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Abstract

Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation

model with some selected number of predictors can be incompatible with the analysis model

leading to inconsistent and biased estimates. Although compatibility in such cases may not

be achieved, but one can obtain consistent and unbiased estimates using a semi-compati-

ble imputation model. We propose to relax the lasso penalty for selecting a large set of vari-

ables (at most n). The substantive model that also uses some formal variable selection

procedure in high-dimensional structures is then expected to be nested in this imputation

model. The resulting imputation model will be semi-compatible with high probability. The

likelihood estimates can be unstable and can face the convergence issues as the number of

variables becomes nearly as large as the sample size. To address these issues, we further

propose to use a ridge penalty for obtaining the posterior distribution of the parameters

based on the observed data. The proposed technique is compared with the standard MI

software and MI techniques available for high-dimensional data in simulation studies and a

real life dataset. Our results exhibit the superiority of the proposed approach to the existing

MI approaches while addressing the compatibility issue.

1 Introduction

Missing data are frequently encountered in biomedical research. The statistical analysis of the

data often demands complete cases without any missing values. The analysis without appropri-

ate handling of missing values may lead to biased inferences. A variety of statistical methods is

available for addressing the missing data issue. Multiple imputation (MI) [1–3] has become

the most popular approach for handling missing data in practice. MI fills each missing value

with more than one plausible value drawn from its predictive distribution given the observed

data. As a result, we have several imputed datasets that account for the uncertainty due to the

imputation process. MI formally comprises three stages: imputation, analysis, and combining
results of the analysis. In the imputation stage, M independent imputed values are obtained

corresponding to each missing value to get M complete imputed datasets. In the analysis stage,

each of the M imputed datasets is analyzed using standard statistical techniques for complete
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data. In the third stage, M sets of desired estimates are combined into one set of parameter esti-

mates using Rubin’s rules [1].

Sequential regression [4], also known as chained equations [5, 6] or Fully Conditional Spec-

ification (FCS) [7], is the usual approach to obtain multiply imputed data. This approach

imputes the data on a variable-by-variable basis by specifying an imputation model for each

missing variable given the other variables. The available regression based methods for multiple

imputation rely on fitting the imputation model using Generalized Linear Models (GLM). The

use of GLM limits the number of predictors with respect to the sample size. It will not be an

exaggerated claim that MI has become the most popular approach in the recent years due to its

flexibility and advancement in the methodology and software. But for missing values in high-

dimensional data (p> n or p� n), MI may confront different issues during the imputation.

First, which and how many variables should be included in the imputation model to make

GLM fit possible. Second, the standard implementations of MI usually assume that the data

are missing at random (MAR). Although MAR is a non-testable assumption, one hopes to get

very close to MAR if enough variables are included in the imputation model. Mostly, MI is

used directly by relying that the data fulfills the MAR assumption. Third, it is always recom-

mended to include as many variables as possible in the imputation model [8]. The MAR

assumption tends to be more justifiable as more variables are added to the imputation model.

But on the other hand, likelihood estimates of the imputation model may become unstable as

p! n. Fourth, the imputation model should be compatible (or at least semi-compatible) with

the substantive model [9, 10]. Compatibility is related to Meng’s concept of congeniality [11],

and the term congeniality is often used to mean compatibility [5, 12]. Two conditional densi-

ties are compatible if a joint distribution exists that has the given densities as its conditional

densities. An imputation model will be semi-compatible, if a restricted version of it is compati-

ble with the substantive model. The incompatible imputation model may lead to inconsistent

and biased parameter estimates during the analysis stage (discussed in the following text).

There is no ultimate strategy available to decide the number and choice of predictors in an

imputation model when p> n. In case of many potential variables, a selection becomes inevi-

table using some formal variable selection procedures. There are some classical methods like

stepwise regression which are more popular among non-statisticians. The problem with step-

wise regression is that it fits the model using unconstrained least squares at any given step. A

better option is to use the approaches that group or constrain the coefficient estimates in some

way, e.g., lasso (least absolute shrinkage and selection operator) proposed by [13]. Following

lasso, many variable selection methods based on penalized likelihood have been developed in

the literature. [14] used penalization for the selection of variables in the imputation model. But

the plausibility of the MAR assumption, and the compatibility of such an imputation model

can be questionable. We advocate the generally accepted rule for building the imputation

model in MI that it should be as general as possible.

To address the above mentioned issues, we propound to build a rich imputation model by

accommodating a maximum number of potential candidate predictors. Our idea is to use L1

penalty for accommodating the maximum number of candidate predictors (at most n) in the

imputation model, and fitting the resulting model using L2 penalty. We expect the substantive

model based on some formal variable selection approach to be nested in our rich imputation

model. The likelihood estimation for a big model can be problematic. As p! n, the likelihood

estimates may not converge, and if they converge, the obtained parameter estimates may have

infinitely large standard errors. The use of ridge regression for the selected rich imputation

model will guarantee the unique parameter estimates and will lead to better predictions with a

good compromise between bias and variance. The relaxing of lasso penalty to select an imputa-

tion model with maximum number of predictors assures that: (i) the MAR assumption will
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become more plausible, (ii) the set of variables that can be selected using the optimal value of

L1 penalty found by cross-validation will also be present in our imputation model, and (iii)

there will be high chances of achieving semi-compatibility necessary to get consistent and

unbiased estimates. The proposed setup is also suitable for n> p situations where the imputa-

tion model can be fitted without performing any selection of variables.

2 Penalization for variable selection and model fitting

Penalization is a natural choice for fitting the imputation model in high-dimensional data

structures where many potential candidate predictors are available. In this Section, we briefly

review the regression with L1 and L2 penalties. For the sake of simplicity we use the same nota-

tion β̂ for likelihood estimates and penalized estimates of the regression parameters β. How-

ever, wherever needed, the approach used for estimating β is stated explicitly.

2.1 Regression using ridge penalty

Hoerl and Kennard [15] proposed ridge regression for multiple linear regression as a solution

to non-orthogonal problems. In the GLM context, [16, 17] described ridge estimates for logis-

tic regression, and [18, 19] extended the ridge regression for GLMs. Let X = (x1, . . ., xp) be

a n × p-dimensional data matrix in a GLM. The mean μi is related to the linear predictor

Zið¼ xTi βÞ as μi = h(ηi). Let D and W, functions of β in an iterative scheme, be n × n diagonal

matrices. The ith diagonal element Di of D is the derivative of the response function h(η) eval-

uated at ηi and is given by Di(β) = dh(ηi)/dη. Similarly, the ith element of the weight matrix W

is given as wi ¼ s
2
i ¼ var½hðZiÞ� for i = 1, . . ., n. The maximization of the penalized log-likeli-

hood lðβÞ þ l
Pp

j¼1
bj

2
(with l(β) as the log-likelihood function) will provide the ridge esti-

mates as follows:

β̂ ¼ ðXTWXþ lIÞ� 1 XTWD� 1½y � μ�; with covðβ̂Þ

Σ̂ðβ̂Þ ¼ ðXTWXþ lIÞ� 1
ðXTWXÞ ðXTWXþ lIÞ� 1

;
ð1Þ

where λ� 0 is a shrinkage parameter that controls the amount of shrinkage. The larger

the value of λ, greater the amount of shrinkage of the parameters towards zero. For

linear models, β̂ and covðβ̂Þ can be given by β̂ ¼ ðXTXþ lIpÞ
� 1XTy and

Σ̂ðβ̂Þ ¼ ðXTXþ lIpÞ
� 1XTvarðyÞ X ðXTXþ lIpÞ

� 1
respectively.

2.2 Regression using lasso penalty

The lasso regression uses L1 penalty and is a popular method in high-dimensional data to

achieve a sparse solution. A variety of research followed lasso to develop effective regulariza-

tion methods to obtain sparse solutions. But lasso gained the more popularity and a huge

amount of research used somehow the idea of lasso to develop new techniques for variable

selection and model fitting [20]; [21–24]. The penalty term used by lasso is
Pp

j¼1
jbjj. The

shrinkage parameter λ� 0 controls the strength of the penalty and we get the usual likelihood

estimates for λ = 0. For λ =1, lasso sets all parameter estimates to zero. For λ between these

two extremes, the nature of L1 penalty sets some of the coefficients exactly to zero and thus

doing some variable selection. As λ!1, not only more coefficients are set to zero (less vari-

ables are selected) but nonzero coefficients will also have more shrinkage to zero.
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3 Proposed multiple imputation

3.1 Why a rich imputation model?

This Section highlights the need of a rich imputation model with more predictors along with

discussing its pros and cons. In high-dimensional data structures, rich imputation models

accommodating the maximum number of predictors can increase the chances of gaining

semi-compatibility. The missing at random (MAR) assumption for MI becomes more rational

as the number of completely observed variables is increased in the imputation model. Further-

more, the imputation model should be compatible (or semi-compatible) with the substantive

model to get unbiased and consistent parameter estimates [25]. Compatibility refers to the

existence of a joint model for which the corresponding conditionals are equal to both the

imputation model and the analysis model. An imputation model is said to be semi-compatible

if the analysis model is embedded in it. The concept of compatibility is closely related to the

Meng’s concept of congeniality [11] that refers to the use of the same model for imputation

and for the analysis. Both of these terms are often used alternatively.

The compatible or semi-compatible imputation models perform better than the incompati-

ble imputation models, even when they are misspecified [26–28]. Schafer [10] supported the

concept of superefficiency used by [8, 11]. He suggested to include a maximum number of pre-

dictors in the imputation model, even when they are not likely to be used in the substantive

model, to obtain more efficient estimates. According to [29], a more restrictive imputation

model from the imputer’s view point to make it consistent with God’s model (which is always

unknown) can be very harmful. The imputer should be liberal in using predictors for the

imputation models to help as many subsequent analyses as possible.

A problem one can face by accommodating more predictors in the imputation model, is

over-fitting. The impact of such an inclusion will be at worst neutral instead of being harmful,

otherwise such over-fitting will be beneficial [26]. The cost of omitting important predictors

(biased estimates and invalid inferences) is often greater than the cost one has to pay (in terms

of reduced precision of final estimates) when including unimportant predictors [30, 31].

3.2 Proposed algorithm

Let X = (x1, . . ., xp) be a n × p-dimensional data matrix with missing information and y is the

completely observed response variable. If y has also some missing values, they will also be

imputed similarly like the imputation of missing values in the covariates. Although our y has

no missing value, it will be used in the fitting of regression model with multiply imputed data-

sets obtained from our proposed algorithm and other algorithms under study for comparison,

as mentioned in next Sections 4.1 & 5 with corresponding results presented in Tables 2 & 4

respectively. The data matrix can be split into two mutually exclusive sets of variables i.e., par-

tially observed covariates Xmis
n�q, and completely observed covariates Xcomp

n�ðp� qÞ. Let nmisj and nobsj

be the number of missing values and observed values in the variable xmisj , respectively, M is the

required number of multiple imputations, and Ximp
m denotes the mth imputed dataset.

The first step of our proposed algorithm is the initialization of missing values in each xmisj .

The initial filling of missing values can be done using mean imputation, k–nearest neighbours

imputation or any other imputation method. We used, for xmisj 2f1;...;qg, a random sample from

the nobsj observed values of xmisj as the initial guess. After initialization, for each missing variable,

the imputation model is decided using L1 penalty. For the selected imputation model, likeli-

hood (or ridge) estimates β̂ and Ŝðβ̂Þ. A random sample is drawn from this posterior distribu-

tion to obtain new updated value of β̂ that will be used then to obtain the estimated values of
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missing observations. The resulting pseudo Algorithm 1 gives a detailed representation of the

proposed MI technique to impute the missing values in continuous (normal) and binary

variables.

Algorithm 1 Pseudocode for the proposed algorithm
Require: X an n × p matrix, M number of required multiple imputations
for m = 1, . . ., M do
Make initial guess for missing values
while not converged do
for j = 1, . . ., q do
Fit xmisj � X ¼ ðXcomp;Xmis

� j Þ using L1 penalty;
Obtain Xselect comprising pinfo informative predictors;
Compute ridge estimates (or likelihood estimates) β̂ and Ŝðβ̂Þ

from xmisj � Xselect;

Obtain β̂new ¼ a random sample from MVNðβ̂; Σ̂ðβ̂ÞÞ;
Compute Ẑnew ¼ Xnmisj �p

� β̂new;

if xj is continuous then
xmisj  update imputed values using η̂new þ noise;

else if xj is binary then
Draw a random vector uj of size nmisj from the uniform distribu-

tion on (0, 1);

xmisj  update imputed values using

(
1 if uj < ½1þ expð� η̂newÞ�

� 1
;

0 otherwise:

end if
X  update using xmisj ;

end for
if converged then Ximp

m  X
end if

end while
end for
In the algorithm, pinfo represents the number of predictors selected for the imputation

model using L1 penalty. Furthermore, Ŝðβ̂Þ can be computed using Eq (1) for a GLM,

whereas for a linear model it is obtained by the formula w2ðnÞ
� 1
ðxmisj � Xβ̂ÞTðxmisj � Xβ̂Þ �

ðXTXþ lIÞ� 1
for n ¼ nobsj � pinfo degrees of freedom. The number of iterations required to

get an imputed dataset depends on a convergence criterion. There is no hard and fast rule to

decide the convergence in sequential regression imputation. A common practice to check the

convergence is to plot mean and variance of the imputed values of different missing covariates

against the iteration number. For convergence, these plots for M imputed datasets should be

intermingled without any definite trend. Another option is to examine the relative magnitude

of between sequence and within sequence variation. On convergence, the variance between

different sequences should be smaller than the variance within each individual sequence. In

general, misprHD meets these criteria after five to ten iterations. In a small scale simulation

(the results of which are not shown here), we also investigated that how different methods of

initialization of missing values affect the imputation process. In addition to k–nearest neigh-

bours (kNN) imputation, we used two other approaches. First, the missing values of each vari-

able were filled with a random sample drawn from the observed values of that variable. Second

approach filled the missing values with mean or mode of the observed values of continuous or

categorical variable respectively. These two approaches also converged between five to ten
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iterations. Although the quality of imputed value was little bit poor with initialization based on

mean imputation but in general, there was not so much difference in the quality of imputed

values based on different initialization approaches.

3.3 Selection and fitting of the imputation model

This Section describes imputation models considered with different choices of number of pre-

dictors, and the procedure followed to estimate the regression coefficients, i.e., penalized or

unpenalized. We used the following imputation models, for each xmisj .

Model pinfo Fitting Method

MI1 : decided with optimal value of L1 penalty MLE

MI2 : 0:5� nobsj MLE

MI3 : 0:8� nobsj MLE

MI4 : decided with optimal value of L1 penalty Ridge

MI5 : 0:5� nobsj Ridge

MI6 : 0:8� nobsj Ridge

For the model MI1 (and MI4), a 5-fold cross-validation was used to decide the optimal

value of L1 penalty independently in the imputation model for each xmisj . The model was then

fitted using MLE or ridge penalty, with the selected informative predictors. For MI2 (and MI5)

and MI3 (and MI6) models, the value of L1 penalty was chosen so that it allowed us to select

the desired number of informative predictors pinfo for a particular imputation model. The stan-

dard MI software use likelihood estimation for fitting the imputation model. However, as p!
n the likelihood estimates may become ustable with infinitely large standard errors and do not

exist for p> n. In such case, ridge estimation can resolve the issue by providing unique esti-

mates with better prediction, and a good compromise between variance and bias. To study the

weakness of MLE in rich imputation model, we used both likelihood estimation and ridge esti-

mation to obtain the posterior distribution of the parameter vector β given the observed data.

The fitting of the imputation model with and without ridge penalty gave us an insight, how the

imputations (based on LM or GLM) suffer and affect the inferences, while fitting a rich model

with more predictors. For fitting the imputation models MI4, MI5, and MI6, the optimal value

of L2 penalty was found independently for each xmisj as response using 5-fold cross-validation.

4 Simulation study

A simulation study was designed to compare the performance of our proposed algorithm

misprHD with the existing MI techniques. The performance was examined for a regression

situation at the analysis stage, i.e., fitting a linear regression model with imputed datasets.

4.1 Simulation settings

We used two different scenarios in our simulation study with a focus on two types of variables

i.e., continuous and binary variables.

p > n with few informative predictors: In this setting, we considered p = 50, 200, 500 pre-

dictors. The number of informative predictor (selected at random) was six and ten (each with

βj = 1) for p = 50 and p = 200, 500 respectively.

n > p with all informative predictors: In this setting, we considered p = 30, 60 predictors.

All the predictors had non-zero regression coefficients. The values considered for the true
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regression coefficients were randomly drawn from a normal distribution with mean 1 and var-

iance 1, and the value of the intercept was 1.

In each setting, S = 200 datasets were generated with a sample size n = 100. The covariates

were drawn from a p–dimensional multivariate normal distribution with zero mean, unit vari-

ance, and an AR(1) correlation among covariates with ρ = 0.8. For n> p case, ρ = 0.5 was also

considered to examine how the severity of collinearity affects the quality of imputations and

the analysis of such imputed data. The response variable y in the complete data was generated

using the linear model

y ¼ Xβþ c � u; u � Nð0; 1Þ:

The value of c was chosen to have a signal-to-noise ratio equal to 3.0.

In each sample, half of the covariates chosen randomly were converted to binary using the

percentile Pj2[20,80] as threshold. In each simulated data, 10, 20, and 30% values were artificially

deleted at random in 10 predictors (half of them were binary) chosen at random using the

logit function

logit½PrðRij ¼ 0 j xk; yÞ� ¼ g0 þ g1y þ gkxk for j 6¼ k: ð2Þ

The indicator Rij = 0, if ith observation of xj is missing, and Rij = 1 otherwise. For each data,

xk 2 Xcomp was randomly selected for each xmisj 2f1;...;qg. The value of γ0 was tuned corresponding

to the fixed value of 0.5 for both γ1 and γk to achieve the approximate desired missing percent-

age in each xmisj :

4.2 Comparison criteria

The performance of the proposed technique is compared with mice [6], VIM [32], and

MICE-DURR [14]. The basic building block of mice and VIM is a GLM that essentially

requires n� p. For high-dimensional data, both techniques use a selected number of predic-

tors for each imputation model to have n� p. mice focuses on removing the linearly depen-

dent predictors using an iterative procedure which makes it much time consuming with

increasing number of predictors. For p> n, VIM does not focus on the selection of informa-

tive predictors but always attempts to fit a LM or GLM with the first n predictors in any

imputation model, and is therefore not so much costly in terms of processing time. MICE-
DURR couples bootstrapping with regularization to impute missing values in high-dimen-

sional settings. For regularization, it has the option to use lasso, adaptive lasso, or elastic net

with a fixed value of 0.5 as elastic net mixing parameter. Our approach MI1 is similar to the

imputation procedure MICE-IURR given by Zhao and Long, except that (a) if the optimal

value of L1 penalty suggested an intercept model for the imputation, we used a smaller L1

penalty to fit a model with minimum number of predictors, and (b) a ridge regression was

used to fit the imputation model if MLE faced some convergence issues. In our simulation

study, with a relaxed lasso penalty (in our case MI6), we kept a record of variables included

in the imputation model. It was observed all the times that all informative predictors were in

the model. Also, this selection in each imputation model was compared with the selection at

analysis stage. Every time, the selected variables at analysis stage were nested in our chosen

rich imputation model making it semi-compatible that will lead to unbiased and consistent

estimates.

The performance of the proposed algorithm was evaluated at imputation stage and the anal-

ysis stage. For imputation stage, the accuracy of the imputed values was measured with the
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help of Mean Squared Imputation Error (MSIE) computed as:

MSIE ¼
1

S

X

s

½
1

M

X

m

X

j

Xmj

i¼1

ðx�ijm � xijÞ
2
�; ð3Þ

where x�ijm denotes the ith imputed value of the jth covariate in the mth imputed dataset corre-

sponding to the observed value xij in the complete dataset. After imputing the missing values

with different MI algorithms, the imputed datasets were used to fit the analysis model. Mean

Squared Error (MSE(β̂)) computed from the analysis model was used as the performance mea-

sure. For n� p, a linear model (LM) was fitted with each imputed data to obtain MSE(β̂). For

n< p settings, lasso (least absolute shrinkage and selection operator) regression was used to

obtain parameter estimates. For lasso regression, 10–fold cross-validation was used to compute

the optimal value of L1 penalty. The estimated parameter vectors β̂m ðm ¼ 1; 2; . . . ;MÞ com-

puted for each of the M = 5 imputed datasets were then combined using Rubin’s rules [1] to

get MI estimates of β as β̂ ¼ M� 1
PM

m¼1
β̂m. For β̂ (that can be a likelihood or ridge estimate

of β), the covariance matrix can be computed as Ŝ ¼ covðβ̂Þ ¼Wþ ð1þM� 1Þ � B, where

W ¼ M� 1
PM

m¼1
covðβ̂mÞ, and B ¼ ðM � 1Þ

� 1PM
m¼1
ðβ̂m � β̂Þðβ̂m � β̂ÞT .

In simulation settings with S simulated samples, we computed

MSEðβ̂Þ ¼ S� 1
PS

s¼1
ðβ̂s � βÞTðβ̂s � βÞ with its split into variance and bias components

given by varðβ̂Þ ¼ S� 1
PS

s¼1
ðβ̂s �

�̂βÞTðβ̂s �
�̂βÞ with �̂β ¼ S� 1

PS
s¼1

β̂s, and

Bias2ðβ̂Þ ¼ ð�̂β � βÞTð�̂β � βÞ respectively.

4.3 Results

The results of imputation error are given in Table 1. The results showed that if we develop a

rich imputation model, the fitting of such model becomes problematic with increasing number

of predictor e.g., for p = 200 & 500 with a sample size n = 100. Our proposal of using ridge pen-

alty to fit the selected rich imputation model worked very well and provided good results not

only for large number of predictors where MLEs did not exist, but also for p< n case. ML fit

to the imputation model caused an increase in the imputation error as number of predictor

was increased. On the other hand, ridge fit to the imputation model provided smaller imputa-

tion error. Some interesting results are also shown in Fig 1 in terms of Box plots. The white

boxes are for three threshold methods (mice, VIM and durr), blue boxes are related to the

imputation error obtained from ML fit to the imputation model, and green boxes are corre-

sponding to the error based on a ridge fit. The thresholds showed poor performance in terms

of imputation error. The boxplots showed the superiority of the proposed approach in terms

of low imputation error. It even worked well for rich imputation model (MI6) where imputa-

tion error was unavailable due to non-existence of MLEs (MI3) in high-dimensional setting.

The performance of resulting imputations was also compared at analysis stage. To do so, we

computed MSEðβ̂Þ. The results of MSEðβ̂Þ for all simulation settings are given in Table 2. We

could not obtain the imputed data with model MI3 for most samples in p> n settings. The

imputation model faced convergence issues with GLM fit for large number of predictors rela-

tive to the sample size. The same problem was faced with p = 60 for 30% missing values. The

MSEs for these settings are not given. For p = 30, the sample size was sufficiently large with

respect to the number of predictors. For p = 30, MI2 and MI3 were same because the lasso pen-

alty chose all 30 predictors in both models. As a result, we obtained identical results of MSEs

for MI2 and MI3. Same case was also observed for MI5 and MI6 because of using the same

imputed datasets. On the other hand, for high-dimensional case of p = 50, 200, 500, where
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only few predictors were relevant, a lasso regression was fitted to each imputed data indepen-

dently. The regression coefficients so obtained were then combined using Rubin’s rules to

obtain Mean Squared Error. For p = 30, 60, where all predictors were declared informative

with non-zero parameter values, a linear regression was fitted to the imputed datasets.

Table 1. Simulation study: Mean Squared Imputation Error (MSIE).

misprHD (Imputation model fitting method)

MLE Ridge MLE Ridge MLE Ridge

p miss% mice VIM durr MI1 MI4 MI2 MI5 MI3 MI6

50 10 73.72 69.93 123.95 45.87 45.89 65.52 52.38 69.14 53.89

20 163.31 139.75 248.27 94.8 94.02 131.2 105.59 154.23 112.87

30 283.89 211.09 364.86 145.43 143.98 194.2 158.82 265.55 181.44

200 10 127.45 129.83 115.71 44.28 43.91 55.48 48.93 - 59.65

20 229.27 274.68 235.88 91.53 90.06 112.06 100.48 - 121.18

30 311.01 429.53 354.47 139.23 137.67 168.09 152.47 - 183.51

500 10 86.8 131.26 113.9 45.08 44.58 52.38 49.36 - 56.24

20 169.91 274.23 231.59 93.3 92.45 106.78 100.98 - 114.96

30 249 424.35 343.41 142.68 140.73 160.48 153.04 - 173.99

Results for p = 30, 60 with ρ = 0.8, when all predictors are informative i.e., βj 6¼ 0, 8j.
30 10 59.74 73.86 139.53 50.86 50.98 59.24 53.88 59.24 53.88

20 129.21 159.5 268.24 104.35 104.28 126.9 112.45 126.9 112.45

30 207.76 258.92 400.2 163.34 162.61 203.48 178.65 203.48 178.65

60 10 88.83 80.23 135.95 47.33 46.99 64.47 53.15 81.78 59.46

20 210.88 161.02 259.43 96.71 96.3 130.04 107.02 194.23 132.38

30 402.2 248.81 382.58 149.07 147.1 194.41 163.6 - 179.47

Results for p = 30, 60 with ρ = 0.5, when all predictors are informative i.e., βj 6¼ 0, 8j.
30 10 100.77 95.88 121.26 91.86 91.41 99.69 101.23 100.37 101.7

20 210.22 192.5 242.44 187.13 187.95 210.75 210.92 210.33 211

30 330.6 290.03 362.39 289.66 286.57 333.75 336.99 334.01 335.24

60 10 136.3 111.71 115.46 92.12 91.36 117.23 110.2 137.23 131.75

20 302.19 213.12 231.57 186.56 184.87 232.53 216.71 299.13 279.77

30 523.83 298.49 348.13 282.69 280.09 342.4 322.41 438.96 415.76

https://doi.org/10.1371/journal.pone.0254112.t001

Fig 1. Simulation study: Box plots of MSIE. White boxes represent the threshold MI methods i.e., mice and VIM and durr. Blue and

green boxes represent the MLE fit and ridge fit to the selected imputation model respectively.

https://doi.org/10.1371/journal.pone.0254112.g001
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The results exhibited that the idea of fitting a rich imputation model with ridge penalty

provided better results than the other MI techniques, especially for high-dimensional data.

The results of imputation model with likelihood fit (MI1) and with ridge fit (MI4) were

approximately same. It is due to the sufficiently large sample than the number of predictors

which were selected using the optimal value of L1 penalty. The ridge penalty chosen, to fit

the model MI4, on the basis of 5-fold cross-validation was almost zero. MICE-DURR also

uses L1 penalty with bootstrap samples but its overall performance was poorer than others.

For p = 50, 200, 500, all MSEs are less than 10 because only few predictors were declared

informative with value 1 for each true parameter. The results with low values of MSEs also

reflect that the selection of relevant variables worked well with imputed datasets obtained

from all MI algorithms. In case of all informative predictors, although the proposed approach

was much better than the existing ones but MSEs were much higher for ρ = 0.8 than those

obtained for ρ = 0.5. This raise was not the impact of imputations but the cause was fitting of

linear model with high multicollinearity. The results of MSE(β̂) of substantive models for

30% missing values with p = 30 & 60, based on likelihood estimates are also given in terms of

box plots in Fig 2. The white boxes represent threshold methods, whereas, blue and green

boxes are linked with imputed data obtained using ML fit and ridge fit to the imputation

model respectively. The threshold methods showed a higher MSEs followed by MSEs associ-

ated with MLE based imputed data. The MSEs associated with imputed data based on L2

Table 2. Simulation study: Results of MSE(β̂).

misprHD (Imputation model fitting method)

MLE Ridge MLE Ridge MLE Ridge

p miss% mice VIM durr MI1 MI4 MI2 MI5 MI3 MI6

50 10 1.87 2.2 2.3 1.7 1.7 1.82 1.71 1.84 1.73

20 2.35 2.96 2.82 1.81 1.82 2.12 1.84 2.32 1.86

30 3.79 5.96 3.1 1.97 1.96 2.41 2.01 3.86 2.06

200 10 6.2 6.6 6.43 5.85 5.89 5.95 5.88 - 5.87

20 6.45 7.26 6.87 5.98 5.96 6.08 5.94 - 5.97

30 6.78 7.87 7.19 6.27 6.26 6.29 6.22 - 6.24

500 10 6.56 6.95 6.83 6.22 6.23 6.29 6.28 - 6.36

20 6.99 7.33 7.21 6.45 6.45 6.5 6.44 - 6.46

30 7.19 7.88 7.46 6.64 6.59 6.64 6.59 - 6.65

Results for p = 30, 60, when ρ = 0.8 and all predictors are informative i.e., βj 6¼ 0, 8j.
30 10 181.42 210.11 184.48 164.99 163.33 176.19 159.73 176.19 159.73

20 192.73 238.74 182.46 163.12 159.34 181.66 156.93 181.66 156.93

30 208.73 275.4 181.47 162.24 160.66 189.74 151.49 189.74 151.49

60 10 835.56 859.77 726.65 732.99 724.37 804.63 717.01 841.87 704.99

20 1020.01 1042.21 711.25 717.04 704.13 817.36 679.49 1024.78 633.56

30 1221.6 1327.28 705.15 690.36 679.86 819.15 652.56 - 626.07

Results for p = 30, 60, when ρ = 0.5 and all predictors are informative i.e., βj 6¼ 0, 8j.
30 10 14.99 15.81 14.49 13.02 12.75 14.49 12.68 14.49 12.68

20 18.04 20.51 16.53 14.09 13.64 16.29 13.25 16.29 13.25

30 22.08 29.8 18.23 15.68 14.7 18.87 14.03 18.87 14.03

60 10 95.24 100.65 87.25 84.04 83.74 87.07 80.95 93.89 79.59

20 120.72 133.98 91.95 86.95 86.35 94.87 79.7 118.29 75.24

30 150.9 200.57 95.2 88 85.47 97.94 81.28 127.56 74.54

https://doi.org/10.1371/journal.pone.0254112.t002
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penalty were minimum reflecting that the use of ridge penalty at imputation stage was also

effective at the analysis stage.

4.4 Computational speed

The proposed algorithm is also time efficient than the standard MI software tools for high-

dimensional settings. For imputing the missing values with all considered approaches, we used

2.20 GHz Intel(R) Xeon(R) E5-4620 CPU and noted the time required by differ-

ent algorithms to impute 10% missing values in each of 200 simulated datasets. The average

over these 200 time values (in seconds) is considered. The resulting average time required to

impute one dataset, in different simulation settings, is given in Table 3. The time to impute

missing values required by mice rapidly increases with increasing number of predictors and

is not a good choice for high-dimensional data settings. VIM although takes less time for impu-

tation because it is not performing any kind of variable selection and also ignores the uncer-

tainty factor that is the basic concept of MI. The effect of such deficiency can be seen in the

form of poor results of the analysis based on these imputations. The proposed approach is a

better option with respect to processing time also for imputing the missing data especially in

high-dimensional data structures.

Fig 2. Simulation study: Box plots of MSE(b̂) for 30% missing values. White boxes represent the threshold MI methods i.e., mice and

VIM and durr. Blue and green boxes represent the results based on imputed data using the MLE fit and ridge fit to the selected imputation

model respectively.

https://doi.org/10.1371/journal.pone.0254112.g002

Table 3. Average (of S = 200 elapsed time values) processing time (in seconds) required by different algorithms to impute one dataset with 10% missing values.

misprHD (Imputation model fitting method)

MLE Ridge

p mice VIM durr MI1 MI2 MI3 MI4 MI5 MI6

50 12.02 6.61 255.25 72.23 128.94 130.28 118.76 149.47 150.34

200 822.99 28.99 213.02 99.06 179.90 - 138.76 198.21 187.06

500 24016.82 123.24 140.40 144.27 221.05 - 168.06 209.66 243.42

https://doi.org/10.1371/journal.pone.0254112.t003
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5 Application

We considered a real dataset from UCI machine learning repository [33] to compare the

performance of our proposed approach with the existing MI approaches considered so far.

The data is about the diagnoses of cardiac Single Proton Emission Computed Tomography

(SPECT) images. n = 80 patients were diagnosed as normal or abnormal on the basis of p = 44

predictors. The data can be accessed at http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart.

The likelihood estimates did not converge for the data, so the ridge estimates were considered

as true parameters and S = 100 binary responses were simulated. The optimal value of ridge

penalty was decided using leave-one-out cross-validation. Like simulation study, 10%, 20%,

and 30% values were missed at random artificially in half predictors (i.e., 22 predictors) using

the logit function given in Eq (2). The predictors for missing values were selected randomly

and independently in each of S = 100 samples. The likelihood estimates were not converging

with the imputed data also and a ridge regression was fitted to compute MSEs. An indepen-

dent 10-fold cross-validation was used for each imputed data to decide the optimal value of

ridge penalty. The results of MSE for the ridge estimates, averaged over 100 samples are given

in Table 4. Since the ridge estimates are biased, the resulting MSEs were further split into

variance and bias (using the formulas given in Section 4.2) components to observe the contri-

bution of bias in MSEs. VIM showed the poorest results of MSE among all imputation

approaches considered. mice was better than VIM but its performance was poorer than oth-

ers. The analysis of imputed data based on the most rich imputation model (fitted with ridge

penalty) exhibited the best performance with the lowest value of MSE. However, the contribu-

tion of bias in the MSE was higher than others. We are not considering the individual parame-

ter estimates and their CI coverage for this real data. The standard errors of ridge estimates are

not so meaningful because of bias. A confidence statement using such SE ignoring the bias

would be misleading.

6 Discussion

In biomedical research, the researchers often face high-dimensional data for the analysis. Miss-

ing values are also common in such data. Analyzing the data without appropriate handling of

missing values will cause biased inferences. Multiple Imputation (MI) is a flexible and the

most popular approach to handle missing data. However, many practical issues arise regarding

selection of variables for the imputation model in high-dimensional data. In the literature ([1,

8, 11, 12, 25, 34, 35]), it is discussed with theoretical and empirical evidence that if the imputed

Table 4. Heart data results of MSE with its split into variance and bias components. The results are obtained when a ridge regression was fitted to the data imputed

with all proposed and existing imputation methods.

10% missing 20% missing 30% missing

Method MSE var bias2 MSE var bias2 MSE var bias2

mice 0.68 0.56 0.12 0.77 0.59 0.18 0.87 0.61 0.26

VIM 0.81 0.69 0.12 0.91 0.75 0.15 1.08 0.88 0.21

durr 0.68 0.50 0.19 0.74 0.43 0.31 0.84 0.35 0.49

MI1 0.65 0.53 0.11 0.71 0.54 0.17 0.81 0.58 0.23

MI2 0.68 0.56 0.12 0.81 0.65 0.16 1.05 0.83 0.23

MI3 0.65 0.52 0.13 0.74 0.56 0.18 0.93 0.68 0.25

MI4 0.63 0.50 0.13 0.67 0.48 0.19 0.73 0.48 0.25

MI5 0.58 0.42 0.16 0.62 0.38 0.24 0.67 0.36 0.31

MI6 0.56 0.39 0.17 0.59 0.30 0.29 0.66 0.26 0.40

https://doi.org/10.1371/journal.pone.0254112.t004
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complete variables used to draw the inferences were not included in the imputation model,

then the correlations between the imputed variables and the variables failed to be part of the

imputation model will be biased towards zero. For high-dimensional data, such situation is

common to occur. In this paper, our focus was to propose a course of action in high-dimen-

sional data to select an imputation model based on all those variables which will be used in the

inferences from the imputed complete data. For p� n, some selection can be performed using

the formal variable selection procedures. But there is no guarantee that the same selection will

be used in the analysis model. Such incompatibility can cause biased estimates. It is difficult to

attain compatibility with surety, especially when the imputer and the analyst are selecting their

models independently. An effort can be made to avoid bias by making the imputation model

semi-compatible. Semi-compatibility can be achieved by nesting the analysis model in the

imputation model. This is only possible by including as many predictors as possible in the

imputation model [8] using some formal variable selection technique. According to Liu et al.

[36] recommendations, while building the imputation model, the first priority of the imputer

should be to make an effort to have a compatible model, otherwise focus should be on improv-

ing the prediction quality of the imputation model. We used L1 penalty to do so, and instead

of using its optimal value we used the value of L1 penalty that allowed us to select a large num-

ber of predictors (with maximum of n predictors). The second major issue is to obtain the pos-

terior distribution of the parameters. The information about the covariance matrix for lasso

estimates will be missing because of the nature of penalization. The GLM fit to such a big

model usually results in unstable estimates with large SE. To overcome this problem, we pro-

posed to use ridge regression for fitting the imputation model.
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