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A single queueing station that serves K input streams is considered. Each
stream is an independent renewal process, with customers having random
lead times. Customers are served by processor sharing across streams. Within
each stream, two disciplines are considered—earliest deadline first and first-
in, first-out. The set of current lead times of the K streams is modeled as
a K-dimensional vector of random counting measures on R, and the limit
of this vector of measure-valued processes is obtained under heavy traffic
conditions.

1. Introduction. Over the last 10 years, communication technology has
become dramatically more sophisticated. There are now many different types
of communication services available and an ever-increasing demand for those
services. Real-time communication services, while currently a small portion
of the total demand, are of growing importance. In view of the increase
in demand for real-time services (such as videoconferencing in which voice
and video must be delivered in a timely fashion to ensure continuity of the
image and sound), it is becoming important to develop models and analysis
techniques first to understand and then to better control these networks. For
real-time traffic, in addition to standard measures of stability and delay, one
must also be concerned whether individual application packets are meeting their
timing requirements. Thus, measuring average packet delay is not sufficient to
determine whether a particular queue scheduling policy can satisfy real-time traffic
requirements.

There has been important recent work that does develop analytic methods to
determine stability and calculate delay. An excellent introduction to the scheduling
of computer networks is given in the textbook by Keshav [12], Chapter 9. In
addition, the paper by Zhang [21] surveys scheduling algorithms and associated
performance bounds. More specifically, Cruz developed a calculus for network
delay in the single-node [6] and the multiple-node [7] cases. The theory he
developed is different from standard queueing theoretic models, because he used
nonprobabilistic data stream arrival models that satisfy burstiness constraints.
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Using this assumption, he was able to derive bounds on delay and buffering
requirements for network elements. Parekh and Gallager [14, 15] studied a new
network resource allocation policy called the generalized (or weighted) processor
sharing (GPS) algorithm or weighted fair queueing (WFQ) and combined this
with a leaky bucket admission control policy. Demers, Keshav and Shenker [8]
presented an analysis of these approaches. For these scheduling and control
mechanisms, the authors developed worst-case packet delay and worst-case
session backlogs for both the single-node and the multiple-node cases. Related
research was published by Chang [4]. He also addressed the stability problem
by determining conditions on queueing networks that result in bounded queue
lengths and bounded delays for customers and gave conditions for the queue length
distribution to have an exponential tail.

Most of these papers present a worst-case analysis, leading to bounds for the
system that may be quite pessimistic. Thus, it is important to find methods that
offer more realistic answers. An additional drawback is that the methods do not
apply directly to real-time traffic, where performance must be measured at the
packet level, rather than at an aggregated level. This paper introduces methods for
some common queue scheduling policies to assess whether those packet timing
requirements can be met.

In this paper, we consider a single-node system with K independent arrival
streams (sessions). Each stream creates an arrival process of packets, and each
packet has an individual service time and deadline, the time by which its
transmission must be completed. Packets from individual streams are queued
in separate buffers. The K streams are jointly serviced by a single server that
allocates its total service capacity across the streams. We consider the head-of-
the-line processor sharing (HOL-PS) service policy. This policy assumes that the
total service capacity is evenly allocated to each stream having packets ready for
transmission. Thus, if k of the K streams have one or more packets available
for service, then each receives a fraction 1/k of the server’s capacity. We also
introduce a weighting scheme to allow different streams to receive different
relative amounts of service. We define a set of weights, {wi, 1 ≤ i ≤ K}, wi ≥ 0,∑K

i=1 wi = 1. If two streams i and j have packets ready for transmission, then the
relative service rate applied to streams i and j is the ratio wi/wj .

We assume that the packets from each stream are queued in different buffers,
either in deadline order or in FIFO (first-in, first-out) order. Ordinarily, packets
from a common stream will have a common, deterministic deadline; however,
our approach permits us to consider the more general case in which packets
from a single stream have random deadlines. For real-time systems, the service
policy should take into account the packet timing requirements, and the earliest-
deadline-first (EDF) algorithm for a single queue is generally optimal. The FIFO
queueing discipline arises as a special case of EDF when the packets have constant
deadlines.
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Our approach follows the methods of Doytchinov, Lehoczky and Shreve [9].
(We note that the single-station results of [9] have recently been extended to feed-
forward networks [20] and acyclic networks [13].) We study the heavy-traffic case
in which the total traffic intensity on the server approaches 1. The HOL-PS queue
discipline is work conserving, so under reasonable conditions on the arrival and
service processes, the total workload on the system will converge to a drifted, re-
flected Brownian motion process. It is, however, more complicated to determine
how that workload will be distributed across the K different queues and whether
the packets in those queues will meet their timing requirements. To determine this,
we define a lead time for each packet (the lead time is the time until the packet
deadline) and a lead time profile, a counting measure on R putting unit mass at
the lead time of each customer in queue, for each of the K queues. Under heavy-
traffic conditions, we prove that these profiles, when conditioned on the workload,
converge to a deterministic form (including a null profile when the scaled queue
length process converges to 0), which depends on the task deadlines, the queue dis-
cipline and the traffic intensities for each of the queues. The ability of this service
discipline to meet packet timing requirements can be inferred from these profiles.

This paper is organized as follows. Section 2 presents the model, the assump-
tions and the notation. Section 3 introduces the heavy-traffic assumptions. Sec-
tion 4 develops the measure-valued processes that will be needed to study the lead
time profiles. Sections 5 and 6 present limit theorems for those measure-valued
processes, assuming individual packet streams are queued using either EDF or
FIFO, respectively. Section 7 presents simulation results illustrating the accuracy
of the theory. Appendix A presents an analysis when the traffic streams are not
balanced and one of the streams is dominant, and Appendix B provides a technical
result needed for Appendix A.

2. The model. We have a sequence of single-station queueing systems, each
with K arrival processes. The queueing systems are indexed by superscript (n),
and the arrival processes within each queueing system are indexed by k.

The interarrival times for the kth arrival process are {u(n)
k,j }∞j=1, a sequence

of positive, independent, identically distributed random variables with common
mean 1/λ

(n)
k and standard deviation α

(n)
k . The service times are {v(n)

k,j }∞j=1, another
sequence of positive, independent, identically distributed random variables with
common mean 1/µ

(n)
k and standard deviation β

(n)
k . We assume that each queue is

empty at time 0.
For arrival stream k, we define the customer arrival times

S
(n)
k,0

�= 0, S
(n)
k,j

�=
j∑

i=1

u
(n)
k,i , j ≥ 1,(2.1)

the customer arrival process

A
(n)
k (t)

�= max
{
j; S

(n)
k,j ≤ t

}
, t ≥ 0,(2.2)
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and the work arrival process

V
(n)
k (t)

�=
�t�∑
j=1

v
(n)
k,j , t ≥ 0.(2.3)

The work that has arrived at queue k by time t is then V
(n)
k (A

(n)
k (t)).

Each customer arrives with an initial lead time L
(n)
k,j , the time between the arrival

time and the deadline for completion of service for that customer. These initial lead
times are independent and identically distributed with distribution given by

P
{
L

(n)
k,j ≤ √

ny
}= Gk(y),(2.4)

where Gk is a right-continuous cumulative distribution function for each k =
1, . . . ,K . We define

y∗
k

�= min
{
y ∈ R; Gk(y) = 1

}
(2.5)

and assume that y∗
k is finite for every k = 1, . . . ,K . We assume that, for every n, the

sequences {u(n)
k,j }, {v(n)

k,j } and {L(n)
k,j } are mutually independent over k = 1, . . . ,K

and j = 1,2, . . . .
We now describe the allocation of service capacity to each of the K arrival

streams in the nth queueing system. To this end, we introduce nonnegative
random weight processes w

(n)
k (t), k = 1, . . . ,K , such that

∑K
k=1 w

(n)
k (t) = 1 for

every t almost surely. The process w
(n)
k (t) represents the proportion of the server’s

capacity that would be assigned to queue k at time t if all the queues are nonempty
at that time. If one or more queues is empty but queue k is not, then w

(n)
k (t) divided

by the sum of the weights associated with the nonempty queues is the proportion
of the server’s capacity assigned to queue k. We allow the weight processes to
take the value 0, but we make the following assumption, which guarantees that the
proportion just described is defined.

ASSUMPTION 2.1. At every time t when there is at least one customer present
in the nth queueing system, there is at least one nonempty queue � for which
w

(n)
� (t) > 0.

An important consequence of Assumption 2.1 is that the server is always fully
utilized whenever there are customers anywhere in the system.

Throughout Sections 2–5, we assume that customers within each of the
K queues are served using the earliest-deadline-first (EDF) queue discipline; that
is, the server always serves the customer with the shortest lead time. Preemption is
permitted (we assume preempt–resume). There is no setup, switchover or other
type of overhead. Late customers (customers with negative lead times) stay in
queue until served to completion. In Section 6, customers are served using the
first-in, first-out (FIFO) discipline within each queue.
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Denoting by W
(n)
k (t) the work remaining in queue k at time t , we define the

idleness rate for queue k to be

İ
(n)
k (t)

�=
1, if W

(n)
k (t) = 0,

0, if W
(n)
k (t) > 0.

(2.6)

The entitlement rate for queue k is then defined as

Ṫ
(n)
k (t)

�= w
(n)
k (t)

w
(n)
k (t) +∑

�	=k w
(n)
� (t)(1 − İ

(n)
� (t))

.(2.7)

Because of Assumption 2.1, the denominator in (2.7) is not 0 as long as there is at
least one customer present in the system. If this is not the case and if w

(n)
k (t) = 0,

we interpret 0
0 in (2.7) as 0. The entitlement rate for queue k is the fraction of the

server capacity queue k is entitled to receive at time t and would receive if there is
work in queue k at that time.

We may alternatively represent the server entitlement rate for a queue in terms of
joint idleness rates. By a multi-index α = (�1, . . . , �|α|), we shall mean a finite set
of distinct indices {�1, . . . , �|α|} between 1 and K . We denote by |α| the cardinality
of the set α. Given a multi-index α, we define the joint idleness rate

J̇ (n)
α (t)

�=
{

1, if W
(n)
� (t) = 0 ∀ � ∈ α, W

(n)
� (t) > 0 ∀ � /∈ α,

0, otherwise.
(2.8)

By convention,

J̇
(n)
∅ (t) =

{
1, if W

(n)
� (t) > 0 ∀ �,

0, otherwise.
(2.9)

Finally, we define Ak(m) to be the set of all multi-indexes of cardinality m in which
the index k appears and Ac

k(m) to be the set of all multi-indexes of cardinality m in
which the index k does not appear. By convention, Ak(0) = ∅ and Ac

k(0) = {∅}.
Then the idleness rate for queue k is

İ
(n)
k (t) =

K∑
m=1

∑
α∈Ak(m)

J̇ (n)
α (t),(2.10)

and the entitlement rate Ṫ
(n)
k (t) can be written as

Ṫ
(n)
k (t) =

K−1∑
m=0

∑
α∈Ac

k(m)

w
(n)
k (t)

1 −∑
�∈α w

(n)
� (t)

J̇ (n)
α (t)

+
K∑

m=1

∑
α∈Ak(m)

w
(n)
k (t)

w
(n)
k (t) + 1 −∑

�∈α w
(n)
� (t)

J̇ (n)
α (t).

(2.11)
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It can happen in the above expressions that the denominator 1 −∑
�∈α w

(n)
� (t) or

w
(n)
k (t) + 1 −∑

�∈α w
(n)
� (t) is 0, but this can only occur if the numerator w

(n)
k (t)

is also 0. In such a case, we interpret 0
0 · 0 as 0. At each time, at most one positive

term appears on the right-hand side of (2.10) and (2.11). We define idleness, joint
idleness and entitlement by integrating rates:

I
(n)
k (t) =

∫ t

0
İ

(n)
k (s) ds, J (n)

α (t) =
∫ t

0
J̇ (n)

α (s) ds,

T
(n)
k (t) =

∫ t

0
Ṫ

(n)
k (s) ds.

(2.12)

In particular,

I
(n)
k (t) =

K∑
m=1

∑
α∈Ak(m)

J (n)
α (t),(2.13)

T
(n)
k (t) =

K−1∑
m=0

∑
α∈Ac

k(m)

∫ t

0

w
(n)
k (s)

1 −∑
�∈α w

(n)
� (s)

J̇ (n)
α (s) ds

(2.14)

+
K∑

m=1

∑
α∈Ak(m)

∫ t

0

w
(n)
k (s)

w
(n)
k (s) + 1 −∑

�∈α w
(n)
� (s)

J̇ (n)
α (s) ds.

The netput for queue k is

N
(n)
k (t)

�= V
(n)
k

(
A

(n)
k (t)

)− T
(n)
k (t),(2.15)

which is the amount of work in the queue at time t if it has never been empty prior
to time t . Because queue k might be empty, it can have unused entitlement, defined
to be

U
(n)
k (t)

�= − min
0≤s≤t

N
(n)
k (s).(2.16)

The actual service received by queue k up to time t is

R
(n)
k (t)

�= T
(n)
k (t) − U

(n)
k (t),(2.17)

and the workload at time t is

W
(n)
k (t) = N

(n)
k (t) + U

(n)
k (t) = V

(n)
k

(
A

(n)
k (t)

)− R
(n)
k (t).(2.18)

The unused entitlement increases at time t if and only if queue k is empty at
time t and w

(n)
k (t) > 0; in this case, U̇

(n)
k (t) = Ṫ

(n)
k (t). This implies that

U
(n)
k (t) =

K∑
m=1

∑
α∈Ak(m)

∫ t

0

w
(n)
k (s)

w
(n)
k (s) + 1 −∑

�∈α w
(n)
� (s)

J̇ (n)
α (s) ds.(2.19)

Indeed, this is precisely the part of (2.14) corresponding to queue k being empty.
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All the above processes are independent of the service discipline within each
queue, provided that the processes w

(n)
k (t) remain unchanged. However, the queue

length processes Q
(n)
k (t), which are the number of customers in each queue

k = 1, . . . ,K at time t , depend on the queue discipline.

3. Heavy-traffic assumptions. We assume that, for each k, the following
limits exist and are all positive:

λk = lim
n→∞λ

(n)
k , µk = lim

n→∞µ
(n)
k ,

αk = lim
n→∞α

(n)
k , βk = lim

n→∞β
(n)
k .

(3.1)

The traffic intensity for queue k in queueing system n is ρ
(n)
k = λ

(n)
k /µ

(n)
k , and the

limiting traffic intensity for queue k is ρk = λk/µk . We assume

K∑
k=1

ρk = 1(3.2)

and make the heavy-traffic assumption

lim
n→∞

√
n
(
ρk − ρ

(n)
k

)= γk > 0(3.3)

for each k = 1, . . . ,K . In particular, there is a finite constant c such that

√
n|ρ(n)

k − ρk| ≤ c(3.4)

for all n and k. We also impose the usual Lindeberg condition on the interarrival
and service times: for k = 1, . . . ,K ,

lim
n→∞E

[(
u

(n)
k,j − (

λ
(n)
k

)−1
)2

I{|u(n)
k,j −(λ

(n)
k )−1|>c

√
n}
]

= lim
n→∞ E

[(
v

(n)
k,j − (

µ
(n)
k

)−1
)2

I{|v(n)
k,j−(µ

(n)
k )−1|>c

√
n}
]
= 0 ∀ c > 0.

(3.5)

We introduce the heavy-traffic scaling for the workload and queue length
processes

Ŵ
(n)
k (t) = 1√

n
W

(n)
k (nt), Q̂

(n)
k (t) = 1√

n
Q

(n)
k (nt),(3.6)

and the centered heavy-traffic scaling for the arrival process

Â
(n)
k (t) = 1√

n

[
A

(n)
k (nt) − λ

(n)
k nt

]
.(3.7)
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For k = 1, . . . ,K and y ≤ y∗
k , we define the respective partial-work arrival process

and centered scaled partial-work arrival process

V
(n)
k,y (t) =

�t�∑
j=1

v
(n)
k,j I{L(n)

k,j≤
√

ny},(3.8)

V̂
(n)
k,y (t) = 1√

n

�nt�∑
j=1

(
v

(n)
k,j I{L(n)

k,j ≤√
ny} − (

µ
(n)
k

)−1
Gk(y)

)
,(3.9)

and we also define

Ẑ
(n)
k,y(t) = 1√

n

[
V

(n)
k,y

(
A

(n)
k (nt)

)− Gk(y)ρ
(n)
k nt

]
.(3.10)

Note that the term (µ
(n)
k )−1Gk(y) appearing in (3.9) is the expectation of

v
(n)
k,j I{L(n)

k,j ≤√
ny}. The variance of this random variable is

(
β

(n)
k,y

)2 �= Gk(y)
(
β

(n)
k

)2 + (
µ

(n)
k

)−2
Gk(y)

(
1 − Gk(y)

)
,(3.11)

which has limit

(βk,y)
2 = Gk(y)(βk)

2 + (µk)
−2Gk(y)

(
1 − Gk(y)

)
.(3.12)

We use the notation V̂
(n)
k = V̂

(n)

k,y∗
k

and Ẑ
(n)
k = Ẑ

(n)

k,y∗
k
. Note that V

(n)
k = V

(n)

k,y∗
k

and

β
(n)
k = β

(n)

k,y∗
k
.

The following theorem is due to Prokhorov [16], Theorem 3.1 (see also [2],
Theorem 14.6). Here and elsewhere, the symbol ⇒ denotes weak convergence of
measures on the space D[0,∞) of functions from [0,∞) to R which are right-
continuous with left limits. The topology of this space is a generalization of the
topology introduced by Skorohod for D[0,1]. See [2] for details.

THEOREM 3.1. For every k = 1, . . . ,K and every y ≤ y∗
k ,(

Â
(n)
k , V̂

(n)
k,y

)⇒ (A∗
k,V

∗
k,y),(3.13)

where A∗
k and V ∗

k,y are independent Brownian motions with mean 0 and variances

α2
kλ

3
k and β2

k,y , respectively.

This theorem has the following corollaries.

COROLLARY 3.2. For every k = 1, . . . ,K and y ≤ y∗
k ,

Ẑ
(n)
k,y ⇒ V ∗

k,y ◦ λke + Gk(y)

µk

A∗
k,(3.14)

where e is the identity function e(t) = t for all t ≥ 0.
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PROOF. We compute

Ẑ
(n)
k,y(t) = 1√

n

[
V

(n)
k,y

(
A

(n)
k (nt)

)− Gk(y)ρ
(n)
k nt

]

= 1√
n

A
(n)
k (nt)∑
j=1

[
v

(n)
k,j I{L(n)

k,j ≤√
ny} − Gk(y)

µ
(n)
k

]
+ Gk(y)

µ
(n)
k

√
n

[
A

(n)
k (nt) − λ

(n)
k nt

]

=
[
V̂

(n)
k,y

(
1

n
A

(n)
k (nt)

)
− V̂

(n)
k,y (λkt)

]
+ V̂

(n)
k,y (λkt) + Gk(y)

µ
(n)
k

Â
(n)
k (t).

(3.15)

The term in square brackets converges to 0 because 1
n
A

(n)
k (nt) ⇒ λkt (see, e.g.,

Theorem A.3 of [9]). �

COROLLARY 3.3. The process
∑K

k=1 Ŵ
(n)
k converges weakly to a reflected

Brownian motion with drift.

PROOF. Since
∑K

k=1 Ŵ
(n)
k is the total workload, a quantity that is invariant

under work-conserving disciplines, this is a classical result due to Iglehart and
Whitt [11]. One can also obtain it immediately from Corollary 3.2 and the equation

K∑
k=1

Ŵ
(n)
k (t) =

K∑
k=1

Ẑ
(n)
k (t) − √

n

(
1 −

K∑
k=1

ρ
(n)
k

)
t

− min
0≤s≤t

[
K∑

k=1

Ẑ
(n)
k (s) − √

n

(
1 −

K∑
k=1

ρ
(n)
k

)
s

]
.

(3.16)

�

For the remainder of this paper, we make the following assumption.

ASSUMPTION 3.4. We have

Ŵ (n) �= (
Ŵ

(n)
1 , . . . , Ŵ

(n)
K

)⇒ W ∗,(3.17)

where W ∗ = (W ∗
1 , . . . ,W ∗

K) is an RCLL (right-continuous with left-hand limits)
process on R

K .

In Appendix A, we will show that this assumption holds when the weight
processes w

(n)
k (t) converge sufficiently fast to positive constants wk and the traffic

intensities are unbalanced, that is,

0 <
ρ1

w1
≤ ρ2

w2
≤ · · · ≤ ρK−1

wK−1
<

ρK

wK

.(3.18)
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Actually, in this case, W ∗
k ≡ 0 for all k < K . In the case of balanced traffic

intensities,
ρ1

w1
= ρ2

w2
= · · · = ρK−1

wK−1
= ρK

wK

,(3.19)

Assumption 3.4 is verified by Ramanan and Reiman [17].

COROLLARY 3.5. The processes W ∗
k , k = 1, . . . ,K , are continuous.

PROOF. For simplicity, we prove continuity of W ∗
k on [0,1]. For x ∈

D[0,1], let j (x) = sup0≤t≤1 |x(t) − x(t−)|. By the continuous mapping theorem,

j (Ẑ
(n)
k ) ⇒ 0. But j (Ŵ

(n)
k ) = j (Ẑ

(n)
k ), and so j (Ŵ

(n)
k ) ⇒ 0. According to

Theorem 13.4 of [2], this implies continuity of the limiting process W ∗
k . �

4. Measure-valued processes. To study whether tasks or customers meet
their timing requirements, one must keep track of customer lead times, where the
lead time is the time remaining until the deadline elapses, that is,

Lead time = Deadline − Current time.

In this section, we define a collection of measure-valued processes that will be
useful in the analysis of the instantaneous lead time profile of the customers.

Queue length measures:

Q(n)
k (t)(B)

�=
{

Number of customers in queue k at time t

having lead times at time t in B ⊂ R

}
.(4.1)

Workload measures:

W (n)
k (t)(B)

�=
{

Work in queue k at time t associated with customers
in this queue having lead times at time t in B ⊂ R

}
.(4.2)

Customer arrival measures:

A(n)
k (t)(B)

�=
{

Number of all arrivals in queue k by time t

having lead times at time t in B ⊂ R

}
.(4.3)

Workload arrival measures:

V(n)
k (t)(B)

�=
{

Work in queue k associated with all arrivals by
time t having lead times at time t in B ⊂ R

}
.(4.4)

The following relationships easily follow:

Q
(n)
k (t) = Q(n)

k (t)(R), W
(n)
k (t) = W (n)

k (t)(R),(4.5)

A
(n)
k (t) = A(n)

k (t)(R), V
(n)
k

(
A

(n)
k (t)

)= V(n)
k (t)(R),(4.6)
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A(n)
k (t)(B) =

A
(n)
k (t)∑
j=1

I{L(n)
k,j −(t−S

(n)
k,j )∈B} =

∞∑
j=1

I{S(n)
k,j ∈B+t−L

(n)
k,j , S

(n)
k,j ≤t},(4.7)

V(n)
k (t)(B) =

A
(n)
k (t)∑
j=1

v
(n)
k,j I{L(n)

k,j −(t−S
(n)
k,j )∈B} =

∞∑
j=1

v
(n)
k,j I{S(n)

k,j ∈B+t−L
(n)
k,j , S

(n)
k,j ≤t}.(4.8)

To study the behavior of the EDF queue discipline, it is useful to keep track of
the lead time of the customer currently in service in each queue k and the largest
lead time of all customers from queue k, whether present or departed, who have
ever been in service. For k = 1, . . . ,K , we define the frontier for queue k

F
(n)
k (t)

�=


Largest lead time of all customers from queue k

who have ever been in service, whether still
present or not, or

√
ny∗

k − t, if this quantity is
larger than the former one

 ,(4.9)

and the current lead time:

C
(n)
k (t)

�=
{

Lead time of the customer in service in
queue k or F

(n)
k (t) if the queue is empty

}
.(4.10)

Prior to arrival of the first customer, F
(n)
k (t) = √

ny∗
k − t . Under the EDF queue

discipline, there is no customer in queue k with lead time smaller than C
(n)
k (t), and

there has never been a customer in service in this queue whose lead time, if the
customer were still present, would exceed F

(n)
k (t). Furthermore, C

(n)
k (t) ≤ F

(n)
k (t)

for all t ≥ 0, k = 1, . . . ,K . Both F
(n)
k and C

(n)
k are RCLL processes.

For the processes just defined under the EDF queue discipline, we use the
following heavy-traffic scalings:

F̂
(n)
k (t)

�= 1√
n
F

(n)
k (nt), Ĉ

(n)
k (t)

�= 1√
n
C

(n)
k (nt),(4.11)

Q̂(n)
k (t)

�= 1√
n
Q(n)

k (nt)(
√

nB), Ŵ (n)
k (t)

�= 1√
n
W (n)

k (nt)(
√

nB).(4.12)

We also define

Â(n)
k (t)(B)

�= 1√
n
A

(n)
k (nt)(

√
nB)

= 1√
n

A
(n)
k (nt)∑
j=1

I{L(n)
k,j −(nt−S

(n)
k,j )∈√

nB}(4.13)

= 1√
n

∞∑
j=1

I{S(n)
k,j ∈√

nB+nt−L
(n)
k,j , S

(n)
k,j ≤nt},
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V̂(n)
k (t)(B)

�= 1√
n
V(n)

k (nt)(
√

nB)

= 1√
n

A
(n)
k (nt)∑
j=1

v
(n)
k,j I{L(n)

k,j −(nt−S
(n)
k,j )∈√

nB}(4.14)

= 1√
n

∞∑
j=1

v
(n)
k,j I{S(n)

k,j ∈√
nB+nt−L

(n)
k,j , S

(n)
k,j ≤nt}.

5. Earliest-deadline-first limits. We begin with an informal discussion of the
limiting lead time profile when customers are served according to the earliest-
deadline-first discipline. At each time t , there are potentially two types of
customers in queue k: those whose lead times are in [C(n)

k (t),F
(n)
k (t)) and those

whose lead times are in [F (n)
k (t),∞). Customers of the former type are present

only under unusual circumstances. Either there must be a customer present with
lead time less than

√
ny∗

k − t , an unlikely event for t of order n, or there must be a

customer in service, the customer we call C, whose lead time is F
(n)
k (t) at time t

and who must have been preempted by a customer with smaller lead time. When
C is preempted, the preempting customer is the only customer with lead time in
[C(n)

k (t),F
(n)
k (t)), but additional customers may later arrive, sustaining a period of

time before service of C is resumed. These later customers must have lead times
less than or equal to F

(n)
k (t), which, in turn, is strictly less than

√
ny∗

k . Hence, the

arrival intensity for these customers is strictly less than λ
(n)
k , although they have

the full attention of the server. This causes the period of time before service of
C is resumed to be brief and suggests that few customers ever have lead times in
[C(n)

k (t),F
(n)
k (t)). This intuition is made precise by Lemma 5.4.

Ignoring customers with lead times in [C(n)
k (t),F

(n)
k (t)), we work with the lead

time distribution of customers in queue k by examing those with lead times in
[F (n)

k (t),∞). Except possibly for a customer with lead time F
(n)
k (t), these cus-

tomers have never been in service. In order for one of these customers to have lead
time y > F

(n)
k (t), the customers must arrive at some time t − s prior to t and be

assigned lead time y + s upon arrival. If Gk has a density, then the density of the
assigned lead time distribution is (1/

√
n)G′

k((y + s)/
√

n) [see (2.4)], and multi-

plying by the arrival rate λ
(n)
k , we obtain the density of customers with lead time y:

λ
(n)
k√
n

∫ t

0
G′

k

(
y + s√

n

)
ds = λ

(n)
k

[
Gk

(
y + t√

n

)
− Gk

(
y√
n

)]
.

The heavy-traffic scaling considers the density of 1/
√

n times the actual number
of customers whose lead times are

ŷ = y√
n

>
1√
n
F

(n)
k (t) = F̂

(n)
k (t̂ )
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at scaled time t̂ = t
n

. This density is

λ
(n)
k√
n

[
Gk(ŷ + √

nt̂ ) − Gk(ŷ)
]dy

dŷ
= λ

(n)
k

[
Gk(ŷ + √

nt̂ ) − Gk(ŷ)
]
,

and as n → ∞, it converges to λk[1 − Gk(ŷ)]. The scaled number of customers in
queue k at time t (scaled time t̂ ) is thus approximately equal to

λk

∫ ∞
F̂

(n)
k (t̂ )

(
1 − Gk(η)

)
dη,

and since the average work per customer is 1/µ
(n)
k , the scaled work in the queue

can be approximated by

ρk

∫ ∞
F̂

(n)
k (t̂ )

(
1 − Gk(η)

)
dη.

As n → ∞, this should converge to W ∗
k (t) of Assumption 3.4, and this gives us an

equation that characterizes F ∗
k = limn→∞ F̂

(n)
k :

W ∗
k = ρk

∫ ∞
F ∗

k

(
1 − Gk(η)

)
dη.

These considerations prompt the following definitions.
For k = 1, . . . ,K , we set

Hk(y)
�=
∫ ∞
y

(
1 − Gk(η)

)
dη =


∫ y∗

k

y

(
1 − Gk(η)

)
dη, if y ≤ y∗

k ,

0, if y > y∗
k .

(5.1)

The function Hk maps (−∞, y∗
k ] onto [0,∞) and is strictly decreasing and

Lipschitz-continuous with Lipschitz constant 1 on (−∞, y∗
k ]. Therefore, there

exists a continuous inverse function H−1
k that maps [0,∞) onto (−∞, y∗

k ]. We
next define what we shall show is the limiting scaled frontier process

F ∗
k (t)

�= H−1
k

(
W ∗

k (t)

ρk

)
, t ≥ 0,(5.2)

where W ∗
k is as in Assumption 3.4. Let F̂ (n) = (F̂

(n)
1 , . . . , F̂

(n)
K ) and F ∗ =

(F ∗
1 , . . . ,F ∗

K). Denote by M the set of all finite, nonnegative measures on B(R),
the Borel subsets of R, and denote by MK the K-fold product of M. Under the
weak topology, M is a separable, metrizable topological space, and so is MK .

Under Assumptions 2.1 and 3.4, we have the following generalizations of
Proposition 3.10, Theorem 3.1 and Corollary 3.2 of [9]. The proofs are straight-
forward generalizations of those given in [9], with the exception of Lemma 5.4.
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PROPOSITION 5.1. Under the earliest-deadline-first queue discipline, we
have F̂ (n) ⇒ F ∗.

THEOREM 5.2. For k = 1, . . . ,K , define measure-valued processes Ŵ∗
k and

Q̂∗
k by

Ŵ∗
k (t)(B)

�= ρk

∫
B∩[F ∗

k (t),∞)

(
1 − Gk(y)

)
dy, Q̂∗

k(t)(B)
�= µkŴ

∗
k (t)(5.3)

for all Borel sets B ⊂ R. Under the earliest-deadline-first queue discipline,
the processes Ŵ (n) = (Ŵ (n)

1 , . . . , Ŵ
(n)
K ) and Q̂(n) = (Q̂(n)

1 , . . . , Q̂(n)
K ) converge

weakly in D([0,∞),MK) to Ŵ∗ = (Ŵ∗
1 , . . . , Ŵ∗

K) and Q̂∗ = (Q̂∗
1, . . . , Q̂

∗
K),

respectively.

COROLLARY 5.3. Under the earliest-deadline-first queue discipline, the K-
dimensional scaled queue length process Q̂(n) = (Q̂

(n)
1 , . . . , Q̂

(n)
K ) converges

weakly to the process (µ1W
∗
1 , . . . ,µKW ∗

K).

To extend the arguments of [9] to prove the above results, only the generaliza-
tion of Proposition 3.6 of [9] needs more attention. We state and prove the relevant
result.

LEMMA 5.4. Under the earliest-deadline-first queue discipline, we have, for
k = 1, . . . ,K ,

Ŵ (n)
k

[
Ĉ

(n)
k , F̂

(n)
k

)⇒ 0, Q̂(n)
k

[
Ĉ

(n)
k , F̂

(n)
k

)⇒ 0.(5.4)

PROOF. We fix k and prove convergence on [0,1]. For 0 ≤ t ≤ 1, we define

τ
(n)
k (t)

�= sup
{
s ∈ [0, t]; Ĉ

(n)
k (s) = F̂

(n)
k (s)

}
.(5.5)

We further define

D̂
(n)
k (t)

= 1√
n

∞∑
j=1

v
(n)
k,j I{nτ

(n)
k (t)<S

(n)
k,j ≤nt}I{L(n)

k,j −(nt−S
(n)
k,j )<F

(n)
k (nτ

(n)
k (t))−n(t−τ

(n)
k (t))}.

(5.6)

This is the scaled work brought by customers who arrive in queue k within the time
interval (nτ

(n)
k (t), nt] with lead times at arrival smaller than the current frontier.

Because there is work with lead time in [C(n)
k (s),F

(n)
k (s)) for all s ∈ [nτ

(n)
k (t), nt],

the effort expended by the server on customers with lead times smaller than
the frontier during the period nτ

(n)
k (t) to nt is T

(n)
k (nt) − T

(n)
k (nτ

(n)
k ), the full

entitlement of queue k during this period. The work at time nt with lead time
smaller than the frontier is thus the work at time nτ

(n)
k (t) with lead time smaller
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than the frontier plus the work that arrives with lead time smaller than the frontier
minus T

(n)
k (nt) − T

(n)
k (nτ

(n)
k ). It follows that

0 ≤ Ŵ (n)
k (t)

[
Ĉ

(n)
k (t), F̂

(n)
k (t)

)
= Ŵ (n)

k

(
τ

(n)
k (t)

)[
Ĉ

(n)
k

(
τ

(n)
k (t)

)
, F̂

(n)
k

(
τ

(n)
k (t)

))+ D̂
(n)
k (t)(5.7)

− 1√
n

[
T

(n)
k (nt) − T

(n)
k

(
nτ

(n)
k (t)

)]
.

We examine each of the three terms on the right-hand side of (5.7).
By definition,

Ŵ (n)
k

(
τ

(n)
k (t)−)[Ĉ(n)

k

(
τ

(n)
k (t)−), F̂ (n)

k

(
τ

(n)
k (t)−))= 0,

and so

Ŵ (n)
k

(
τ

(n)
k (t)

)[
Ĉ

(n)
k

(
τ

(n)
k (t)

)
, F̂

(n)
k

(
τ

(n)
k (t)

))≤ j
(
Ŵ

(n)
k

)
,(5.8)

where j (x) = sup0≤s≤1 |x(s) − x(s−)| for x ∈ D[0,1]. In light of Corollary 3.5,
we conclude that

Ŵ (n)
k

(
τ

(n)
k (t)

)[
Ĉ

(n)
k

(
τ

(n)
k (t)

)
, F̂

(n)
k

(
τ

(n)
k (t)

))⇒ 0,(5.9)

where the convergence is that of RCLL processes defined on [0,1].
In contrast to the proof of Proposition 3.6 in [9], we cannot assert that the

workload in queue k is being decreased at rate 1 on the time interval (nτ
(n)
k (t), nt].

Indeed, Ṫ
(n)
k is, in general, not equal to 1. However, on the interval under

consideration, the kth queue is never empty, so

U
(n)
k (nt) = U

(n)
k

(
nτ

(n)
k (t)

)
.(5.10)

By (2.15) and (2.18), we have

T
(n)
k (s) = V

(n)
k

(
A

(n)
k (s)

)− W
(n)
k (s) + U

(n)
k (s), s ≥ 0.(5.11)

Thus the amount by which the workload in queue k has been decreased on
(nτ

(n)
k (t), nt] due to the activity of the server, divided by the scaling factor

√
n,

is
1√
n

[
T

(n)
k (nt) − T

(n)
k

(
nτ

(n)
k (t)

)]
= 1√

n

[
V

(n)
k

(
A

(n)
k (nt)

)− V
(n)
k

(
A

(n)
k

(
nτ

(n)
k (t)

))]
− 1√

n

[
W

(n)
k (nt) − W

(n)
k

(
nτ

(n)
k (t)

)]
= Ẑ

(n)
k (t) − Ẑ

(n)
k

(
τ

(n)
k (t)

)− [
Ŵ

(n)
k (t) − Ŵ

(n)
k

(
τ

(n)
k (t)

)]
+ ρ

(n)
k

√
n
(
t − τ

(n)
k (t)

)
.

(5.12)
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Because 0 ≤ τ
(n)
k (t) ≤ t , we have

min
0≤s≤t

Ẑ
(n)
k (s) ≤ Ẑ

(n)
k

(
τ

(n)
k (t)

)
≤ max

0≤s≤t
Ẑ

(n)
k (s),(5.13)

min
0≤s≤t

Ẑ
(n)
k,y(s) ≤ Ẑ

(n)
k,y

(
τ

(n)
k (t)

)
≤ max

0≤s≤t
Ẑ

(n)
k,y(s),(5.14)

min
0≤s≤t

Ŵ
(n)
k (s) ≤ Ŵ

(n)
k

(
τ

(n)
k (t)

)
≤ max

0≤s≤t
Ŵ

(n)
k (s).(5.15)

We conclude from Corollary 3.2, Assumption 3.4 and the continuity theorem that
the upper and lower bounds in (5.13), (5.14) and (5.15) have weak limits, and
hence

1√
n

[
T

(n)
k (nt) − T

(n)
k

(
nτ

(n)
k (t)

)]= ρ
(n)
k

√
n
(
t − τ

(n)
k (t)

)+ O(1).(5.16)

Finally, to study D̂
(n)
k (t), we choose y ≤ y∗

k and consider two cases.

Case I. nτ
(n)
k (t) + √

n(y∗
k − y) ≤ nt . In this case, on the event {nτ

(n)
k (t) +√

n(y∗
k − y) < S

(n)
k,j ≤ nt}, the inequality L

(n)
k,j − (nt − S

(n)
k,j ) < F

(n)
k (nτ

(n)
k (t)) −

n(t − τ
(n)
k (t)) implies the inequality L

(n)
k,j ≤ √

ny. Therefore,

D̂
(n)
k (t) ≤ 1√

n

∞∑
j=1

v
(n)
k,j I{nτ

(n)
k (t)<S

(n)
k,j ≤nτ

(n)
k (t)+√

n(y∗
k −y)}

+ 1√
n

∞∑
j=1

v
(n)
k,j I{nτ

(n)
k (t)+√

n(y∗
k −y)<S

(n)
k,j ≤nt}I{L(n)

k,j≤
√

ny}

= 1√
n

[
V

(n)
k

(
A

(n)
k

(
nτ

(n)
k (t) + √

n(y∗
k − y)

))− V
(n)
k

(
A

(n)
k

(
nτ

(n)
k (t)

))]
+ 1√

n

[
V

(n)
k,y

(
A

(n)
k (nt)

)− V
(n)
k,y

(
A

(n)
k

(
nτ

(n)
k (t) + √

n(y∗
k − y)

))]
= Ẑ

(n)
k

(
τ

(n)
k (t) + 1√

n
(y∗

k − y)

)
− Ẑ

(n)
k

(
τ

(n)
k (t)

)+ ρ
(n)
k (y∗

k − y)

+ Ẑ
(n)
k,y(t) − Ẑ

(n)
k,y

(
τ

(n)
k (t) + 1√

n
(y∗

k − y)

)
+ Gk(y)ρ

(n)
k

√
n
(
t − τ

(n)
k (t)

)− Gk(y)ρ
(n)
k (y∗

k − y).

(5.17)

Thus, by (5.13) and (5.14),

D̂
(n)
k (t) ≤ Gk(y)ρ

(n)
k

√
n
(
t − τ

(n)
k (t)

)+ O(1).(5.18)
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We now use (5.18) and (5.16) to conclude from (5.7) that

0 ≤ Ŵ (n)
k

(
τ

(n)
k (t)

)[
Ĉ

(n)
k

(
τ

(n)
k (t)

)
, F̂

(n)
k

(
τ

(n)
k (t)

))
− (

1 − Gk(y)
)
ρ

(n)
k

√
n
(
t − τ

(n)
k (t)

)+ O(1),

(5.19)

which implies, because of (5.9), that(
1 − Gk(y)

)
ρ

(n)
k

(
t − τ

(n)
k (t)

)≤ O

(
1√
n

)
.(5.20)

Case II. nτ
(n)
k (t) + √

n(y∗
k − y) > nt . In this case, t − τ

(n)
k (t) ≤ (1/

√
n) ×

(y∗
k − y), and again (5.20) holds.
We choose y < y∗

k so that 1 − Gk(y) > 0 and conclude that

τ
(n)
k (t) ⇒ t,(5.21)

where the convergence is that of RCLL processes on [0,1].
We now use (5.8), (5.12) and (5.17) in (5.7) to obtain the more precise estimate(

1 − Gk(y)
)
ρ

(n)
k

√
n
(
t − τ

(n)
k (t)

)
≤ j (Ŵ

(n)
k ) +

[
Ẑ

(n)
k

(
τ

(n)
k (t) + 1√

n
(y∗

k − y)

)
− Ẑ

(n)
k

(
τ

(n)
k (t)

)]

+
[
Ẑ

(n)
k,y(t) − Ẑ

(n)
k,y

(
τ

(n)
k (t) + 1√

n
(y∗

k − y)

)]
+
[
Ŵ

(n)
k (t) − Ŵ

(n)
k

(
τ

(n)
k (t)

)]−
[
Ẑ

(n)
k (t) − Ẑ

(n)
k

(
τ

(n)
k (t)

)]
+ (

1 − Gk(y)
)
ρ

(n)
k (y∗

k − y)

(5.22)

in Case I, and the companion estimate
√

n(t − τ
(n)
k (t)) ≤ (y∗

k − y) in Case II.
According to the differencing theorem (e.g., Theorem A.3 of [9]), every term on
the right-hand side of (5.22), save the last, converges weakly to 0. Consequently,(√

n
(
t − τ

(n)
k (t)

)− (y∗
k − y)

)+ ⇒ 0.(5.23)

Because y < y∗
k is arbitrary and t − τ

(n)
k (t) ≥ 0, we conclude

√
n
(
t − τ

(n)
k (t)

)⇒ 0.(5.24)

Armed with (5.24), we return once again to (5.17), this time taking y = y∗
k so

that Case II is vacuous and concluding that D̂
(n)
k ⇒ 0. From (5.7), using (5.8), we

see that

Ŵ (n)
k (t)

[
Ĉ

(n)
k (t), F̂

(n)
k (t)

)
≤ j

(
W

(n)
k

)+ D̂
(n)
k (t),(5.25)
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and hence Ŵ (n)
k [Ĉ(n)

k , F̂
(n)
k ) ⇒ 0. For the second part of (5.4), we observe that

Q̂(n)
k (t)

[
Ĉ

(n)
k (t), F̂

(n)
k (t)

)
≤ 1√

n

[
1 + A

(n)
k (nt) − A

(n)
k

(
nτ

(n)
k (t)

)]
= 1√

n
+
[
Â

(n)
k (t) − Â

(n)
k

(
τ

(n)
k (t)

)]+ λ
(n)
k

√
n
(
t − τ

(n)
k (t)

)
,

(5.26)

and all terms on the right-hand side have limit 0. �

We may now follow the proofs of Section 3 of [9], obtaining(
Ŵ

(n)
1

[
F̂

(n)
1 ,∞

)
, . . . , Ŵ

(n)
K

[
F̂

(n)
K ,∞

))
⇒ (W ∗

1 , . . . ,W ∗
K)(5.27)

in place of (3.27) of [9], using the continuity of the mapping

H−1 : [0,∞)K
onto−→

K∏
k=1

(−∞, y∗
k ](5.28)

defined by

H−1(x1, . . . , xK)
�= (

H−1
1 (x1), . . . ,H

−1
K (xK)

)
(5.29)

to modify the proof of Proposition 3.10 of [9], and replacing ψ : R → M in the
proof of Theorem 3.1 of [9] by ψ : R

K → MK given by

ψ(x1, . . . , xK)(B1, . . . ,BK)

�=
(∫

B1∩[x1,∞)

(
1 − G1(η)

)
dη, . . . ,

∫
BK∩[xK,∞)

(
1 − GK(η)

)
dη

)
.

(5.30)

6. First-in, first-out limits. In this section, we assume that customers within
each of the K queues are served using the first-in, first-out (FIFO) queue discipline;
that is, the server always services the customer with the longest time in the queue.
This discipline is equivalent to EDF if all customers in each queue have initial lead
times 0.

As we remarked at the end of Section 2, all the processes introduced in that
section, with the exception of the queue lengths, are independent of the service
discipline within each queue, provided that the server always allocates its total
capacity in the same way among all queues that have work to do (i.e., the
processes w

(n)
k defined in Section 2 remain unchanged). Thus, in this section, we

adopt all the notation and the assumptions of Sections 2 and 3. We still assume that
initial lead times are distributed as in (2.4), although we shall sometimes use the
results of the previous section in the case that all initial lead times are 0 as a way
of justifying assertions about the limiting process under FIFO. Assumptions 2.1
and 3.4 are still in force.
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The aim of this section is to give a counterpart of Theorem 5.2 for the FIFO
scheduling policy. We will start with the case of a single queue (K = 1) in which
the notation somewhat simplifies. In particular, we drop all the subscripts k in Gk,
y∗
k , v

(n)
k,j , and so on, when a single queue is considered. It turns out that the ideas

developed for this case can be easily generalized to K ≥ 2 arrival streams.
Denote by W ∗ the limiting (real-valued) workload in the queue, that is, the limit

of Ŵ (n). W ∗ is the Brownian motion with drift described in Corollary 3.3 (with
K = 1).

The lead time of a customer in queue is the sum of two independent random
variables: the lead time assigned upon arrival and the negative of the time since
arrival. If the former is always 0, then the FIFO queue discipline coincides with
EDF, and Theorem 5.2 implies that

Ŵ∗(t)(B) =
∫
B∩[F ∗(t),∞)

(
1 − I[0,∞)(y)

)
dy = m

(
B ∩ [F ∗(t),0]),

where m denotes Lebesgue measure. In particular, W ∗(t) = Ŵ∗(t)(R) = −F ∗(t).
In other words, Ŵ∗(t) is Lebesgue measure restricted to [−W ∗(t),0].

When the lead times assigned upon arrival are nontrivial, it is reasonable to
expect Ŵ∗(t) to be the convolution of Lebesgue measure on [−W ∗(t),0] with
dG, the distribution of scaled lead times. The following theorem confirms this
conjecture.

THEOREM 6.1. Let Ŵ∗ be the measure-valued process defined by

Ŵ∗(t)(B)
�=
∫
B

(
G
(
η + W ∗(t)

)− G(η)
)
dη,

that is, the process whose value is the convolution of dG with the uniform

distribution on [−W ∗(t),0]. Let also Q̂∗ �= µŴ∗. In the case of a single queue,
under the first-in, first-out queue discipline, we have

Ŵ (n) ⇒ Ŵ∗, Q̂(n) ⇒ Q̂∗.(6.1)

Note that this result was conjectured in [9].

PROOF. For y ≤ 0, l ∈ R, define

M(n)(t)
([y,0] × (−∞, l]) �=

A(n)(t)∑
j=1

v
(n)
j I{y≤S

(n)
j −t}I{L(n)

j ≤l}.

This is the arrived work (including departed work) whose time in queue is less
than or equal to −y and whose lead time upon arrival was less than or equal to l.
Similarly, for y ≤ 0, l ∈ R, let N (n)(t)([y,0] × (−∞, l]) denote the work still
present in queue whose time in queue is less than or equal to −y and whose lead
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time upon arrival was less than or equal to l. The scaled versions of these two
processes are

N̂ (n)(t)
([y,0] × (−∞, l]) �= 1√

n
N (n)(nt)

([√
ny,0

]× (−∞,
√

nl
])

and

M̂ (n)(t)
([y,0] × (−∞, l]) �= 1√

n
M(n)(nt)

([√
ny,0

]× (−∞,
√

nl
])

= 1√
n

∞∑
j=1

v
(n)
j I{√ny+nt≤S

(n)
j ≤nt}I{L(n)

j ≤√
nl}.

We have

M̂ (n)(t)
([y,0] × (−∞, l])= Ŷ (n)

m (t) + Û (n)
m (t),

where

Ŷ (n)
m (t) = 1√

n

∞∑
j=1

[
v

(n)
j I{L(n)

j ≤√
nl} − 1

µ(n)
G(l)

]
I{√ny+nt≤S

(n)
j ≤nt},

Û (n)
m (t) = G(l)

µ(n)
√

n

∞∑
j=1

I{√ny+nt≤S
(n)
j ≤nt}.

Recall that, by Theorem 3.1, the process V̂
(n)
l defined by (3.9) (recall that we drop

the subscript k = 1) converges weakly to a Brownian motion V ∗
l . Furthermore,

Ŷ (n)(t) = V̂
(n)
l

(
1

n
A(n)(nt)

)
− V̂

(n)
l

(
1

n
A(n)

(
(nt + √

ny)+−)).

But

Â (n)(t) = 1√
n

[
A(n)(nt) − λ(n)nt

]
,

so

1

n
A(n)(nt) = 1√

n
Â (n)(t) + λ(n)t ⇒ λt,

1

n
A(n)((nt + √

ny)+−)= 1√
n
Â (n)

((
t + y√

n

)+
−
)

+ λ(n)

(
t + y√

n

)+
⇒ λt.

The differencing theorem implies that Ŷ (n) ⇒ 0.
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On the other hand,

Û (n)
m (t) = G(l)

µ(n)
√

n

[
A(n)(nt) − A(n)

(
(nt + √

ny)+ − )]
= G(l)

µ(n)

[
Â (n)(nt) + λ(n)

√
nt
]

− G(l)

µ(n)

[
Â (n)

((
t + y√

n

)+
−
)

+ λ(n)
√

n

(
t + y√

n

)+]

= G(l)

µ(n)

[
Â (n)(t) − Â (n)

((
t + y√

n

)+
−
)]

+ G(l)

(
λ(n)

µ(n)
− 1

)[√
nt − (

√
nt + y)+

]
+ G(l)

[√
nt − (

√
nt + y)+

]
.

(6.2)

The first term on the right-hand side of (6.2) has limit 0. Indeed,

Â (n)(t) − Â (n)

((
t + y√

n

)+)
⇒ 0

by the differencing theorem and

Â (n)

((
t + y√

n

)+)
− Â (n)

((
t + y√

n

)+
−
)

⇒ 0

because Â (n) converges to a continuous limit and hence the maximal jump of Â (n)

on any finite time horizon converges to 0 (compare the proof of Corollary 3.5).
The second term on the right-hand side of (6.2) has limit 0 because λ(n)/µ(n) → 1
and 0 ≤ √

nt − (
√

nt + y)+ ≤ −y.
Thus, we have proved that, for every T > 0, y ≤ 0 and l ∈ R,

sup
0≤t≤T

∣∣∣M̂ (n)(t)
([y,0] × (−∞, l])+ ((√

nt + y
)+ − √

nt
)
G(l)

∣∣∣ P−→ 0.(6.3)

Clearly, (
√

nt + y)+ − √
nt is Lipschitz-continuous in y (with the Lipschitz

constant 1). Moreover, both M̂ (n)(t)([y,0] × (−∞, l]) and ((
√

nt + y)+ −√
nt)G(l) are monotone in y. Thus, by the same argument as in Proposition 3.4

of [9], we can upgrade (6.3) to

sup
y0≤y≤0

sup
0≤t≤T

∣∣∣M̂ (n)(t)
([y,0]× (−∞, l])+((√

nt + y
)+ −√

nt
)
G(l)

∣∣∣ P−→0(6.4)

for every T > 0, y0 ≤ 0 and l ∈ R. In particular, taking l = y∗ in (6.4) we get,
by (2.4) and (2.5),

sup
y0≤y≤0

sup
0≤t≤T

∣∣M̂ (n)(t)
([y,0] × R

)+ (√
nt + y

)+ − √
nt
∣∣ P−→ 0.(6.5)
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A slight modification of the above argument yields

sup
y0≤y≤0

sup
0≤t≤T

∣∣M̂ (n)(t)
([y,0] × (−∞, l)

)
+ (

(
√

nt + y)+ − √
nt
)
G(l−)

∣∣ P−→ 0

(6.6)

for every T > 0, y0 ≤ 0 and l ∈ R. Using (6.6) and proceeding as in the proof
of the Glivenko–Cantelli theorem (see, e.g., Theorem 20.6 in [1]), we can finally
upgrade (6.4) to

sup
l∈R

sup
y0≤y≤0

sup
0≤t≤T

∣∣M̂ (n)(t)
([y,0] × (−∞, l])

+ (
(
√

nt + y)+ − √
nt
)
G(l)

∣∣ P−→ 0

(6.7)

for every T > 0, y0 ≤ 0. Using (6.5) and proceeding as in the proof of Corollary 3.5
of [9], we get

sup
y0≤y≤0

sup
0≤t≤T

M̂ (n)(t)
({y} × R

) P−→ 0

for every T > 0, y0 ≤ 0.
Let us introduce the notation

F (n)(t)
�= C(n)(t)

�=


The negative of the time in queue
of the customer currently in service
or S

(n)

A(n)(t)
− t if the queue is empty

 .

Notice that C(n) and F (n) defined above would coincide with those introduced
in Section 4 (and used to study the EDF queue discipline) if all the initial lead
times of the customers in queue were 0. Denote also by Ĉ(n) and F̂ (n) the rescaled
versions of C(n) and F (n):

Ĉ(n)(t)
�= F̂ (n)(t)

�= 1√
n
F (n)(nt).

By Corollary 3.8 in [9] (applied to the case of zero initial lead times), we have

N̂ (n)
({F̂ (n)} × R

)= N̂ (n)
([Ĉ(n), F̂ (n)] × R

)⇒ 0.

Also, Proposition 3.10 in [9] (or Proposition 5.1 of the present paper) yields

F̂ (n) ⇒ −W ∗.
By a slight modification of the proof of Proposition 3.11 in [9], we can show that

sup
l∈R

sup
y≤0

sup
0≤t≤T

∣∣N̂ (n)(t)
([y,0] × (−∞, l])+ (

y ∨ F̂ (n)(t)
)
G(l)

∣∣ P−→ 0.

But (
y ∨ F̂ (n)(t)

)⇒ (
y ∨ −W ∗(t)

)
.
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Thus, we have proved that N̂ (n)(t) converges weakly to the product measure with
the uniform distribution on [−W ∗(t),0] in one coordinate and the cumulative
distribution function G in the other one. Let us recall that the first coordinate
indicates the negative of the time in queue and the second one the initial lead
times of customers.

The lead time of a customer is equal to the sum of its initial lead time and the
negative of the time it has already spent in queue. The mapping from (−∞,0]×R

into R given by (y, l) → l + y induces a continuous function from the space of
measures on (−∞,0] × R to measures on the real line. Thus, we get the first part
of (6.1). The proof of the second part is analogous, with v

(n)
j and µ(n) replaced

by 1. �

As in the case of the EDF service discipline, the above result can be easily
generalized to the case of K arrival processes. The corresponding result is

THEOREM 6.2. Let Ŵ∗
k be the measure-valued process defined by

Ŵ∗
k (t)(B)

�= ρk

∫
B

(
Gk

(
η + W ∗

k (t)

ρk

)
− Gk(η)

)
dη,(6.8)

that is, the process whose distribution is the convolution of dGk and the uniform

distribution on [−W ∗
k (t)/ρk,0] with density ρk. Also, let Q̂∗

k

�= µkŴ
∗
k , Ŵ∗ �=

(Ŵ∗
1 , . . . , Ŵ∗

K), Q̂∗ �= (Q̂∗
1, . . . , Q̂

∗). We have, in the case of the first-in, first-out
queue discipline,(

Ŵ (n)
1 , . . . , Ŵ (n)

K

)⇒ Ŵ∗,
(
Q̂(n)

1 , . . . , Q̂(n)
K

)⇒ Q̂∗.

The proof of Theorem 6.2 is an easy generalization of the argument proving
Theorem 6.1, where the necessary results from [9] are replaced by their K-dimen-
sional counterparts discussed in Section 5. In particular, Proposition 5.1 should be
used in place of Proposition 3.10 from [9].

COROLLARY 6.3. Under the first-in, first-out queue discipline, the
K-dimensional scaled queue length process (Q̂

(n)
k )k=1,...,K converges weakly to

(µkW
∗
k )k=1,...,K .

Corollary 6.3 is an example of “state space collapse,” a notion introduced
by Reiman [18] to capture the idea that one limiting process (scaled queue
length) is a deterministic function of another limiting process (scaled workload).
Corollary 6.3 is close to the results of Bramson [3] and Williams [19], who obtain
the relationship between individual queue lengths and total workload under head-
of-the line proportional processor sharing, but not the weighted processor sharing
of this paper.
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7. Simulations. In this section, we use simulation to verify the predictive
value of the theory of the previous sections. In the previous sections, we actually
considered a sequence of queueing systems, indexed by n, whereas here we want
to consider a single queueing system. We imagine that this single system is a
member of the sequence of the previous sections corresponding to a large value
of n. We first recast the definitions of the previous sections in such a way that this
parameter n does not appear.

Suppressing the time variable t , we recall the definitions of Sections 2 and 3.
We denoted the queue length for the kth input stream in the nth queueing system

by Q
(n)
k , and the scaled queue length by Q̂

(n)
k

�= (1/
√

n)Q
(n)
k . For large values

of n, under both the earliest-deadline-first (EDF) and the first-in, first-out (FIFO)
disciplines, Q̂

(n)
k is approximately equal to Q∗

k = µkW
∗
k (Corollaries 5.3 and 6.3),

where W ∗
k is the limit of Ŵ

(n)
k as in Assumption 3.4. Similarly, the measure-

valued processes Q̂(n)
k converges to µkŴ

∗
k , where (recalling equations from earlier

sections)

Ŵ∗
k (t)(B)

�= ρk

∫
B∩[F ∗

k (t),∞)

(
1 − Gk(y)

)
dy,(5.3)

under EDF (Theorem 5.2), and

Ŵ∗
k (t)(B)

�= ρk

∫
B

(
Gk

(
η + W ∗

k (t)

ρk

)
− Gk(η)

)
dη,(6.8)

under FIFO (Theorem 6.2). In (5.3), the process F ∗
k is given by

F ∗
k (t)

�= H−1
k

(
W ∗

k (t)

ρk

)
.(5.2)

Recall that customers arrive with initial lead time (deadline) distribution

P

{
L

(n)
k,j ≤ √

ny
}

= Gk(y).(2.4)

We define G
(n)
k (x) = Gk(x/

√
n), so that P{L(n)

k,j ≤ x} = G
(n)
k (x) is the cumulative

distribution function of initial lead times in the kth input stream of the nth queueing
system. The process F ∗

k (t) of (5.2) is characterized in terms of the function

Hk(y)
�=
∫ ∞
y

(
1 − Gk(η)

)
dη.(5.1)

We introduce the function

H
(n)
k (x)

�= √
nHk

(
x√
n

)
=
∫ ∞
x

(
1 − G

(n)
k (ξ)

)
dξ.(7.1)
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Under EDF, for large values of n, Q̂(n)
k (y,∞) ≈ λkHk(y ∨F ∗

k ), and because Hk

is nonincreasing,

λkHk(y ∨ F ∗
k ) = λkHk

(
y ∨ H−1

k

(
W ∗

k

ρk

))
= λkHk(y) ∧ µkW

∗
k

=
(
λk

1√
n
H

(n)
k (

√
ny)

)
∧ Q∗

k

≈
(
λk

1√
n
H

(n)
k (

√
ny)

)
∧ 1√

n
Q

(n)
k .

(7.2)

Multiplying (7.2) by
√

n, we obtain

Q(n)
k (x,∞) = √

nQ̂(n)
k

(
x√
n
,∞

)
≈ (

λkH
(n)
k (x)

)∧ Q
(n)
k .(7.3)

Relation (7.3) connects the unscaled queue length Q
(n)
k with the number of

customers whose unscaled lead times exceed x, and the function H
(n)
k appearing

in this relation can be computed from the cumulative distribution function G
(n)
k

for the unscaled lead times. Relation (7.3) can be tested by simulation under the
earliest-deadline-first discipline without knowledge of the parameter n.

Under FIFO, we have from (6.8) that

Q̂(n)
k (y,∞) ≈ λk

∫ ∞
y

(
Gk

(
η + W ∗

k

ρk

)
− Gk(η)

)
dη

= λk√
n

∫ ∞
√

ny

(
G

(n)
k

(
ξ +

√
nW ∗

k

ρk

)
− G

(n)
k (ξ)

)
dξ.

(7.4)

Replacing
√

nW ∗
k in (7.4) by the approximation (1/µk)Q

(n)
k and multiplying

by
√

n, we obtain

Q(n)
k (x,∞) = √

nQ̂(n)
k

(
x√
n
,∞

)
≈ λk

∫ ∞
x

(
G

(n)
k

(
ξ + 1

λk

Q
(n)
k

)
− G

(n)
k (ξ)

)
dξ.

(7.5)

Once again, we have a relation that connects the unscaled queue length Q
(n)
k

with the number of customers whose unscaled lead times exceed x, and the
the only function appearing in (7.5) is the unscaled lead time distribution G

(n)
k .

Relation (7.5) can be tested by simulation under the first-in, first-out discipline
without knowledge of the parameter n.

In each of Figures 1–8, there are eight input streams creating an overall traffic
intensity of 0.96. In Figures 1, 3, 5 and 7, this traffic intensity is divided equally
among the eight streams, whereas in Figures 2, 4, 6 and 8, the eighth stream is
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FIG. 1. M/M/1, EDF, heavy-traffic queue.

FIG. 2. M/M/1, EDF, heavy-traffic queue.
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FIG. 3. M/M/1, FIFO, heavy-traffic queue.

FIG. 4. M/M/1, FIFO, heavy-traffic queue.
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FIG. 5. M/M/1, heavy-traffic queue.

FIG. 6. M/M/1, heavy-traffic queue.
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FIG. 7. M/M/1, EDF.

FIG. 8. M/M/1, EDF.
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dominant. The traffic intensities ρ
(n)
k are indicated in the captions; the service rates

in all cases are µ
(n)
k = 1, so that λ

(n)
k = ρ

(n)
k . In Figures 1–6, each simulation run

is initiated with an empty queue and a local time is accumulated when the queue
length of the eighth queue is exactly equal to 60. To avoid excessive dependence
between successive samples, at the instant the local time reaches the value 10,
a sample is taken and the local time counter is reset to 0. The simulation continues
until 100 samples are recorded. In particular, in the formulas (7.3) and (7.5), we
used the value Q

(n)
8 = 60. In Figures 1–4, G8(x) = (1−e−x/80)I{x≥0}. In Figures 5

and 6, G8(x) = I{x≥80}; in this case, EDF and FIFO coincide, as do the right-hand
sides of (7.3) and (7.5).

The leftmost dots indicate the pointwise minimum empirical cumulative
distribution function of the lead time profile for these 100 samples, the rightmost
dots indicate the pointwise maximum and the central dots are the average. As a
function of x, the right-hand side of (7.3) is plotted as a dashed curve in Figures 1,
2, 5 and 6. In Figures 3, 4, 5 and 6, the right-hand side of (7.5) is plotted as a
dashed curve.

We obtained the solid curves in Figures 1–6 by replacing λ
(n)
8 in the right-

hand sides of (7.3) and (7.5) by λ
(n)
8 /0.96. This normalization by the total

traffic intensity causes the theory to have better predictive value. Indeed, with
this normalization, the theoretical cumulative distribution functions and the
pointwise average empirical cumulative distribution functions are in almost perfect
agreement, except in Figure 5. The cause of the disagreement in this figure, and
indeed the reasonableness of multiplying the approximations (7.2) and (7.4) by

√
n

in order to obtain the relations (7.3) and (7.5), is a subject for future research.
Finally, in Appendix A, it is shown that when there is a dominant traffic

intensity, the scaled workloads and queue lengths in the nondominant queues
converge to 0. Figures 7 and 8 graph the empirical marginal tail probabilities of
the queue length processes. In Figure 7, one of the identical eight streams with
common traffic intensity 0.12 is shown. In Figure 8, there are eight streams of
three types, having traffic intensities 0.05, 0.15 or 0.31. The empirical marginal
tail probabilities are shown for one stream of each type. The behavior in these
two cases is quite different. Figure 8 shows that the nondominant traffic flows
become a negligible part of the workload. Figure 7 shows that in the equal traffic
intensity case, the workload will be evenly spread across the different streams,
none of which becomes negligible.

APPENDIX A

This appendix provides a sufficient condition for Assumption 3.4 to hold, the
condition described immediately following that assumption. For this appendix,
we adopt the notation and assumptions of Sections 2 and 3, except, of course,
Assumption 3.4 and its consequence Corollary 3.5. In its place we impose
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Assumption A.2. A technical “crushing lemma” needed for this appendix is
contained in Appendix B.

Recall that, for k = 1, . . . ,K , R
(n)
k (t) defined by (2.17) is the work performed

by the server on queue k up to time t . Recall also the notation e(t) = t for all t ≥ 0.

LEMMA A.1. For every k, we have

1

n
R

(n)
k ◦ ne ⇒ ρke.

PROOF. From Corollary 3.3, we see that 1
n

∑K
k=1 W

(n)
k ◦ ne ⇒ 0, and since

each term in the sum is nonnegative, we have 1
n
W

(n)
k ◦ ne ⇒ 0 for each k.

Equation (2.18) implies

1

n
R

(n)
k (nt) = −1

n
W

(n)
k (nt) + 1

n

[
V

(n)
k

(
A

(n)
k (nt)

)− ρ
(n)
k nt

]+ ρ
(n)
k t,

and the right-hand side converges to ρkt because of Corollary 3.2. �

To proceed further, we make the following assumption.

ASSUMPTION A.2. There exist positive constants wk , k = 1, . . . ,K , satisfy-
ing (3.18) and such that, for every T > 0, the sequence of random variables

√
n sup

0≤t≤nT

∣∣w(n)
k (t) − wk

∣∣,
k = 1, . . . ,K , n = 1,2, . . . , is tight.

This, of course, implies that w
(n)
k ⇒ wk as n → ∞ for k = 1, . . . ,K .

PROPOSITION A.3. Under Assumption A.2, we have Ŵ
(n)
k ⇒ 0 for all k < K .

COROLLARY A.4. Ŵ
(n)
K converges weakly to a reflected Brownian motion

with drift.

Corollary A.4 follows immediately from Proposition A.3 and Corollary 3.3. We
devote the remainder of the appendix to the proof of the proposition.

PROOF OF PROPOSITION A.3. For simplicity, we shall prove convergence of
the workloads Ŵ

(n)
k , k < K , on [0,1]. Equations (2.14) and (2.19) imply

Ṙ
(n)
k (t) =

K−1∑
m=0

∑
α∈Ac

k(m)

w
(n)
k (t)

1 −∑
�∈α w

(n)
� (t)

J̇ (n)
α (t).(A.1)
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Choose 0 < c0 < minj=1,...,K wj and let

En = {
w

(n)
k (t) > c0, t ∈ [0, n], k = 1, . . . ,K

}
.(A.2)

By Assumption A.2,

P(En) → 1.(A.3)

On En, we have, for k < K ,

Ṙ
(n)
K (t)

w
(n)
K (t)

− Ṙ
(n)
k (t)

w
(n)
k (t)

=
K−1∑
m=1

∑
α∈Ac

K(m)∩Ak(m)

1

1 −∑
l∈α w

(n)
l (t)

J̇ (n)
α (t)

−
K−1∑
m=1

∑
α∈AK(m)∩Ac

k(m)

1

1 −∑
l∈α w

(n)
l (t)

J̇ (n)
α (t)

≤
K−1∑
m=1

∑
α∈Ak(m)

1

1 −∑
l∈α w

(n)
l (t)

J̇ (n)
α (t)

≤ 1

c0
İ

(n)
k (t).

But then

U̇
(n)
k (t) =

K∑
m=1

∑
α∈Ak(m)

w
(n)
k (t)

w
(n)
k (t) + 1 −∑

l∈α w
(n)
l (t)

J̇ (n)
α (t)

≥ w
(n)
k (t)

K∑
m=1

∑
α∈Ak(m)

J̇ (n)
α (t)

= w
(n)
k (t)İ

(n)
k (t)

≥ c0w
(n)
k (t)

(
Ṙ

(n)
K (t)

w
(n)
K (t)

− Ṙ
(n)
k (t)

w
(n)
k (t)

)
and

Ṫ
(n)
k (t) = Ṙ

(n)
k (t) + U̇

(n)
k (t)

≥ Ṙ
(n)
k (t) + c0w

(n)
k (t)

(
Ṙ

(n)
K (t)

w
(n)
K (t)

− Ṙ
(n)
k (t)

w
(n)
k (t)

)
.

We define

T̃
(n)
k (t)

�=


R

(n)
k (t) + c0

∫ t

0
w

(n)
k (s)

(
Ṙ

(n)
K (s)

w
(n)
K (s)

− Ṙ
(n)
k (s)

w
(n)
k (s)

)
ds, on En,

T
(n)
k (t), on Ec

n.

(A.4)
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Then

Ṫ
(n)
k (t) ≥ d

dt
T̃

(n)
k (t) ≥ 0(A.5)

for all t ≥ 0, and, after integration, we get T
(n)
k ≥ T̃

(n)
k . By Assumption A.2, (A.3)

and Lemma A.1,

1

n
T̃

(n)
k ◦ ne ⇒ ρke + c0wk

(
ρK

wK

− ρk

wk

)
e > ρke.

We define

Ñ
(n)
k (t) = V

(n)
k

(
A

(n)
k (t)

)− T̃
(n)
k (t),

so that N
(n)
k ≤ Ñ

(n)
k . We set Ũ

(n)
k (t) = −min0≤s≤t Ñ

(n)
k (s) and W̃

(n)
k (t) =

Ñ
(n)
k (t) + Ũ

(n)
k (t). We show that

W
(n)
k ≤ W̃

(n)
k .(A.6)

Indeed, let us define

τ = sup
{
t ≥ 0; W

(n)
k (s) ≤ W̃

(n)
k (s) for all s ∈ [0, t]}.

We wish to prove τ = ∞, so assume, on the contrary, that τ < ∞. Note that, for
every t , we have

N
(n)
k (t) − N

(n)
k (t−) = Ñ

(n)
k (t) − Ñ

(n)
k (t−)

= V
(n)
k

(
A

(n)
k (t)

)− V
(n)
k

(
A

(n)
k (t−)

)≥ 0,

and, consequently,

W
(n)
k (t) − W

(n)
k (t−) = W̃

(n)
k (t) − W̃

(n)
k (t−) ≥ 0.

By the definition of τ , we have W
(n)
k (τ−) ≤ W̃

(n)
k (τ−) and hence W

(n)
k (τ ) ≤

W̃
(n)
k (τ ). If W

(n)
k (τ ) > 0, then, for some ε > 0, we have W

(n)
k (t) > 0 for τ ≤ t ≤

τ + ε. It follows that U
(n)
k (t) = U

(n)
k (τ ) for τ ≤ t ≤ τ + ε and so, for this range

of t , we have

W
(n)
k (t) = W

(n)
k (t) − W

(n)
k (τ ) + W

(n)
k (τ )

≤ N
(n)
k (t) − N

(n)
k (τ ) + W̃

(n)
k (τ )

≤ Ñ
(n)
k (t) − Ñ

(n)
k (τ ) + W̃

(n)
k (τ ) ≤ W̃

(n)
k (t)

[the second inequality follows from (A.5)]. This contradicts the definition of τ . It
follows that we must have W

(n)
k (τ ) = 0, and, in particular, W

(n)
k (τ ) − W

(n)
k (τ−)

= 0; that is, there is no arrival at time τ . Thus, there is an ε > 0 with the property
that there is no arrival in the interval [τ, τ + ε], and, in particular, W

(n)
k (t) = 0 for
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τ ≤ t ≤ τ + ε. Again, the definition of τ is contradicted. We conclude that τ = ∞,
which is equivalent to (A.6).

Now we want to show that, for k = 1, . . . ,K − 1,

Ŵ
(n)
k (t) ⇒ 0,(A.7)

that is, that the workloads corresponding to lower traffic intensities get crushed
under the heavy-traffic scaling. We prove this by induction on k. Let k0 ≤ K − 1
be given and suppose that (A.7) is true for all k = 1, . . . , k0 − 1 (in particular, no
assumption is necessary to consider k0 = 1). The crushing lemma (see Lemma B.4)
applied to

Z
(n) �= Ẑ

(n)
k0

,

Z∗ �= V ∗
k0

◦ λk0e + 1

µk0

A∗
k0

,

T
(n)

(t)
�= 1

n
T̃

(n)
k0

(nt) − ρ
(n)
k0

t

[which is Lipschitz-continuous with constant L :=1 because 0 ≤ (d/dt)T̃
(n)
k0

(t)≤1
for all n, t] and

T ∗(t) �= c0wk0

(
ρK

wK

− ρk0

wk0

)
t

yields τ̃
(n)
k0

(t) ⇒ t , where τ̃
(n)
k0

(t)
�= sup{s ∈ [0, t] : (1/

√
n)W̃

(n)
k0

(ns) = 0}. Thus,

because 0 ≤ W
(n)
k ≤ W̃

(n)
k ,

τ
(n)
k0

(t) ⇒ t,(A.8)

where τ
(n)
k0

(t)
�= sup{s ∈ [0, t] : (1/

√
n)W

(n)
k0

(ns) = 0}. By the definition of τ
(n)
k0

,
we also have

1√
n
W

(n)
k0

(
nτ

(n)
k0

(t)−)= 0.(A.9)

For all k = 1, . . . ,K , we show that

Ẑ
(n)
k (t) − Ẑ

(n)
k

(
τ

(n)
k0

(t)−)⇒ 0.(A.10)

Indeed,

Ẑ
(n)
k (t) − Ẑ

(n)
k

(
τ

(n)
k0

(t) − )
=
[
Ẑ

(n)
k (t) − Ẑ

(n)
k

(
τ

(n)
k0

(t)
)]+

[
Ẑ

(n)
k

(
τ

(n)
k0

(t)
)− Ẑ

(n)
k

(
τ

(n)
k0

(t)−)].
The first process on the right-hand side converges weakly to 0 by the differencing
theorem, and the second one converges weakly to 0 because, by Corollary 3.2,
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Ẑ
(n)
k has a continuous limit and thus the maximal jump of Ẑ

(n)
k on every finite time

horizon [0, T ] converges weakly to 0. This proves (A.10).
Thus, for k 	= k0, the process c

(n)
k defined by

c
(n)
k (t)

�=
(
Ẑ

(n)
k (t) − Ẑ

(n)
k

(
τ

(n)
k0

(t)−))− wk

wk0

(
Ẑ

(n)
k0

(t) − Ẑ
(n)
k0

(
τ

(n)
k0

(t)−))(A.11)

converges weakly to 0. We have

c
(n)
k (t) = 1√

n

(
V

(n)
k

(
A

(n)
k (nt)

)− V
(n)
k

(
A

(n)
k

(
nτ

(n)
k0

(t)−)))
− wk√

nwk0

(
V

(n)
k0

(
A

(n)
k0

(nt)
)− V

(n)
k0

(
A

(n)
k0

(
nτ

(n)
k0

(t)−)))
− √

n

(
ρ

(n)
k − wk

wk0

ρ
(n)
k0

)(
t − τ

(n)
k0

(t)
)
.

For every s ∈ [nτ
(n)
k0

(t), nt], queue k0 is nonempty, and hence every nonzero

term 1/(1 −∑
l∈α w

(n)
l (t))J̇

(n)
α (s) in the sum

Ṙ
(n)
k (s)

w
(n)
k (s)

=
K−1∑
m=0

∑
α∈Ac

k(m)

1

1 −∑
l∈α w

(n)
l (t)

J̇ (n)
α (s)

also appears in the sum

Ṙ
(n)
k0

(s)

w
(n)
k0

(s)
=

K−1∑
m=0

∑
α∈Ac

k0
(m)

1

1 −∑
l∈α w

(n)
l (t)

J̇ (n)
α (s).

In other words,

Ṙ
(n)
k (s)

w
(n)
k (s)

≤ Ṙ
(n)
k0

(s)

w
(n)
k0

(s)
(A.12)

for all k = 1, . . . ,K and all s ∈ [nτ
(n)
k0

(t), nt] for which w
(n)
k (s) 	= 0 and

w
(n)
k0

(s) 	= 0.

As a final preparatory step, we let ε0 > 0 be given and choose C > 0 so large
that P(Gn) ≥ 1 − ε0 for all n, where

Gn =
{√

n sup
0≤t≤n

max
j=1,...,K

|w(n)
k (t) − wk| ≤ C

}
.(A.13)

(A choice is possible by Assumption A.2.) Let n1 be so large that minj=1,...,K wj >

C/
√

n1. In particular, on Gn we have w
(n)
k (t) > 0 for all n ≥ n1, k = 1, . . . ,K
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and 0 ≤ t ≤ n. Then there exists a constant C such that, on Gn for all n ≥ n1,
k = 1, . . . ,K and 0 ≤ t ≤ n, we have

√
n

∣∣∣∣∣w
(n)
k (t)

w
(n)
k0

(t)
− wk

wk0

∣∣∣∣∣≤ C.(A.14)

Consider an arbitrary k > k0. By (A.12) and (A.14), we have, on Gn,

Ŵ
(n)
k (t) − Ŵ

(n)
k

(
τ

(n)
k0

(t)−
)

= 1√
n

(
V

(n)
k

(
A

(n)
k (nt)

)− V
(n)
k

(
A

(n)
k

(
nτ

(n)
k0

(t)−)))
− 1√

n

(
R

(n)
k (nt) − R

(n)
k

(
nτ

(n)
k0

(t)
))

≥ 1√
n

(
V

(n)
k

(
A

(n)
k (nt)

)− V
(n)
k

(
A

(n)
k

(
nτ

(n)
k0

(t)−)))

− 1√
n

∫ nt

nτ
(n)
k0

(t)

w
(n)
k (s)

w
(n)
k0

(s)
Ṙ

(n)
k0

(s) ds

≥ 1√
n

(
V

(n)
k

(
A

(n)
k (nt)

)− V
(n)
k

(
A

(n)
k

(
nτ

(n)
k0

(t)−)))
− wk√

nwk0

(
R

(n)
k0

(nt) − R
(n)
k0

(
nτ

(n)
k0

(t)
))− C

(
t − τ

(n)
k0

(t)
)

= wk√
nwk0

(
V

(n)
k0

(
A

(n)
k0

(nt)
)− V

(n)
k0

(
A

(n)
k0

(
nτ

(n)
k0

(t)−)))
+ √

n

(
ρ

(n)
k − wk

wk0

ρ
(n)
k0

)(
t − τ

(n)
k0

(t)
)+ c

(n)
k (t)

− wk√
nwk0

(
R

(n)
k0

(nt) − R
(n)
k0

(
nτ

(n)
k0

(t)
))− C

(
t − τ

(n)
k0

(t)
)

= wk

wk0

(
Ŵ

(n)
k0

(t) − Ŵ
(n)
k0

(
τ

(n)
k0

(t)−))
+ √

n

(
ρ

(n)
k − wk

wk0

ρ
(n)
k0

)(
t − τ

(n)
k0

(t)
)+ c

(n)
k (t) − C

(
t − τ

(n)
k0

(t)
)

≥ wk

wk0

(
Ŵ

(n)
k0

(t) − Ŵ
(n)
k0

(
τ

(n)
k0

(t)−))+ d
(n)
k (t),

(A.15)

where

d
(n)
k (t) = c

(n)
k (t) −

((
1 + wk

wk0

)
c + C

)(
t − τ

(n)
k0

(t)
)⇒ 0,
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with constants c and C entering the definition of d
(n)
k being the same as in (3.4)

and (A.14), respectively. The last inequality in (A.15) follows from (3.18) and (3.4)
and uses the fact that k0 ≤ K − 1, to wit,

√
n

(
ρ

(n)
k − wk

wk0

ρ
(n)
k0

)

= √
nwk

(
ρ

(n)
k

wk

− ρ
(n)
k0

wk0

)

= √
nwk

(
ρ

(n)
k − ρk

wk

− ρ
(n)
k0

− ρk0

wk0

)
+ √

nwk

(
ρk

wk

− ρk0

wk0

)

≥ −
(

1 + wk

wk0

)
c.

By Corollary 3.3 and the differencing theorem once again,
K∑

k=1

(
Ŵ

(n)
k (t) − Ŵ

(n)
k

(
τ

(n)
k0

(t)−))⇒ 0.

Using our induction assumption, we actually have

p
(n)
k (t)

�=
K∑

k=k0

(
Ŵ

(n)
k (t) − Ŵ

(n)
k

(
τ

(n)
k0

(t)−))⇒ 0.

However, by our previous considerations, on Gn,

p
(n)
k (t) ≥

(
K∑

k=k0

wk

wk0

)(
Ŵ

(n)
k0

(t) − Ŵ
(n)
k0

(
τ

(n)
k0

(t)−))+ K∑
k=k0+1

d
(n)
k (t)

=
(

K∑
k=k0

wk

wk0

)
Ŵ

(n)
k0

(t) +
K∑

k=k0+1

d
(n)
k (t)

owing to (A.9). Thus, on the set Gn with P(Gn) ≥ 1 − ε0, we have the following
bound on Ŵ

(n)
k0

:

0 ≤ Ŵ
(n)
k0

(t) ≤ 1∑K
k=k0

(wk/wk0)

(
p

(n)
k (t) −

K∑
k=k0+1

d
(n)
k (t)

)
⇒ 0.

This proves (A.7) for k = k0, because ε0 > 0 is arbitrary. �

COROLLARY A.5. If, instead of the dominance assumption (3.18), we have

0 <
ρ1

w1
≤ ρ2

w2
≤ · · · ≤ ρk0

wk0

<
ρk0+1

wk0+1
= · · · = ρK

wK

,

then Ŵ
(n)
k (t) ⇒ 0 for all k ≤ k0.
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Indeed, the proof given above applies, without any modifications, also to this
more general situation.

APPENDIX B

The purpose of this appendix is to prove the crushing lemma (Lemma B.4) used
in the proof of Proposition A.3.

B.1. Convergence of inverse processes. Let φ : [0,1) → [0,∞) be a strictly

increasing, continuous function with φ(0) = 0, φ(1)
�= limx↑1 φ(x) = ∞. For

x, y ∈ [0,∞], define

ρ(x, y) = |φ−1(x) − φ−1(y)|.
Then ρ is a metric on [0,∞] and ([0,∞], ρ) is separable and compact.

Let D[0,∞][0,∞) be the space of RCLL functions on [0,∞), taking values
in ([0,∞], ρ). Let DR[0,∞) be the space of RCLL functions on [0,∞), taking
values in R. On both these spaces, we impose the Skorohod topology discussed in
Chapter 3, Section 5, of [10] and briefly reviewed in Appendix A of [9].

For f ∈ DR[0,∞) and t ≥ 0, define

�f (t) = inf
{
s ≥ 0; f (s) > t

}
,

where inf∅ = ∞. It is clear from this definition that �f (t) is a nondecreasing
function of t .

LEMMA B.1. � maps DR[0,∞) into D[0,∞][0,∞).

PROOF. Let f ∈ DR[0,∞) be given. Since �f is nondecreasing, it has left
limits. We need to show that �f is right-continuous.

Let t ≥ 0 be given and define s = �f (t). If s = ∞, then �f is right-continuous
at t .

Assume s < ∞. By the definition of �f (t), there is a sequence {sn} with s < sn
for every n, sn ↓ s, and f (sn) > t for all n. Choose a sequence {tn} with tn ↓ t and
t < tn < f (sn) for every n. Then �f (tn) ≤ sn and, consequently,

lim inf
t ′↓t

�f (t ′) ≤ lim inf
n→∞ �f (tn) ≤ s = �f (t).

Because �f is nondecreasing,

lim inf
t ′↓t

�f (t ′) = lim
t ′↓t

�f (t ′) ≥ �f (t),

and we have established the right-continuity of �f . �

LEMMA B.2. Let {fn} be a sequence of functions in DR[0,∞) converging to
a continuous, strictly increasing function f . Then �f is continuous (taking values
in [0,∞]) and �fn converges to �f in D[0,∞][0,∞).
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PROOF. We first show that �f is continuous. Since �f is nondecreasing and
right-continuous, it suffices to show

lim sup
t ′↑t

�f (t ′) ≥ �f (t)

for every t > 0. Let t > 0 be given and set s = �f (t).

Case I. s = ∞. Define M = supu≥0 f (u). We have M ≤ t < ∞. Since f is
strictly increasing, f cannot attain the value M . We may choose a sequence 0 <

s1 < s2 < · · · such that sn → ∞, tn = f (sn) < M and tn → M . Then sn = �f (tn)

and

lim sup
t ′↑t

�f (t ′) ≥ lim
n→∞�f (tn) = lim

n→∞ sn = ∞ = �f (t).

Case II. 0 < s < ∞. Since f is strictly increasing, f (s) = t . Let 0 < s1 < s2
< · · · be such that sn ↑ s and set tn = f (sn). Then tn ↑ t , �f (tn) = sn and

lim sup
t ′↑t

�f (t ′) ≥ lim
n→∞�f (tn) = lim

n→∞ sn = s = �f (t).

Case III. s = 0. Then �f ≡ 0 on [0, t].
We next show that �fn converges to �f . It suffices to show that for every T the

restriction of �fn to [0, T ] converges in the Skorohod metric to the restriction of
�f to [0, T ].

Fix T > 0. If �f (T ) < ∞, set S = �f (T ), so that T = f (S). If �f (T ) = ∞,
let ε > 0 be given and choose S < ∞, so that ρ(S − 2,∞) < ε

2 .
Next, choose δ1 ∈ (0,1), so that |x − y| ≤ 2δ1 implies ρ(x, y) ≤ ε

2 for every
x, y ∈ [0, S + 2].

The continuous positive function f (s + δ1) − f (s) has a positive minimum δ2
over [0, S]; that is, for all s ∈ [0, S], we have

f (s + δ1) − f (s) ≥ δ2.

Because fn → f in DR[0,∞), we may choose N so that for every n ≥ N there is
a strictly increasing mapping λn mapping [0, S + 2δ1] onto itself with

sup
0≤s≤S+2δ1

∣∣fn(s) − f
(
λn(s)

)∣∣+ sup
0≤s≤S+2δ1

|s − λn(s)| < δ1 ∧ δ2.

Let t ∈ [0, f (S)] be given and set s = �f (t), so 0 ≤ s ≤ S and t = f (s). We
have

fn(s + 2δ1) > f
(
λn(s + 2δ1)

)− δ2 ≥ f (s + δ1) − δ2 ≥ f (s) = t,

which shows that

�fn(t) ≤ s + 2δ1 = �f (t) + 2δ1.
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On the other hand, for 0 ≤ u ≤ s − 2δ1,

fn(u) < f
(
λn(u)

)+ δ2 ≤ f (u + δ1) + δ2 ≤ f (s − δ1) + δ2 ≤ f (s) = t,

which shows that

�fn(t) ≥ s − 2δ1 = �f (t) − 2δ1.

We conclude that, for every t ∈ [0, f (S)],
|�fn(t) − �f (t)| ≤ 2δ1.

By the choice of δ1 and the fact that �f (t) ∈ [0, S] for t ∈ [0, f (S)], we have

ρ
(
�fn(t),�f (t)

)≤ ε

2

for all t ∈ [0, f (S)].
If �f (T ) < ∞, so f (S) = T , we are done. In the event that �f (T ) = ∞, we

must consider ρ(�fn(t),�f (t)) for t ∈ (f (S), T ]. But, for t > f (S),

�f (t) ≥ �f
(
f (S)

)= S

and

�fn(t) ≥ �fn

(
f (S)

)≥ �f
(
f (S)

)− 2δ1 = S − 2δ1 > S − 2.

Therefore, for t > f (S),

ρ
(
�fn(t),�f (t)

)= ∣∣φ−1(�fn(t)
)− φ−1(�f (t)

)∣∣
≤ ∣∣φ−1(�fn(t)

)− 1
∣∣+ ∣∣1 − φ−1(�f (t)

)∣∣
≤ |1 − φ−1(S − 2)| + |1 − φ−1(S)|
= ρ(S − 2,∞) + ρ(S,∞) < ε. �

REMARK B.3. Assume the hypotheses of Lemma B.2 and let s ≥ 0 be
given. Fix n. If fn(s) is positive, we may choose a sequence tm ↑ fn(s) with
0 ≤ tm < fn(s) for all m. Then �fn(tm) ≤ s. Letting m → ∞, we obtain

�fn

(
fn(s)−)≤ s

for all s ≥ 0 such that fn(s) > 0. Fix S > 0. Set T = f (S) and define

Mn(T ) = sup
0≤t≤T +1

|�fn(t) − �fn(t−)|.

Because �fn → �f , which is finite and continuous, and Mn(T ) is an upper
semicontinuous function of �fn, we have

0 ≤ lim sup
n→∞

Mn(T ) ≤ sup
0≤t≤T +1

|�f (t) − �f (t−)| = 0.(B.1)
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Let 0 ≤ s ≤ S be given and suppose that fn(s) > 0. Then assuming, as we can, that
n is large enough to guarantee sup0≤s≤S fn(s) ≤ T + 1, we have

s ≥ �fn

(
fn(s)−)≥ �fn

(
fn(s)

)− Mn(T ) = �fn

(
max

{
fn(s),0

})− Mn(T ).

In fact, under an additional assumption that �fn(0) = 0, for every 0 ≤ s ≤ S we
have

s ≥ �fn

(
max

{
fn(s),0

})− Mn(T )(B.2)

also in the event that fn(s) ≤ 0.

B.2. The crushing lemma.

LEMMA B.4. Let {Z(n)}∞n=1 be a sequence of RCLL processes converging

weakly to a continuous limit Z∗. Assume Z
(n)

(0) = 0 for every n. Let {T (n)}∞n=1 be
a sequence of RCLL processes satisfying

T
(n)

(t) ≥ T
(n)

(t−)(B.3)

for all t ≥ 0, T
(n)

(0) = 0 for every n. Assume also that there exists a finite
( possibly negative) constant L and a sequence of strictly positive numbers {εn}∞n=1
such that

T
(n)

(t) ≥ Lt(B.4)

for all t ∈ [0, εn].
Assume T

(n) ⇒ T ∗, where T ∗ is nonrandom, continuous and strictly increasing.
Define

N
(n)

(t) = Z
(n)

(t) − √
nT

(n)
(t),

I
(n)

(t) = − min
0≤s≤t

N
(n)

(s),

W
(n) = N

(n) + I
(n)

and let, for t ≥ 0,

τ (n)(t) = sup
{
s ∈ [0, t]; W

(n)
(s) = 0

}
.(B.5)

Then τ (n)(t) ⇒ t .

PROOF. First, note that W
(n)

(0) = 0, so the supremum in (B.5) is not over the
empty set. We shall prove convergence of τ (n)(t) for 0 ≤ t ≤ 1.

We can always assume that the constant L entering (B.4) is actually 1. Indeed, if
L < 1 (this is the only case we need to analyze), consider, for each n, an auxiliary
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function gn(t), which is equal to t on [0, 1
n
], 2

n
− t on [ 1

n
, 2

n
] and is identically 0

for t > 2
n

. Then define

S
(n)

(t) = T
(n)

(t) + (1 − L)gn(t),

δn = 1

n
∧ εn.

It is clear that S
(n)

satisfies all the assumptions about T
(n)

with L and εn changed

to 1 and δn, respectively. Moreover, S
(n) ≥ T

(n)
and S

(n)
(t) = T

(n)
(t) for t ≥ 2

n
.

Thus, if we put

M
(n)

(t) = Z
(n)

(t) − √
nS

(n)
(t),

J
(n)

(t) = − min
0≤s≤t

M
(n)

(s),

then M
(n) ≤ N

(n)
, which implies J

(n) ≥ I
(n)

. This yields, for t ≥ 2
n

,

0 ≤ W
(n)

(t) ≤ M
(n)

(t) + J
(n)

(t).

For 0 ≤ t ≤ 2
n

, we have

0 ≤ τ (n)(t) ≤ τ (n)

(
2

n

)
≤ 2

n
,

so

|t − τ (n)(t)| ≤ 2

n
.

Thus, the validity of our lemma for S
(n)

clearly implies its validity for T
(n)

.
Therefore, without loss of generality, we assume L = 1.

On (τ (n)(t), t], the process W
(n)

is strictly positive and so I
(n)

is constant.
Therefore,

W
(n)(

τ (n)(t)
)

= Z
(n)(

τ (n)(t)
)− √

nT
(n)(

τ (n)(t)
)+ I

(n)(
τ (n)(t)

)
= Z

(n)(
τ (n)(t)

)− √
nT

(n)(
τ (n)(t)

)+ I
(n)

(t)

≥ Z
(n)(

τ (n)(t)
)− √

nT
(n)(

τ (n)(t)
)− N

(n)
(t)(B.6)

= Z
(n)(

τ (n)(t)
)− Z

(n)
(t) + √

n
(
T

(n)
(t) − T

(n)(
τ (n)(t)

))
.(B.7)

We may rewrite this as

T
(n)

(t) − T
(n)(

τ (n)(t)
)≤ 1√

n
W
(
τ (n)(t)

)+ 1√
n

[
Z

(n)
(t) − Z

(n)(
τ (n)(t)

)]
.
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Now, by (B.3),

1√
n

W
(
τ (n)(t)

)≤ 1√
n

max
0≤s≤1

[
Z

(n)
(s) − Z

(n)
(s−)

]
,

and the right-hand side has limit 0. Furthermore,

1√
n

[
Z

(n)
(t) − Z

(n)(
τ (n)(t)

)]≤ 1√
n

[
Z

(n)
(t) − min

0≤s≤1
Z

(n)
(s)

]
,

and again the right-hand side has limit 0. On the other hand, by the continuous
mapping theorem,

T
(n)

(t) − T
(n)(

τ (n)(t)
) ≥ T

(n)
(t) − sup

0≤s≤t

T
(n)

(s)

⇒ T ∗(t) − sup
0≤s≤t

T ∗(s) = T ∗(t) − T ∗(t) = 0,

because T ∗ is increasing. We conclude that

T
(n) − T

(n) ◦ τ (n) ⇒ 0,(B.8)

and hence

T
(n) ◦ τ (n) = T

(n) + (T
(n) ◦ τ (n) − T

(n)
) ⇒ T ∗.(B.9)

We want to show that

τ (n)(t) ⇒ t.(B.10)

Lemma B.2 and the continuous mapping theorem imply

�T
(n) ⇒ �T ∗ = (T ∗)−1.(B.11)

Set

Mn = sup
0≤t≤T ∗(1)+1

|�T
(n)

(t) − �T
(n)

(t−)|.

Define, for a given n,

Fn =
{

sup
0≤t≤1

T
(n)

(t) ≤ T ∗(1) + 1
}
.

Our assumptions imply

lim
n→∞P (Fn) = 1.(B.12)

By (B.4) with L = 1, we see that �T
(n)

(0) = 0 for every n. Thus, according to
Remark B.3, on Fn we have, for 0 ≤ t ≤ 1,

t ≥ τ (n)(t) ≥ �T
(n)(

max
{
T

(n)(
τ (n)(t)

)
,0
})− Mn(B.13)
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[compare (B.2)]. By the same remark [see especially (B.1)] and the continuous
mapping theorem, we have Mn ⇒ 0. Thus, if we show

�T
(n)(

max
{
T

(n)(
τ (n)(t)

)
,0
})⇒ t,(B.14)

then (B.12) and (B.13) imply (B.10) by the squeeze theorem.
Consider arbitrary constants η > 0, ε > 0. Let c ∈ (0,1] be chosen in such a way

that the value A
�= T ∗(1) + c is attained by the function T ∗; that is, A = T ∗(S1)

for some S1 > 1. Choose δ > 0 such that

w(T ∗)−1
(
δ, [0,A])< ε

4
,(B.15)

where the last symbol represents the modulus of continuity of (T ∗)−1 on [0,A]:
w(T ∗)−1(δ, [0,A]) �= max0≤s,t≤A, |s−t|≤δ |(T ∗)−1(s)− (T ∗)−1(t)|. Let, for any real
function f on [0,A],

‖f ‖[0,A] �= sup
s∈[0,A]

|f (s)|

and let

An =
{
‖�T

(n) − (T ∗)−1‖[0,A] ≤ ε

4

}
.(B.16)

By (B.11) and the continuity of (T ∗)−1, we can choose n0 such that, for all n ≥ n0,

P (An) ≥ 1 − η

3
.(B.17)

Indeed, convergence in the Skorohod metric to a continuous limit implies uniform
convergence (see [2], page 124). Let

Bn =
{
w

�T
(n)

(
δ, [0,A])≤ 3ε

4

}
.(B.18)

By (B.15), An ⊆ Bn for each n. Now let

Cn = {‖T (n)‖[0,1] ≤ A}(B.19)

and suppose that n1 is such that

P (Cn) ≥ 1 − η

3
(B.20)

for n ≥ n1 [see the comment after (B.17)]. Define also

Dn = {∥∥max
{
T

(n)
(τ (n)),0

}− T ∗∥∥[0,1] ≤ δ
}
.(B.21)

Choose n2 such that, for all n ≥ n2, we have

P (Dn) ≥ 1 − η

3
.(B.22)
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Such a choice is possible because, by (B.9) and the continuous mapping theorem,

max
{
T

(n)(
τ (n)(t)

)
,0
} �⇒ max

{
T ∗(t),0

}= T ∗(t)

and T ∗ [hence max{T ∗(t),0}] is continuous. Take

En = An ∩ Cn ∩ Dn, n3 = n0 ∨ n1 ∨ n2.

By (B.17), (B.20) and (B.22), for n ≥ n3, we have P (En) ≥ 1 − η. Moreover, on
En, we have, for all t ∈ [0,1],∣∣�T

(n)(
max

{
T

(n)(
τ (n)(t)

)
,0
})− t

∣∣
= ∣∣�T

(n)(
max

{
T

(n)(
τ (n)(t)

)
,0
})− (T ∗)−1(T ∗(t)

)∣∣
≤ ∣∣�T

(n)(
max

{
T

(n)(
τ (n)(t)

)
,0
})− �T

(n)(
T ∗(t)

)∣∣
+ ∣∣�T

(n)(
T ∗(t)

)− (T ∗)−1(T ∗(t)
)∣∣

≤ 3ε

4
+ ε

4
= ε

by (B.16), (B.18), (B.19) and (B.21). This proves (B.14), and (B.10) follows. �
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