively, for the four possible combination
of y3 and y4—and the missingness on y2 depended on y5 and y6—
with probabilities equal to .7, .4, .4, and .1, respectively. In total
almost 70 percent of 10,000 cases had at least one missing value.

Note that we used a large sample because we were not interested in
assessing the effect of sampling fluctuations. We assumed a MAR model
with a large proportion of missing values in the predictor variables
because this is the kind of situation in which LC MI work should work.
The key element in the population model specification is the inclusion
of a large interaction term in the regression model for y6, which in fact
implies that there is a three-variable association between y2, y3, and
y6. While such an association is automatically picked up by a saturated
log-linear model, it should be investigated whether an LC model picks
it up as well.

Table 1 shows the log-likelihood, BIC, AIC, and AIC3 values for
1- to 10-class models and for the saturated log-linear model estimated
with the simulated data set. Based on BIC, we should select the 3-class
model and based on either the AIC or AIC3 criterion one should select
the 6-class model. This difference in suggested number of latent classes is
larger than usually encountered in standard applications of LC analysis,
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TABLE 1
Log-Likelihood, BIC, AIC, and AIC3 Values for the Latent Class Models and the

Saturated Loglinear Model Estimated with the Simulated Data Set

Model Log-Likelihood BIC AIC AIC3

K = 1 −35578 71211 71168 71174
K = 2 −28380 56880 56786 56799
K = 3 −28114 56411 56267 56287
K = 4 −28096 56441 56246 56273
K = 5 −28073 56459 56213 56247
K = 6 −28051 56479 56183 56224
K = 7 −28044 56530 56184 56232
K = 8 −28038 56582 56186 56241
K = 9 −28033 56637 56190 56252
K = 10 −28029 56694 56197 56266
Saturated −28025 56630 56176 56239

which can be explained from the fact that the data are not agreement with
a clean latent structure. What is of interest for the current application
is whether the selected imputation model strongly affects the quality of
the multiple imputations—that is, the ability to recover the parameters
of the logit model for y6.

Table 2 reports the obtained logit coefficients and their standard
errors for an extended set of analyses. In order to reduce Monte Carlo
errors as much as possible, in the MI-based methods we always used
50 imputed data sets. Complete case analysis served as the worst case
scenario: The LC MI procedure should clearly not perform worse than
this method. The ML with incomplete data (using the LEM program;
Vermunt 1997) and saturated log-linear model MI served as the best
case scenarios; that is, as the golden standards with which LC MI is
compared. It should be noted that because we are dealing with a sample,
the parameter estimates obtained with these golden standards are also
not exactly equal to their population values (see again Table 2).

Complete case analysis performed rather well. The largest biases
occurred in the constant and the effect of y5, the independent variable
that is related to missingness in y2. As can be expected when 70 percent
of the sample is excluded from the analysis, standard errors were much
larger than they were for ML with incomplete data and log-linear MI.
As could be expected, these latter two methods produced very similar
results: the only difference is the larger standard error for the interaction
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term under log-linear MI. Although we did not apply sequential regres-
sion and approximate Bayesian bootstrap MI, it can be expected that
these methods will also work well in this application, where for sequen-
tial regression imputation it is, of course, crucial that the interaction
term is included in the imputation model.

MI under a 1-class model performed badly. By increasing the
number of classes to 2 and 3, most parameter estimates and standard
errors improved. However, for the 3-class model, which was suggested
by the BIC, the interaction term and the main effects of the two pre-
dictors involved in the interaction term obtained with the 3-class model
were still rather far from the population values. The 6-class model—the
model selected by AIC and AIC3—recovered the parameters and the
standard errors very well, and the same applied to the 10-class model.
These results confirm our initial idea that it is important to select K suf-
ficiently large, and that overfitting is less problematic than underfitting.
Whereas the 3-class does not seem to pick up the three-variable associa-
tion well, the 6-class does. Moreover, using a 10-class model, an uniden-
tified LC model which clearly overfits the data does not seem to be
problematic.

4.2. A Real Data Set Example

In this second example, LC-based MI was applied to a data set from the
ATLAS Cultural Tourism Research Project 2003 (ATLAS 2004), a study
on the motivations, activities, and impressions of visitors of cultural sites
and events. The data set consists of 4292 observations and 79 categorical
variables: 52 with 2 categories, 1 with 3, 19 with 5, 2 with 6, and 1
with 7, 8, 9, 10, and 17 categories, respectively. Complete information
is available for only 794 respondents. The aim of our application of LC
MI to this large data set is to illustrate the main merit of this method
compared with log-linear MI; that is, whereas log-linear MI cannot
be used as an imputation model for 79 variables, LC MI can without
any problem. Note that other alternatives to log-linear MI, such as
sequential regression and approximate Bayesian bootstrap MI, would
also be difficult to apply in an imputation model with 79 variables.

As the first step we estimated LC models with 1 to 35 latent
classes to select a model for MI. The obtained BIC, AIC, and AIC3
values pointed at different possible imputation models: BIC selected
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the model with 8 latent classes, AIC3 with 31 latent classes, and AIC
still did not reach its minimum value with 35 latent classes. We generated
multiply imputed versions of the ATLAS data set using 8, 31, and 50
latent classes and M = 10.

After performing the MI, six variables were selected from the
data file for a statistical analysis. A central survey question in this study
on respondents’ motivations for visiting cultural attractions is “I want
to find out more about the local culture,” answered on a five-point scale
ranging from 1 (totally disagree) to 5 (totally agree). This variable was
used as the dependent variable in an (adjacent-category) ordinal regres-
sion model (Agresti 2002:286–88). Table 3 provides detailed informa-
tion on the variables used in the analysis, among others on the number
of cases with a missing value. We estimated two regression equations,
one without and one with “Admission expenditure,” a predictor with
a very large proportion of missing values. Inclusion of “Admission ex-
penditure” reduces the number of cases with complete information from
3950 to 1424.

Tables 4 and 5 present the coefficients of the two ordinal regres-
sion models obtained using complete case analysis as well as the three
multiple imputed data sets. For the first analysis, the differences between
the four sets of estimates are rather small, which confirms the finding
from the simulated data example that it does not matter so much how
many latent classes are used in the imputation model as long as their
number is large enough. Moreover, because of the rather small propor-
tion of missing values, it is not surprising that complete case analysis
and MI gave similar results, although there are some differences in the
parameter estimates for education.

Whereas the three imputed data sets give very similar results for
the second analysis, complete case analysis results are rather different
(see Table 5). Not only are the standard errors much larger, also the
effect of education seems to have been distorted by the fact that such a
large portion of the sample should be excluded from the analysis.

Although, contrary to the simulated data example, it is not possi-
ble to compare the obtained estimates with their population values, LC
MI seems to work well in this application. It is reassuring that estimates
are similar to complete case analysis when the proportion of missing
values is small, are similar across the two regression equations, and are
not strongly dependent on the number of classes used in the imputation
model.
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TABLE 3
Information on the Variables Used in the Ordinal Regression for the ATLAS

Cultural Tourism Research Project 2003 Data (ATLAS 2004)

Number of
Missing Values

Variable Categories (N = 4292)

I want to find out more about 1 Totally disagree 154
the local culture 2 Disagree

3 Neutral
4 Agree
5 Totally agree

Gender 1 male 41
2 female

Age 1 15 or younger 28
2 16–19
3 20–29
4 30–39
5 40–49
6 50–59
7 60 or older

Highest level of educational 1 Primary school 62
qualification 2 Secondary school

3 Vocational education
4 Bachelor’s degree
5 Master’s or doctoral degree

Is your current occupation (or 1 Yes 149
former) connected with culture? 2 No

Admission expenditure 1 0 – < 25 euro 2801
2 25 – < 50 euro
3 50 – < 75 euro
4 75 – < 100 euro
5 ≥ 100 euro

5. CONCLUSION

This paper dealt with MI of missing values in data sets containing
large numbers of categorical variables. More specifically, for situations
in which the standard log-linear modeling imputation approach is no
longer feasible, we proposed using an unrestricted LC model as an al-
ternative MI tool. The LC model is not only a flexible categorical data
model that is able to pick up complex dependencies between the variables
included in the imputation model, but it can also be easily estimated with
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TABLE 4
Parameter Estimates ànd Standard Errors of the First Ordinal Regression for the

ATLAS Cultural Tourism Research Project 2003 Data Using Complete Case
Analysis and LC MI with 8, 31, and 50 Classes

Complete Cases
(N = 3950) K = 8 K = 31 K = 50

Predictor Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Gender 0.11 0.03 0.09 0.03 0.09 0.03 0.09 0.03
Age 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01
Primary school 0.00 0.00 0.00 0.00
Secondary school −0.13 0.11 −0.17 0.11 −0.19 0.11 −0.18 0.11
Vocational education −0.08 0.11 −0.13 0.11 −0.13 0.11 −0.12 0.11
Bachelor’s degree 0.06 0.11 0.00 0.11 −0.01 0.11 0.00 0.11
Master’s or doctoral degree 0.14 0.11 0.07 0.11 0.07 0.11 0.08 0.11
Occupation and culture −0.11 0.04 −0.11 0.04 −0.11 0.04 −0.12 0.04

large numbers of partially observed categorical variables. The necessary
steps for obtaining the actual imputations are easy to program using
the standard output from LC analysis software. Parameter uncertainty
with respect to the LC imputation model was dealt with using a non-
parametric bootstrap procedure, which made it possible to perform LC
MI within the well-developed maximum likelihood framework.

TABLE 5
Parameter Estimates ànd Standard Errors of the Second Ordinal Regression for
the ATLAS Cultural Tourism Research Project 2003 Data Using Complete Case

Analysis and LC MI with 8, 31, and 50 Classes

Complete Cases
(N = 1424) K = 8 K = 31 K = 50

Predictor Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Gender 0.11 0.05 0.09 0.03 0.09 0.03 0.09 0.03
Age 0.03 0.02 0.04 0.01 0.04 0.01 0.04 0.01
Primary school 0.00 0.00 0.00 0.00
Secondary school −0.39 0.22 −0.18 0.11 −0.20 0.11 −0.19 0.11
Vocational education −0.36 0.22 −0.14 0.11 −0.15 0.11 −0.13 0.11
Bachelor’s degree −0.14 0.22 −0.01 0.11 −0.02 0.11 −0.01 0.11
Master’s or doctoral degree −0.16 0.22 0.06 0.11 0.05 0.11 0.07 0.11
Occupation and culture −0.10 0.06 −0.11 0.04 −0.11 0.04 −0.12 0.04
Admission expenditure 0.05 0.02 0.03 0.01 0.04 0.01 0.04 0.01
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In this research, we did not compare the proposed LC MI impu-
tation model with hot-deck imputation, imputation using a multivariate
normal model, or sequential imputation methods. A systematic com-
parison of LC MI with these methods requires a complex and extended
simulation study, which is outside the scope of this paper. Therefore,
we do not claim that LC MI is a better approach than these methods.
Instead we demonstrated that LC models allow us to construct an MI
method that (1) respects the categorical nature of the variables, (2) is
flexible in the sense that it can pick up complex associations, (3) is easy
to apply and neutral in the sense that no detailed a priori content knowl-
edge is needed to build an imputation model, and (4) is applicable to
large data sets.

Our simulated data example showed that LC MI with a suffi-
ciently large number of latent classes yields parameter estimates and
standard errors that are almost identical to the ones obtained using
either ML for incomplete data or log-linear MI. In order to make
sure that the number of latent classes is sufficiently large, we recom-
mended the use of AIC3 or AIC to select the number of classes instead
of BIC: The harm caused by possibly selecting a model with too many
classes turns out to be negligible. The presented real data application,
which was mainly meant to show that it is possible to apply LC MI to
such large problems, confirmed that after a certain point increasing the
number of classes makes little or no difference anymore.

In the present study, we restricted ourselves to the use of the
simple unrestricted LC model. The proposed LC MI method has the
potential to be expanded to more general situations using readily avail-
able more advanced LC models. We offer a few examples of possible
extensions:

� Whereas we did not make a distinction between independent vari-
ables and dependent variables in our LC MI models, this would be
possible using LC models with covariates. Vermunt and Magidson
(2003) showed that such a structure yields a better prediction for
the dependent variable, and this may also be the case for variables
that should be imputed. See also Von Hippel (2007) for an extended
discussion on the different roles that dependent and independent
variables may play in the context of MI.

� The LC model may be restricted, for example, to account for the
ordinal nature for the variables included in the imputation model
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that were now all treated as nominal. Moreover, restrictions can be
imposed on the latent classes themselves—for example, to yield la-
tent classes that are in agreement with a particular multidimensional
latent structure (see Magidson and Vermunt 2001).

� The LC model can be also extended to include continuous variables
in addition to categorical variables (McLachlan and Peel 2000; Ver-
munt and Magidson 2002). This may provide an alternative to MI
under the general location model (Schafer 1997:289–331) when the
number of variables is large.

� For the imputation of longitudinal data, we may use special types
of LC models that have been developed for such situations, such as
the discrete-state latent Markov model (Van de Pol and Langeheine
1990; Vermunt, Bac, and Magidson 2008).

� Similarly, when the data set has a multilevel structure, we may choose
to impute the missing values using a multilevel LC model (Vermunt
2003).

� Whereas the typical MI model assumes MAR missing data, NMAR
models may be specified by including the response indicators ma-
trix as an additional set of observed variables in the LC imputation
model (Moustaki and Knott 2000). Setting up NMAR MI model is,
however, not at all straightforward (for example, see Allison 2000).

Each of these extensions would provide worthwhile topics for future
research.

APPENDIX: USING LATENT GOLD
4.5 FOR MULTIPLE IMPUTATION

As was illustrated using the two examples in this paper, three steps have
to be considered for multiple imputation. Each step can be easily per-
formed using the Latent GOLD 4.5 software (Vermunt and Magidson
2008).

In step 1 an LC model must be selected. This is most easily
achieved using the Latent GOLD graphical point and click user in-
terface, because it allows estimation of a series of models—say, LC
models with 1 to 10 classes—in a single run. In the technical settings,
it should be noted that missing values should be included in analysis.
Moreover, to make the occurrence of local maxima less likely, we may
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set the number of random start sets to 100 and the number of initial
EM iterations per set to 250. In large models with many parameters (as
in our second example), it is wise to suppress the use of the Newton
Raphson algorithm and the computation of standard errors. When the
Newton Raphson is suppressed, the maximum number of EM iteration
should be increased to, for example, 5000 to ensure convergence.

In step 2, the selected LC model is used to generate M com-
pleted data sets. Once a particular LC model is selected, the “Generate
Syntax” option should be used to create a syntax version of the se-
lected LC model. One line should be added to this syntax file—that is,
outfile filename imputation=M; where M indicates the requested
number of imputations. As an illustration, we show the syntax of the
6-class imputation model used for our simulated data example:

options
algorithm tolerance=1e-008 emtolerance=0.01

emiterations=5000 nriterations=0;
startvalues seed=0 sets=100

tolerance=1e-005 iterations=250;
bayes categorical=1 variances=1 latent=1

poisson=1;
missing includeall;
output profile;
outfile data=‘imputedlca6.dat’

imputation=50;
variables

dependent Y1 nominal, Y2 nominal,
Y3 nominal, Y4 nominal, Y5 nominal,
Y6 nominal;

latent Class nominal 6;
equations

Class <- 1;
Y1 <- 1 + Class;
Y2 <- 1 + Class;
Y3 <- 1 + Class;
Y4 <- 1 + Class;
Y5 <- 1 + Class;
Y6 <- 1 + Class;
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When running this syntax, a new data file is created called imput-
edlca6.dat containing 50 stacked imputed data files, as well as new
variable imputation˙# containing the data set number.

An alternative to using the “Generate Syntax” option is to store
the selected LC model using the save “Syntax with Parameters” option,
in which case reestimation of the imputation model uses the stored
parameters as starting values.

In step 3, the statistical analyses are conducted on all M com-
pleted data sets, and the results are combined. With the Latent GOLD
syntax, it is possible to run these statistical analyses (for example,
fitting a logit model) on all data sets created in step 2 and com-
bine the results. The entire process is automated. As an example, we
give the syntax used for the statistical analysis of the the simulated
data set:

options
algorithm tolerance=1e-008

emtolerance=0.01 emiterations=250
nriterations=50;

startvalues seed=0 sets=10
tolerance=1e-005 iterations=50;

bayes categorical=1 variances=1
latent=1 poisson=1;

missing excludeall;
output parameters=first standarderrors

estimatedvalues;
variables

imputationid imputation˙#;
independent Y1 nominal, Y2 nominal,

Y3 nominal, Y4 nominal, Y5 nominal;
dependent Y6 nominal;

equations
Y6 <- 1 + Y1 + Y2 + Y3 + Y4 + Y5 + Y2 ∗ Y3;

The only difference with a standard analysis is the inclusion of the
line imputationid imputation˙#; (printed in boldface) in the variables
section of the syntax file. The program will analyze each of the imputed
data sets and combine the results using the well-known formulas.
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