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Título: Imputación múltiple de valores perdidos en el análisis factorial ex-
ploratorio de escalas multidimensionales: estimación de las puntuaciones 
de rasgos latentes. 
Resumen: Los investigadores con frecuencia se enfrentan a la difícil tarea 
de analizar las escalas en las que algunos de los participantes no han res-
pondido a todos los ítems. En este artículo nos centramos en el análisis 
factorial exploratorio de escalas multidimensionales (es decir, escalas que 
constan de varias de subescalas), donde cada subescala se compone de una 
serie de ítems de tipo Likert, y el objetivo del análisis es estimar las puntua-
ciones de los participantes en los rasgos latentes correspondientes. En este 
contexto, se propone un nuevo enfoque para hacer frente a las respuestas 
faltantes que se basa en (1) la imputación múltiple de las respuestas faltan-
tes y (2) la rotación simultánea de las muestras de datos imputados. Se ha 
aplicado el método en una muestra de datos reales en que las respuestas 
que faltantes fueron introducidas artificialmente siguiendo un patrón real 
de respuestas faltantes, y un estudio de simulación basado en conjuntos de 
datos artificiales. Los resultados muestran que nuestro enfoque (en concre-
to, Hot-Deck de imputación múltiple seguido de rotación Consensus 
Promin) es capaz de calcular correctamente la puntuación factorial estima-
da incluso para los participantes que tienen valores perdidos. 
Palabras clave: Valores perdidos; Imputación Hot-Deck; Imputación Pre-
dictive mean matching; Imputación múltiple; Consensus Rotation; Puntuaciones 
factoriales; Análisis factorial exploratorio. 
 

  Abstract: Researchers frequently have to analyze scales in which some 
participants have failed to respond to some items. In this paper we focus 
on the exploratory factor analysis of multidimensional scales (i.e., scales 
that consist of a number of subscales) where each subscale is made up of a 
number of Likert-type items, and the aim of the analysis is to estimate par-
ticipants’ scores on the corresponding latent traits. We propose a new ap-
proach to deal with missing responses in such a situation that is based on 
(1) multiple imputation of non-responses and (2) simultaneous rotation of 
the imputed datasets. We applied the approach in a real dataset where 
missing responses were artificially introduced following a real pattern of 
non-responses, and a simulation study based on artificial datasets. The re-
sults show that our approach (specifically, Hot-Deck multiple imputation 
followed of Consensus Promin rotation) was able to successfully compute 
factor score estimates even for participants that have missing data. 
Key words: Missing data; Hot-Deck imputation; Predictive mean match-
ing imputation; Multiple imputation; Consensus Rotation; Factor scores; 
Exploratory factor analysis.  
 

 
1*Introduction 

 
The ultimate aim of psychological testing is to estimate the 
score of a person in one or more latent psychological varia-
bles (known as latent traits). The estimate is based on a per-
son’s answers to a set of items (i.e. a psychological test): each 
item in the test helps the person to report a particular facet 
of his/her own personality or how (s)he would react or feel 
in a particular situation. Frequently, these items are Likert-
type items: responses to items are based on a binary or a 
graded format. With this aim (i.e., to estimate factor scores 
from responses to Likert-type items), psychological test data 
obtained in a large sample is typically analyzed using explora-
tory factor analysis (EFA). However, as responses to Likert-
type items cannot be regarded as continuous-unbounded 
variables, typical linear factor analysis is inappropriate in this 
situation. An alternative to linear factor analysis is the non-
linear Underlying Variable Approach (UVA; see, for exam-
ple, Mislevy, 1986; Moustaki, Joreskog, & Mavridis, 2004). 

The UVA uses a two-level approach: on the first level, it 
is assumed that the observed item response arises as a result 
of a categorization of an underlying response variable; on the 
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second level, it is assumed that the linear model holds for 
these underlying responses. Parameters are estimated from 
the bivariate tetrachoric/polychoric tables between pairs of 
item scores. The simplest and most usual approach is known 
as the heuristic solution (Bock & Aitkin, 1981): item thresholds 
are estimated from the marginals of the table, and the tet-
rachoric/polychoric correlations are estimated from the joint 
frequency cells. Then, the usual factor analysis of the poly-
choric correlation matrix provides estimates of item loadings 
and residual variances. Once the estimates have been ob-
tained, they can be reparameterized so that the model is re-
ported in the most usual (multidimensional) Item Response 
Theory (IRT) form (see, for example, Ferrando & Lorenzo-
Seva, 2013). Finally, factor scores on the latent variables can 
be estimated. One popular approach is to compute expected 
a posteriori (EAP) estimators, which have good properties 
that other estimators do not usually have (Muraki & Engel-
hard, 1985). It must be noted that, in order to compute these 
factor-score estimates for a particular individual in the sam-
ple, (s)he must have provided an answer to each item in the 
psychological test. However, a typical difficulty when analyz-
ing the responses of a sample of participants is missing data: 
some respondents fail to respond to some items (item nonre-
sponse). 

A particular person may refuse to answer an item be-
cause of interaction between the characteristics of the person 
and the characteristics of the item. For example, a person 
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with low lexical abilities may not respond to an item that in-
cludes a complex word. Rubin (1976) formalized the three 
mechanisms that underlie the missing data process: (a) miss-
ing completely at random (MCAR), (b) missing at random 
(MAR), and (c) missing not at random (MNAR). The MCAR 
values occur when the probability that a particular value is 
missing in the data set is independent of all other (observed 
and non-observed) variables. As a consequence, the missing 
values occur randomly for all variables in the data set. The 
MAR values occur when the probability that a value is miss-
ing depends on the observed variables in the data set, but 
not on the unobserved variables. The MNAR values occur 
when the probability that a value is missing depends on un-
observed variables. 

Even if the problem of item nonresponse is as old as 
psychological testing, it can still be an obstacle in studies 
nowadays. For example, in a recent study on marital happi-
ness, Johnson and Young (2011) observed that the percent-
age of missing responses was highest for questions about 
sexual behavior (23%) and total household income (19% to 
27%). Schlomer, Bauman and Card (2010) recently studied 
how researchers currently cope with missing responses in 
applied research (Vol. 55 of the Journal of Counseling Psychology, 
2008), and concluded that, despite the prevalence of missing 
data and the existence of recommendations for taking these 
data into account, this journal had not yet done so. Nowa-
days, research journals are publishing papers on best practic-
es and recommendations about missing responses (see, for 
example, Cuesta, Fonseca, Vallejo, & Muñiz,, 2013, Graham, 
2009, Kleinke, Stemmler, Reinecke, & Lösel, , 2011).  

In order to cope with missing responses, incomplete re-
sponse patterns are often deleted from the sample (listwise 
deletion or pairwise deletion). Even though this is easy to do, 
deleting cases with missing responses could lead to bias in 
the parameter estimates of the factor model (for example, 
loading values). In addition, because some responses are 
missing, the estimated score on the latent variable cannot be 
computed for those individuals with incomplete response 
patterns. One of the techniques recommended for handling 
item nonresponse is imputation: the missing values are filled in 
so that a complete data set is created and then analyzed with 
traditional methods of analysis. However, single imputation 
methods are considered outdated (see for example, Schafer 
& Graham, 2002). While single imputation can lead to ap-
proximately unbiased point estimates, estimated standard er-
rors are systematically underestimated (Rässler, Rubin, & 
Zell, 2013).  

A more elaborate approach to filling in missing responses 
is the multiple imputation (MI) method (Rubin, 1978): instead 
of creating a single complete data set, a number of copies are 
created by imputation. Then, each copy of data is analyzed 
independently, and the final outcome is obtained as a com-
bination of the outcomes obtained in the copies of data. One 
advantage of MI is that the final standard errors of these pa-
rameter estimates are based on both (a) the standard errors 
of the analysis of each data set and (b) the dispersion of pa-

rameter estimates across data sets. As MI accounts for the 
random fluctuations between each imputation, it provides 
accurate standard errors and therefore accurate inferential 
conclusions. If MI is a general method, it can be applied us-
ing different techniques (i.e., the complete copies of data can 
be generated using different approaches). Nowadays, the use 
of MI is quite popular in applied research in psychology: a 
Google search for the terms psychology “multiple imputation” 
produces about 131,000 hits. 

Within the framework of IRT, missing values are fre-
quently treated as if they were the result of an incomplete 
testing design (i.e., subsets of items administered to different 
respondents) (see, for example, DeMars, 2003). The resulting 
incomplete data can be analyzed with IRT models and esti-
mates of latent abilities. However, as Huisman and Molenaar 
(2001) point out, this strategy for handling item-nonresponse 
cannot be used in every situation. When this approach is not 
feasible, imputation of missing data appears as an advisable 
alternative. Imputation of missing data in IRT has been stud-
ied in the context of unidimensional models (Ayala, Plake, & 
Impara, 2001; DeMars, 2003; Finch, 2008, 2011; Huisman & 
Molenaar, 2001; Sijtsma & Van der Ark, 2003). Recently, 
Wolkowitz and Skorupski (2013) proposed a single imputa-
tion approach intended to estimate statistical properties of 
items but not factor scores. Finally, no research has yet been 
undertaken in the framework of multidimensional IRT. 

MI has already been proposed in the context of confirm-
atory factor analysis, and can be computed using, for exam-
ple, Mplus (Muthén & Muthén, 1998-2011). In this context, 
the copies of data created using MI are analyzed inde-
pendently but with one restriction: they share the same hy-
pothesis for the factor solution in the population. The fact 
that all the copies of data share the same hypothesis means 
that the outcomes of the copies of data are comparable, and 
may consequently be combined to produce one final out-
come. However, Mplus does not allow MI to be computed 
in the the context of EFA: as there is no hypothesis of the 
factor solution in the population (because of the exploratory 
nature of the analysis), the outcomes obtained in different 
copies of data are not necessarily comparable. This means 
that the EFA outcomes that are produced for each data copy 
cannot be directly combined to produce one final outcome. 
This last difficulty seems to indicate that MI cannot be used 
in EFA. 

We start by presenting a new approach based on the MI 
of missing responses in psychological tests in the context of 
EFA. Our approach focuses on the exploratory nonlinear 
factor analysis (i.e., the underlying variable approach) of Lik-
ert-type items in multidimensional tests. The main aim of our 
method is to make it possible to compute estimates of factor 
scores for all individuals in the sample. In addition, our 
method does not assume any particular missing response 
mechanism. Finally, we assess the effectiveness of the proce-
dure in two simulation studies: (1) a simulation study based 
on a real dataset; and (2) a simulation study in which differ-
ent characteristics of datasets were manipulated. 
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Procedure to obtain estimates of latent trait 
scores for ordinal data when data is missing 

 
The procedure that we propose is based on five main steps 
that are explained in detail below and summarized in Figure 

1. None of the analyses included in the five steps is new and 
they can be found in the literature. The merit of our pro-
posal is to point out how they can be used to compute mul-
tidimensional exploratory factor analysis when some re-
sponses are missing.  

 

 
Figure 1. Procedure to obtain estimates of latent trait scores for ordinal data when data is missing from the dataset. 

 
Step 1: Multiple imputation 
 
The problem that needs to be solved is how to fill in the 

missing values of a participant in a multidimensional psycho-
logical test (i.e., scales that consist of a number of subscales) 
in which each subscale is made up of a number of Likert-
type items. For this purpose, various MI approaches can be 
used. In our simulation studies presented below, we use two 
approaches: Hot-deck Multiple Imputation (HD-MI), and 
Predictive mean matching (PMM-MI).  

Single hot-deck imputation was developed for item non-
response in the Income Supplement of the Current Popula-
tion Survey, initiated in 1947 (Ono & Miller, 1969). A recent 
review of different techniques of hot-deck imputation can be 
found in Andridge and Little (2010). Hot-deck replaces miss-
ing values in incomplete cases (donees) with observed values 
from donors in the same data set to create a complete data 
set. In some versions, the donor is selected randomly from a 

set of potential donors (the donor pool). In other versions, a 
single donor is identified and values are imputed from that 
individual, who is usually the “nearest neighbor” based on 
some metric. Siddique and Belin (2007) point out the follow-
ing benefits of hot-deck imputation: (1) imputations tend to 
be realistic since they are based on values observed else-
where; (2) imputations will not be outside the range of possi-
ble values; and (3) it is not necessary to define an explicit 
model for the distribution of the missing values. They con-
clude that, because of the simplicity of the hot-deck ap-
proach and these desirable properties, it is a popular method 
of imputation, especially in large-sample survey settings 
where there is a large pool of donors. As psychological tests 
are frequently multidimensional scales (i.e., scales that consist 
of a number of subscales) that consist of a number of Likert-
type items, hot-deck imputation is a simple and convenient 
procedure for dealing with missing responses: (a) hot-deck 
imputation can easily be implemented even if the number of 
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items is large (a typical situation in multidimensional scales); 
(b) a large sample is available from which potential donors 
can be taken; and (c) all the imputations will be in the range 
of specific values used in the Likert-type items.  

Single hot-deck imputation can be generalized to become 
a multiple imputation procedure: Hot-deck Multiple Imputa-
tion (HD-MI), also known as K-nearest-neighbors hot-deck 
imputation. This is an imputation technique in which missing 
values in incomplete cases (donees) are replaced with ob-
served values from donors in the same data set to create K 
complete data sets. HD-MI has been shown to improve the 
simplest approaches, and it has remained a popular option in 
many applications (Aittokallio, 2010). Like single HD impu-
tation, HD-MI is a simple and convenient procedure for 
dealing with missing responses. 

Predictive mean matching (PMM) (Rubin, 1986) could at 
some extend be defined as a hot-deck imputation method: 
the main difference is that observed values for Y are re-
gressed on a set of observed variables X. Then, predicted 
values for Y are calculated for all Y using the regression pa-
rameters calculated for the observed data. Finally, missing Y 
values are imputed using observed values of Y whose pre-
dicted values most closely match the predicted values of the 
respondents with missing data. The set of predictor variables 
X to be used to predict variable Y must be correlated with 
variable Y. Each variable Y to be imputed can use a different 
set of predictor variables X.  

When we applied HD-MI, we selected the K nearest 
neighbors (i.e., the donors) to the donee. The selection was 
made taking into consideration all the individuals of the 
sample that produced responses for the same set of items as 
the donee: the K participants with the lowest Euclidean dis-
tance are taken as the donors. Once the K donors for each 
donee have been selected, K copies of the original data are 
generated in which donees’ missing responses are replaced 
with the corresponding donors’ responses. PMM-MI uses 
the procedure explained above to create K copies of data as 
well. In this way, K complete versions of the data set are ob-
tained. In our simulation study presented below, we used K 
= 5 with acceptable results. 

As our approach is not related to a particular MI method, 
researchers can use the MI procedures that we tested in our 
simulation studies or others that are available in the litera-
ture. MI can be computed by software packages such as 
SPSS, R (see Amelia II package available at 
http://gking.harvard.edu/amelia), or Matlab (for example, 
function knnimpute available in Bioinformatics Toolbox).  

 

Step 2: Independent exploratory factor analysis 
 
Once the data have been multiply imputed, each copy is 

independently analyzed using EFA. As already explained, the 
nonlinear UVA is appropriate for analyzing the data. In the 
most usual approach (see e.g. Mislevy, 1986), the item 
thresholds are estimated from the marginals in the table and 
the tetrachoric/polychoric correlations are estimated from 
the joint frequency cells. So, routine factor analysis of the 
tetrachoric/polychoric correlation matrix provides the esti-
mates of the loading values. In this way, for each copy of da-
ta, we obtain (a) the item thresholds, (b) the polychoric cor-
relation matrix, and (c) the matrix of loading values. It must 
be noted that the decision on how many r factors to extract 
(one factor for each latent trait) has to be the same for the K 
copies of data. The factors can be extracted using Un-
weighted Least Squares (ULS), for example. After this step, 
K unrotated loading matrices Ak are obtained. 

Researchers can use the R package polycor to compute 
polychoric correlation matrices (http://cran.r-
project.org/web/packages/polycor/). In addition, the R 
package psych makes it possible to compute different factor 
loading estimates  
(http://cran.r-project.org/web/packages/psych/). 

 
Step 3: Consensus factor rotation 
 
In EFA of a single dataset, the loading matrix is typically 

rotated to maximize factor simplicity (Kasier, 1974) using an 
orthogonal or an oblique rotation method. However, in this 
step of the analysis, K loading matrices Ak need to be rotated. 
In our situation, the independent rotation that maximizes 
simplicity in each loading matrix Ak has an important draw-
back: the freedom of the final position of rotated factors 
means that the rotated factor solutions may turn out to be 
non-comparable between the K copies of data. A (semi) con-
firmatory factor analysis would not have this drawback: the 
hypothetical loading matrix that is proposed in the popula-
tion model is used as a kind of target to the K factor solu-
tions. However, in an EFA such a common hypothesis (or 
target) does not exist. To avoid the drawback, the K factor 
loading matrices Ak have to be simultaneously orthogonally 
(or obliquely) rotated so that they are both (a) factorially 
simple, and (b) as similar to one another as possible. For the 
orthogonal rotation, Consensus Varimax can be computed 
(see, for example, Kiers, 1997). For the oblique rotation, 
Consensus Promin (Lorenzo-Seva, Kiers, & ten Berge, 2002) 
is available. Both consensus rotations are based on a previ-
ous Generalized Procrustes Rotation (GPR). Let Ak be the 

set (k = 1…K) of unrotated loading matrices of order m  r 
obtained by factor analysis with m variables and r factors re-
tained. This set of loading matrices is orthogonally rotated by 
GPR (ten Berge, 1977) by minimizing, 
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over S1,…, SK, subject to SkSk
’ = Sk

’Sk = I. So the set of 
loading matrices AkSk shows optimal agreement in the least 
squares sense. The Consensus Promin rotation consists of 
applying Promin (Lorenzo-Seva, 1999) to the mean of the 
matched loading matrices AkSk, thus minimizing 

 

with U subject to IUU 
)'(

11
diag . The oblique load-

ing matrices Pk  of order m  r are computed as, 

USAP kkk  .
 (3) 

 
As far as we know, neither Consensus Varimax nor Con-

sensus Promin rotations have been specifically programmed 
in R language. However, researchers can use the various R 
packages available to obtain a consensus rotation. For exam-
ple, GPR is available in the procGPA package 
(http://www.inside-
r.org/packages/cran/shapes/docs/procGPA ), and Promin 
rotation is available in the PCovR package 
(http://www.inside-.org/packages/cran/PCovR/docs/pro-
min; Vervloet et al., 2015). After the consensus rotation, pat-
tern matrices of the K copies of data are comparable, and 
can be used to compute estimates of latent trait scores. 
 

Step 4: Estimates of latent trait scores 
 
Because the items in the psychological test are frequently 

Likert-type items, an appropriate procedure should be used 
to estimate the r latent trait scores. One popular approach is 
to compute expected a posteriori (EAP) estimators (Muraki 
& Engelhard, 1985). In the context of our multiple imputa-
tion method, EAP estimates of the r latent trait scores must 
be computed for the K copies of the data. For each copy of 
the data, the corresponding item scores (with donees’ miss-
ing responses replaced with the corresponding donors’ re-
sponses), item thresholds, and the rotated loading matrix are 
used to compute the r EAP scores. For each individual, K 
EAP estimates are computed related to the r latent traits.  

Although EAP factor scores are not frequently used in 
applied research, they can be computed using an R package: 
Latent Trait Models under IRT (ltm) (http://www.inside-
r.org/packages/cran/ltm/docs/factor.scores). 

 
Step 5: Final latent trait scores 
 
Once the K estimates of the r latent trait scores are avail-

able for each individual, the average of the K estimates of 
each individual is computed so that the final estimates of the 
r latent trait scores can be obtained. 

 

Simulation study based on a real dataset 
 

In this section, we present an illustrative example of how the 
multiple imputation method followed by simultaneous rota-
tion performs with a dataset in which missing data are artifi-
cially introduced. The aim is to assess whether the imputa-
tion method can obtain reasonably good estimators of the la-
tent trait scores for incomplete data. The study has four 
main steps: (a) first, for a particular psychological test, it de-
tects the pattern of missing values obtained in a real situa-
tion; (b) second, it introduces missing data into a dataset that 
was initially complete; (c) then, it computes the estimates of 
the latent trait scores using the original dataset (i.e., the da-
taset that is free of missing data), and the estimates of the la-
tent trait scores after introducing artificial missingness; (d) 
and, finally, it compares the estimators obtained in both situ-
ations to assess the performance of the imputation method 
proposed. In addition to the multiple imputation method, we 
included a simplistic alternative imputation method that is 
frequently used in real research. In the section below we de-
scribe the simulation study in detail. 

 
Obtaining missing-data patterns from incomplete 
data  
 
To study the pattern of missing values in a real situation, 

a sample of 747 individuals (51% women) were administered 
the Overall Personality Assessment Scale (OPERAS) (Vigil-
Colet et al., 2013). OPERAS is a short measure for the five-
factor model personality traits: Extraversion (EX), Emotion-
al Stability (ES), Conscientiousness (CO), Agreeableness 
(AG), and Openness to Experience (OE). Each personality 
trait is measured with 7 items, and the participant must indi-
cate the level of agreement with a sentence by using a five-
point scale that goes from “fully disagree” (1) to “fully 
agree” (5). The test was administered in the traditional paper-
and-pencil format. A sentence at the end of the test remind-
ed the participants to review the test so that they would spot 
missing data. Two participants had more than 10 missing 
values: as they left more than 25% of items unanswered, 
these two participants were eliminated from the sample. 

Even though the respondents were reminded to review 
their responses, on 65 occasions (out of 26,145) an item was 
not answered. All scales had missing data (with frequencies 
ranging from 10 to 17), and the maximum number of miss-
ing values was observed in EX. A total number of 55 indi-
viduals had incomplete response patterns (7.4% of the sam-
ple): 2 participants had 3 missing values, 6 participants had 2 
missing values, and 47 participants had only 1 missing value. 
These outcomes were taken as the pattern of missing data to 
be observed in OPERAS in a real situation. This pattern is 
used in the next step to introduce artificial missing data into 
a complete data set.  

 
 
Inserting Missing-Data Patterns into Complete Data 

http://www.inside-r.org/packages/cran/shapes/docs/procGPA
http://www.inside-r.org/packages/cran/shapes/docs/procGPA
http://www.inside-.org/packages/cran/PCovR/docs/pro-min
http://www.inside-.org/packages/cran/PCovR/docs/pro-min
http://www.inside-r.org/packages/cran/ltm/docs/factor.scores
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OPERAS was administered to a second sample of 745 

participants (34% women). However, this second sample an-
swered an on-line format of the test. In this version of the 
test a single item was presented on a computer screen at a 
time, and the computer refused to continue with the next 
item until a response had been given. With the on-line ver-
sion, it was impossible to skip questions (i.e., non-responses 
could not be produced by the responder). Please note that 
OPERAS was actually developed by its authors in both pa-
per-and-pencil and on-line formats. 

The aim was to artificially introduce missing data into 
this second sample using the missing-data patterns from the 
first sample. Specifically, we aimed to introduce the missing 
values in the same kind of participants as the set of partici-
pants who had given non-responses in the first sample, and 
in exactly the same items. The first step was to select the 55 
participants in the second sample that were most similar to 
the 55 participants with missing data in the first: we comput-
ed the Euclidean distance of the responses of the first partic-
ipant who produced non-response in the first sample with 
respect to the responses of the 745 participants in the second 
sample, and selected the participant in the second sample 
who was most similar to that participant in the first sample. 
Please note that the Euclidean distance was computed using 
only the items to which the participant in the first sample ac-
tually produced a response. The second step was to artificial-
ly introduce in the participant selected from the second sam-
ple the same non-responses as the participant from the first 
sample (i.e., we deleted the responses in exactly the same 
items in which a non-response was observed). The proce-
dure was replicated then for the second participant who pro-
duced a non-response in the first sample, in order to select 
the most similar participant from the second sample (now of 
744 participants), and the non-responses observed in the par-
ticipant of the first sample were also introduced in the partic-
ipant of the second sample. This two-step procedure was 
replicated until we had 55 participants in the second sample 
with exactly the same non-responses as the 55 participants in 
the first sample.  

At this point we had (1) a sample of 745 participants that 
had not produced any non-responses, and (2) the same sam-
ple in which it was suspected that 55 participants would have 
produced a non-response if the computer had allowed them 
to and who had had 65 non-responses artificially introduced 
(following the pattern of non-responses observed in the 
sample that was administered the paper-and-pencil format 
test). In the rest of the document, we shall refer to the first 
sample as the Full Response (FR) sample, and the second as 
the Artificial Non-Response (ANR) sample. 

Computing the estimates of latent trait scores in the FR 
sample is a typical analysis that presents no difficulties. How-
ever, computing estimates of latent trait scores in the ANR 
sample is impossible, unless a specific method is used to deal 
with non-responses. In the section below we compute EAP 
estimates in the FR sample and use multiple imputation to 
compute EAP estimates in the ANR sample. We also use a 
popular single imputation procedure to assess whether our 
multiple imputation improves the performance of this single 
imputation method. 

 
Computing the estimates of the latent trait scores 
 
In order to compute the estimates of the latent trait 

scores in the FR sample, we used the program FACTOR 
(Lorenzo-Seva & Ferrando, 2013). We computed the poly-
choric correlation matrix. The value of the KMO index was 
.87, which indicated that the correlation matrix was suitable 
for factor analysis. Optimal parallel analysis (Timmerman & 
Lorenzo-Seva, 2011) suggested that five factors could be ex-
tracted. We extracted the five factors using unweighted least 
squares extraction, and obtained a CFI index of .98. To max-
imize factor simplicity, we computed Promin rotation (Lo-
renzo-Seva, 1999). The salient loading values of items in the 
rotated pattern were in accordance with the scales EX, ES, 
CO, AG, and OE. Finally, we computed the estimates of the 
five latent trait scores using the EAP estimator. The means 
and variances of the estimates are shown in Table 1, in the 
columns labeled True. The table shows the statistics for the 
whole sample, for the subsample of the 55 participants with 
artificial missing data, and the subsample of 690 participants 
with complete response patterns. The outcomes of the whole 
sample show that, as expected with the EAP estimator, 
means are close to zero, and variances are lower than 1. The 
same pattern is observed for the subsample of 690 partici-
pants whose responses are unchanged. However, the means 
of the subsample of the 55 participants with artificial missing 
data can help us to understand the kind of participants that 
were expected not to respond to all items in this test. These 
participants generally had low scores on OE, EX, and AG. 
This probably means that they did not understand some of 
the items (low score on OE), were shy to ask for help (low 
score on EX), or did not care enough about the instructions 
to review their response patterns (low score on AG). Except 
for the scores on EX, this subsample was quite homogene-
ous in this pattern (low variances). As the pattern of missing 
values observed in the data seems to be dependent on the 
observed variables included in the model, the data-missing 
mechanism for this data set seems to be MNAR. 
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Table 1. Mean and variances (printed in parentheses) for the true and the estimate of factor scores in the five personality factors. 

Factor  
Factor scores for the whole sample 

 
N = 745 

 
Factor scores for the subsample of 

individuals with missing data 
N = 55 

 
 
 

Factor scores for the subsample of individuals with-
out missing data 

N = 690 

  True  
Estimates based on  
imputation methods 

 True  
Estimates based on  
imputation methods 

 True  Estimates based on imputation methods 

    PMM-MI HD-MI Mode-I    PMM-MI HD-MI Mode-I    PMM-MI HD-MI Mode-I 
                   

EX  0.012  0.009 0.011 0.011  -0.154  -0.180 -0.159 -0.160  0.025  0.024 0.024 0.024 
  (0.929)  (0.915) (0.928) (0.928)  (1.036)  (1.049) (1.006) (0.971)  (0.919)  (0.903) (0.921) (0.924) 
                   

ES  0.019  0.021 0.019 0.019  -0.004  -0.043 -0.016 -0.005  0.021  0.026 0.021 0.021 
  (0.955)  (0.970) (0.955) (0.955)  (0.637)  (0.646) (0.636) (0.633)  (0.981)  (0.997) (0.981) (0.982) 
                   

CO  0.022  0.022 0.022 0.022  -0.032  -0.044 -0.029 -0.001  0.026  0.027 0.026 0.024 
  (0.899)  (0.900) (0.898) (0.899)  (0.692)  (0.661) (0.654) (0.644)  (0.917)  (0.920) (0.919) (0.920) 
                   

AG  0.027  0.028 0.027 0.027  -0.140  -0.128 -0.134 -0.119  0.041  0.041 0.040 0.039 
  (0.760)  (0.753) (0.759) (0.759)  (0.481)  (0.439) (0.467) (0.472)  (0.780)  (0.776) (0.781) (0.781) 
                   

OP  0.015  0.016 0.015 0.015  -0.439  -0.460 -0.417 -0.379  0.051  0.053 0.050 0.046 
  (0.811)  (0.810) (0.806) (0.802)  (0.775)  (0.770) (0.686) (0.699)  (0.797)  (0.795) (0.800) (0.798) 
                   

 
In order to compute the estimates of the latent trait 

scores in the NR sample, we used three imputation methods 
to handle the missing data. The methods we used were: 
1. Hot-Deck Multiple Imputation (HD-MI) (see above). We 

used five copies of data. When subjecting the copies of 
the data to factor analysis, we used the same methods as 
the ones used when the FR sample was analysed. The on-
ly difference was that instead of Promin rotation (useful 
when a single dataset is analyzed), we computed Consen-
sus Promin rotation (useful when simultaneously rotating 
a number of datasets). 

2. Predictive Mean Matching Multiple Imputation (PMM-
MI) (see above). Again, we used five copies of the data, 
and we used the same procedure as with HD-MI to fac-
tor analyze the K copies of data obtained. 

3. Single imputation of the mode of the item (Mode-I). Any 
missing value in the dataset was replaced with the mode 
of the item where the non-response was observed. We 
used the mode (instead of the mean or the median) be-
cause we aimed to supply one of the answers that was al-
ready on the response scale of the item (i.e., the values 1, 
2, 3, 4, and 5). After the imputation of modes, we repli-
cated the methods used when the FR sample was subject 
to factor analysis.  
 
The means and variances of the estimates are shown in 

Table 1, in the columns labeled PMM-MI, HD-MI and Mode-
I. As factor score estimates are computed from the infor-
mation obtained after the rotation of the factor loading ma-
trix, a possible criticism of imputation is that it affects the es-
timates related to the whole sample (not only the subsample 
of participants in which non-responses are observed), and 
consequently it might change the estimates of participants 
who do not have missing responses. To determine whether 

this criticism can be applied to our data analysis, Table 1 
shows the statistics for (1) the whole sample, (2) the subsam-
ple of individuals who have artificial missing data, and (3) the 
subsample of individuals who do not have missing data. As 
can be observed in the table, the three imputation methods 
closely replicated the same values (in terms of mean and var-
iance) when analyzing the FR sample (i.e., when there are no 
missing data at all) in (a) the whole sample, and (b) the sub-
sample of individuals who did not have missing data. How-
ever, the estimates for the subsample of participants who 
had artificial missing data were generally replicated best 
when a multiple imputation method was used. As can be ex-
pected, the worst imputation approach was Mode-I, whereas 
HD-MI and PMM-MI performed quite similarly. Table 2 
shows the correlations between (a) the factor score estimates 
obtained in the FR sample (i.e., when there were no missing 
data), and (b) the factor score estimates obtained in the NR 
sample (i.e., when artificial missing data were introduced into 
the dataset). In terms of correlation, HD-MI performed 
slightly better than the others. 

We also computed the bias defined as the difference be-
tween (1) the factor score estimates obtained in the NR sam-
ple after (multiple) imputation, and (2) the factor score esti-
mates obtained in the FR sample. In addition, we computed 
the Root Mean Square of Residuals (RMSR) between both 
estimates: the observed values were .079. .029, and .041, re-
spectively, for PPM-MI, HD-MI, and Mode-I. The mean bi-
as (and its corresponding 95% confidence interval), the vari-
ance of the bias, and the RMSR are shown in Table 3. The 
outcomes in the table are presented for both the subsample 
of participants with artificial missing data, and the subsample 
of participants without missing data. When the subsample of 
participants with missing data was considered, the lowest bi-
as was observed for HD-MI (not significantly different from 
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zero), whereas the more homogenous bias was observed for 
PMM-MI (in terms of variance and RMSR). When the sub-
sample of participants without missing data was considered, 
the three imputation methods produced very accurate esti-

mates. However, PMM-IM was the approach that showed 
the largest RMSR: in this regard, PMM-IM seems to be the 
method that most affected the factor score estimates of the 
participants without missing data.  

 
Table 2. Correlations between the true scores and the estimates based on different imputation methods. 

Factor  
Total sample 

 
N = 745 

 
Subsample of individuals 

with missing data 
N = 55 

 
 
 

Subsample of individuals 
without missing data 

N = 690 
  PMM-MI HD-MI Mode-I  PMM-MI HD-MI Mode-I  PMM-MI HD-MI Mode-I 

EX  .9969 .9997 .9996  .9922 .9967 .9958  .9974 1.0000 1.0000 
ES  .9917 .9998 .9998  .9803 .9968 .9967  .9923 1.0000 1.0000 
CO  .9996 .9996 .9991  .9935 .9931 .9851  .9999 1.0000 1.0000 
AG  .9952 .9996 .9995  .9760 .9907 .9904  .9961 1.0000 1.0000 
OP  .9990 .9987 .9969  .9932 .9827 .9602  .9994 1.0000 .9998 

 
Table 3. Descriptive statistics of estimation bias (estimate score minus true score) for different imputation methods. 

Statistics  
Subsample of individuals 

with incomplete response patterns 
 

Subsample of individuals 
with complete response patterns 

  N = 55  N = 690 
  PMM-MI HD-MI Mode-I  PMM-MI HD-MI Mode-I 

Mean  -0.056 0.024 0.111  0.0012 -0.0006 -0.0006 
95% CI  (-0.104 ; -0.007) (-0.028 ; 0.077) (0.043 ; 0.180)  (-0.001 ; 0.004) (-0.001 ; 0.000) (-0.001 ; 0.000) 
Variance  0.037 0.043 0.074  0.0057 0.0002 0.0002 
RMSR  0.200 0.208 0.292  0.076 0.013 0.016 

 

Simulation study based on artificial datasets 
 

On the basis of the theoretical considerations and results 
from research discussed in the sections above, we hypothe-
size that our multiple imputation approach will outperform 
the single imputation approach when used to estimate true 
factor scores. To study the comparative performance of two 
multiple imputation procedures (HD-MI and PMM-MI) and 
estimate the true factor score of individuals under different 
circumstances, we performed a simulation study based on ar-
tificial data.  

 
Data construction 
 
The simulated data were generated with a linear common 

factor model, where the resulting continuous variables were 
categorized to yield ordered polytomous observed variables. 
The linear common factor model included both major and 
minor factors, as may well be the case with real-world data, 
on the basis of the middle model by Tucker, Koopman and 
Linn (1969). This approach was adopted in earlier research 
on the common factor model (see for example, Timmerman 
& Lorenzo-Seva, 2011). In the simulation study, the popula-
tion correlation matrix of the continuous variables R*pop was 
taken as 

R*pop = wma mamama´ + wmi mi mi´ + wun IJ, (4) 

where ma (J  Qma) and mi (J  Qmi) are major and minor 
loading matrices, respectively, with Qma and Qmi being the 
number of major and minor factors, and J the number of ob-

served variables; ma (Qma  Qma) is the inter-factor correla-

tion between major factors; IJ (J  J) is the identity matrix, 
reflecting the covariance matrix of the unique parts of the 
variables; wma, wmi and wun are weights that make it possible to 

manipulate 
2
ma , 

2
mi  and 

2
un , the variances of the ma-

jor, minor and unique parts of the correlation matrix, respec-
tively. In our study, these variances were kept constant so 

that 
2
ma =.64, and 

2
mi =.10. In addition, the number of 

major and minor factors was also kept constant: we consid-
ered two major factors and six minor factors. The inter-
factor correlation between major factors was systematically 

.30. Each simulated continuous data matrix X* (N  J), with 
sample size N, was obtained by randomly drawing N vectors 
from a multivariate normal distribution N(0, R*pop). Subse-
quently, each element xnj of the polytomous simulated data 

matrix X (N  J) was obtained from the element 
*
njx  of the 

continuous data matrix X* using prespecified thresholds τc (τc 
= τ0,…,τC, with C= 5 the number of response categories), 

with xnj = c if *
1c nj cτ x τ   . In real situations the item re-

sponses are non-symmetrically distributed so the distribution 
of the variables was manipulated to be systematically skewed 
in our datasets. For each single factor, half of the variables 
were skewed in the opposite direction to mimic differences 
in item difficulty in real scales and the thresholds were cho-
sen such that the expected proportion of observations in cat-
egories c=1,…,C were [0.05, 0.60, 0.20, 0.10, 0.05]. 

The various conditions in the experimental design were 
manipulated so that they represented conditions present in 
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empirical research. The sample size was varied (N = 500, 
1,000 and 2,000) and the number of observed variables per 
major factor was also varied (M = 5 and 10). This means 
that, as the number of major factors was kept constant to 2, 
the number of observed variables in the model was J=10 and 
20. 

For each X, we computed the estimated latent trait 
scores as follows: (a) we computed the corresponding poly-
choric correlation matrix R; (b) we extracted two factors us-
ing unweighted least squares factor analysis, and (c) we com-
puted estimated latent trait scores using the EAP estimator 
for each individual in X. These estimated latent trait scores 

were considered the true estimated latent trait scores (t) that 
would be obtained if the data contained no missing values.  

 
Simulation of artificial missing data 

 
Once data matrix X was available, we introduced different 
amounts of artificial missing data in order to obtain Y (i.e., 
the same dataset as X, but with missing data). The propor-
tion of missing data was manipulated to be G=.05, .10, and 
.15. The three mechanisms that underlie the missing data 
process (MCAR, MNAR, and MAR) were simulated in order 
to produce data with artificial missing data. To generate 
MCAR data, for each xij value in X, a uniform number be-
tween 0 and 1 (U) was randomly drawn. If the value of U 
was less than or equal to G, the item response yij was deleted. 
To generate MNAR data, we computed the total scale score 
(S) of each individual as the addition of the observed re-
sponses of each participant in X. Then we computed 

P(missing|S)=G(1-(S)), where (S) is the additive inverse 
of the normal cumulative density function. Once 
P(missing|S) had been calculated, a uniform number be-
tween 0 and 1 (U) was randomly drawn. If the value of U 
was less than or equal to P(missing|S), the item response yij 
was deleted. To generate MAR data, we computed a normal-

ly distributed variable V that was correlated .5 with t. Then 

we computed P(missing|V)=G(1-(V)), where (V) is the 
additive inverse of the normal cumulative density function. 
Once P(missing|V) had been calculated, a uniform number 
between 0 and 1 (U) was randomly drawn. If the value of U 
was less than or equal to P(missing|V), the item response yij 
was deleted.  

It must be noted that from each matrix X (i.e., a matrix 
of individuals’ responses without missing data), 9 different 
matrices Y  (i.e., a matrix of individuals’ responses with miss-
ing data) were computed: 3 different values of G  3 miss-
ing data mechanisms. 

 

Imputation of missing data 
 

Once matrices Y were available, we proceeded to apply the 
same imputation methods that we had used in the previous 
simulation study: Hot-Deck Multiple Imputation (HD-MI), 
Predictive Mean Matching Multiple Imputation (PMM-MI), 
and Single imputation of the mode of the item (Mode-I). For 
each Y, we computed the estimated latent trait scores as fol-
lows: (a) we computed the corresponding polychoric correla-
tion matrix; (b) we extracted two factors using unweighted 
least squares factor analysis, and (c) we computed estimated 
latent trait scores using the EAP estimator for each individu-
al in each Y. These estimated latent trait scores were consid-

ered the estimated latent trait scores () that could be ob-
tained when the data contain missing values.  

 

Dependent variable 
 

We computed 500 replicates of the study. This resulted in 2 

(number of observed variables per major factor)  3 (per-

centage of missing responses)  3 (mechanism to produce 

missing responses)  500 (replicates) = 27,000 simulated data 
sets with artificially introduced missing responses. As the size 
of the datasets with missing responses was N=500, 1000, or 
2,000, the number of participants simulated in the study was 
31,500,000. For each participant, the estimated latent trait 
scores were computed for both factors in each data set (i.e., a 
total of 64,000,000 estimated latent trait scores were com-
puted), where the missing values were imputed using the 
three approaches discussed above: HD-MI, PMM-MI and 
Mode-I. To assess the performance of each imputation ap-
proach, we computed the bias of the estimated latent trait 
scores: true estimated latent trait scores minus estimated la-

tent trait scores (t − ). To assess the accuracy, we comput-
ed the average bias. To assess the efficiency, we computed 
the standard deviation of bias. 
 

Results and conclusion of the simulation 
study 
 
Table 4 shows the mean and standard deviation of bias of 
the three imputation approaches. Overall, it can be seen that 
Mode-I was the imputation approach with the largest average 
bias (with estimated factor scores lower than the true ones), 
and the largest standard deviation (i.e., less efficiency). While 
both multiple imputation approaches performed quite simi-
larly, HD-MI offered the best accuracy and efficiency. 
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Table 4. Average of bias obtained in the simulation study based on artificial data. Standard deviations of bias are printed in parenthesis. 

Condition   Mode-I  HD-MI  PMM-MI 
           

Overall  0 .003037 (.1825) 0   .000126 (.1477) 0 .000580 (.1548) 

           

Missing-response mechanism MCAR 0 .001922 (.1764) 0   .000121 (.1422) 0 .000429 (.1492) 

 MAR 0 .004584 (.1904) 0   .000376 (.1565) 0 .000583 (.1626) 

 MNAR 0 .002604 (.1805) 0 .000120 (.1439) 0 .000728 (.1522) 

           

Sample Size 500 0 .002724 (.1820) 0   .000194 (.1507) 0 .000493 (.1547) 

 1000 0 .003102 (.1827) 0   .000040 (.1474) 0 .000635 (.1539) 

 2000 0 .003082 (.1826) 0   .000152 (.1470) 0 .000574 (.1552) 

           

Number of items per factor (m/r) 5 0 .001710 (.1963) 0 .000051 (.1562) 0 .000670 (.1697) 

 10 0 .004364 (.1677) 0   .000302 (.1386) 0 .000491 (.1382) 

           

Percentage of missing responses 5 0 .001827 (.1248) 0 .000122 (.0960) 0 .000521 (.1031) 

 10 0 .003195 (.1811) 0 .000044 (.1440) 0 .000705 (.1512) 

 15 0 .004089 (.2271) 0   .000543 (.1884) 0 .000514 (.1959) 

 
The most difficult situations for HD-MI were when (a) 

the missing data mechanism was MAR, (b) the number of 
observed variables per factor was large, and (c) the percent-
age of missing data was large. PMM-MI showed a consistent 
tendency to overestimate the true values. The most difficult 
situations of PMM-MI were when (a) the missing data mech-
anism was MNAR, (b) the number of observed variables per 
factor was low, and (c) the percentage of missing responses 
was large. 

Overall, these results show that single imputation of 
missing values should not be used (i.e., Mode-I in our simu-
lation study), and that multiple imputation based on the Hot-
Deck approach (i.e., HD-MI in our simulation study) was the 
most accurate and efficient approach. In order to get further 
insight into the interaction among the conditions used in the 

simulation study, we further studied the results obtained with 
the most successful approach (i.e., HD-MI). Table 5 shows 
the average bias in the various conditions related to HD-MI. 
When missing responses were due to MAR, the bias was 
largest when the number of variables per factor was large 
and the percentage of missing responses was large; this bias 
was even greater when the sample size was low. When miss-
ing responses were due to MCAR, the bias was largest when 
the sample size was low, the number of items per factor 
large, and the percentage of missing responses large. When 
missing responses were due to MNAR, the bias was lower 
than when missing responses were due to MAR or MCAR. 
However, bias increased when the percentage of missing re-
sponses was large, the number of items per factor was large, 
and the sample size was large. 

 
Table 5. Average of bias obtained related to HD-MI approach depicted for manipulated conditions of the simulation study. 

Sample size Number of items per factor  Percentage of missing responses  MCAR   MAR MNAR 

500 5 5   .00001   .00019   .00006 

    10   .00002   .00039   .00004 

    15   .00010   .00074   .00025 

  10 5   .00010   .00040   .00021 

    10   .00014   .00046   .00018 
    15   .00115   .00314   .00104 

1000 5 5   .00014   .00035   .00025 

    10   .00032   .00050   .00039 

    15   .00006   .00085   .00042 

  10 5   .00076   .00030   .00039 

    10   .00029   .00075   .00151 

    15   .00059   .00302   .00111 

2000 5 5   .00014   .00004   .00015 

    10   .00018   .00023   .00035 

    15   .00032   .00008   .00026 

  10 5   .00039   .00035   .00074 

    10   .00064   .00034   .00090 

    15   .00065   .00280   .00129 
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Discussion 
 
In EFA, researchers usually have to deal with missing data: 
for some reason, some participants leave some items unan-
swered. While the performance of multiple imputation with 
continuous data has been extensively studied, much less 
work has been done on the performance of multiple imputa-
tion with ordinal data (Finch, 2008). We suggest how the 
multiple imputation approach can be used in the context of 
EFA. It should be pointed out that while multiple imputation 
has been studied in unidimensional situations (see, for exam-
ple, Finch, 2008, 2011), our approach is useful in multidi-
mensional situations: to our knowledge no previous work has 
been done on this specific situation, which is frequent in real 
applied research. The key step in our procedure is to simul-
taneously rotate the K copies of data obtained after multiple 
imputation, so that the K factor scores for each individual are 
comparable (i.e., the average between the K factor score es-
timates of an individual can be computed to obtain the final 
factor score estimation of the individual). 

We carried out simulations based on real data and artifi-
cial datasets. In the study with real data, we used two sam-
ples: one sample in which a personality test was administered 
in the traditional pencil and paper format, and which had 
missing data; and a sample in which the same personality test 
was administered with computer software that did not allow 
for non-responses. The results in this simulation study sug-
gested that our approach was actually successful, and pro-
duced better factor score estimates than single imputation 
methods.  

In the study with the artificial dataset, we manipulated 
three missing data mechanisms (MCAR, MAR, and MNAR), 
the sample size, the proportion of items per factor, and the 
percentage of missing responses. The results of this study 
suggest that single imputation (Mode-I in our study) is not an 
advisable option, and that HD-MI is the most accurate and 
efficient of the approaches used. HD-MI was less accurate 
when MAR was the mechanism responsible of the nonre-
sponses, than when MCAR or MNAR were the responsible 
mechanisms of the nonresponses. In the same way, PMM-
MI was less efficient when MAR was the mechanism respon-
sible of the nonresponses. The conclusion is that, of the 
three missing data mechanisms, MAR seems to be the most 
difficult one to deal with. 

In the simulation study, our approach was tested with 
two multiple imputation methods: Hot-deck (Ono & Miller, 
1969), and Predictive Mean Matching (Rubin, 1986). Overall, 
Hot-deck Multiple Imputation seemed to perform slightly 
better in our dataset than Predictive Mean Matching Multiple 
Imputation. In addition, it should be pointed out that single 
imputation of the mode the items was the approach that per-
formed worst. 

Our paper proposes a multiple imputation approach to 
deal with missing responses, with particular focus on the 
procedure for obtaining latent trait estimates. However, oth-
er approaches can be found in the literature. Yuan, Marshall 

and Bentler (2002) proposed a unified approach to explora-
tory factor analysis that included missing values and was 
based on generalizing the maximum likelihood approach un-
der constraints in order to assess statistical properties of es-
timates of factor loadings and error variances. However, they 
did not specifically deal with the difficulty of computing fac-
tor scores. Yuan and Lu (2008) provided the theory and ap-
plication of the 2-stage maximum likelihood procedure for 
structural equation modeling with missing data (see also Yu-
an & Zhang, 2012, and Yuan & Savalei, 2014). Their ap-
proach is especially advisable if the data mechanism is MAR. 
If the missing data mechanism is unknown, they advise that 
auxiliary variables be included in the analysis to make the 
missing data mechanisms more likely to be MAR. From our 
point of view, it cannot be easily assumed that the MAR 
mechanism plays a role in nonresponses to psychological 
tests. A psychological test is composed of a number of items: 
even if all the items in the same scale are expected to have a 
latent variable in common, each item is related to a specific 
facet of the latent variable. What is more, if two items are re-
lated to exactly the same facet of a latent variable, then one 
of the items is redundant and should not have been in the 
test from the very beginning. The response to a psychologi-
cal item may be missing because of the content of the specif-
ic facet the item is measuring or some specific characteristic 
of the item itself (for example, the item includes a word that 
is ambiguous for some individuals). None of these character-
istics depends on the other items in the scale. From this 
point of view, the factor model cannot be estimated only 
from the available data. For this reason, the MAR mecha-
nism cannot easily be assumed as the nonresponse mecha-
nism in the context of psychological tests. Our proposal does 
not assume any missing data mechanism: it is based on shar-
ing the information given by the participants who responded 
to the item for which a response was missing. The only as-
sumption in our approach is that individuals who had already 
produced similar responses would tend to produce responses 
that were similar to those of the unanswered items. This as-
sumption is more acceptable in the context of psychological 
tests. 

Wolkowitz and Skorupski (2013) proposed a method for 
imputing response options for missing data based on multi-
ple-choice assessments but state that it is intended for test 
development planning purposes, and that additional research 
is needed before it can be used to operationally score a test.  

On limitation of using multiple imputation approach 
(based on HD or PMM) when unique cases (i.e., cases that 
are dissimilar to all others in the data set) are present in the 
data set: in this situation there would be no donor available. 
As Myers (2011) points out, this situation is more likely to be 
observed in small samples. In addition, as our approach is 
addressed to analyze Liker-type items using UVA, a mini-
mum of 200 observations seems advisable in order to obtain 
stable polychoric correlation estimates (see Chen & Choi, 
2009). As a conclusion, our approach should only be used 
when a large sample is available. 
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There are several R language packages available to re-
searchers interested in computing our approach to missing 
values in the context of multidimensional EFA. We have 
programmed our approach in Matlab: we shall be glad to 
share our Matlab functions with interested researchers. Final-
ly, we have implemented the multiple imputation methods 
studied in this paper in FACTOR 10.1 (Lorenzo-Seva & Fer-
rando, 2013), a stand-alone program for Windows for fitting 
exploratory and semiconfirmatory factor analysis and IRT 

Models. The program, a demonstration, and a short manual 
are available at: 
http://psico.fcep.urv.cat/utilitats/factor .  
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