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Abstract

Of late, weakly supervised object detection is with great
importance in object recognition. Based on deep learning,
weakly supervised detectors have achieved many promising
results. However, compared with fully supervised detection,
it is more challenging to train deep network based detectors
in a weakly supervised manner. Here we formulate weakly
supervised detection as a Multiple Instance Learning (MIL)
problem, where instance classifiers (object detectors) are
put into the network as hidden nodes. We propose a novel
online instance classifier refinement algorithm to integrate
MIL and the instance classifier refinement procedure into a
single deep network, and train the network end-to-end with
only image-level supervision, i.e., without object location
information. More precisely, instance labels inferred from
weak supervision are propagated to their spatially over-
lapped instances to refine instance classifier online. The
iterative instance classifier refinement procedure is imple-
mented using multiple streams in deep network, where each
stream supervises its latter stream. Weakly supervised ob-
ject detection experiments are carried out on the challeng-
ing PASCAL VOC 2007 and 2012 benchmarks. We obtain
47% mAP on VOC 2007 that significantly outperforms the
previous state-of-the-art.

1. Introduction

With the development of Convolutional Neural Network
(CNN) [17, 19], great improvements have been achieved on
object detection [12, 13, 23, 25, 26], due to the availability
of large scale datasets with accurate boundingbox-level an-
notations [8, 11, 22]. However, collecting such accurate an-
notations can be very labor-intensive and time-consuming,
whereas achieving only image-level annotations (i.e., image
tags) is much easier, as these annotations are often avail-
able at the Internet (e.g., image search queries [21]). In this
paper, we aim at the Weakly Supervised Object Detection
(WSOD) problem, i.e., only image tags are available during
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Figure 1. Detection results without/with classifier refinement
(left/right). Detection scores are plotted in the bottom of the sam-
pled proposals A, B, C, and D. In the left, the top ranking proposal
A does not correctly localize the object. After instance classifier
refinement, in the right, the correct proposal D is detected and
more discriminative performance of instance classifier is shown.

training to indicate whether an object exists in an image.

Most of previous methods follow the Multiple Instance
Learning (MIL) pipeline for WSOD [3, 4, 7, 16, 28, 30, 31].
They treat images as bags and image regions generated
by object proposal methods [29, 35] as instances to train
instance classifiers (object detectors) under the MIL con-
straints [10]. Meanwhile, recent efforts tend to combine
MIL and CNN by either using CNN as an off-the-shelf fea-
ture extractor [3, 7, 28, 30, 31] or training an end-to-end
MIL network [4, 16]. Here we are also along the MIL line
for WSOD, and train an end-to-end network.

Though many promising results have been achieved in
WSOD, they are still far from comparable to fully super-
vised ones [12, 13, 26]. Weakly supervised object de-
tection only requires supervision at image category level.
Bilen and Vedaldi [4] presents an end-to-end deep network
for WSOD, in which final image classification score is the
weighted sum of proposal scores, that is, each proposal con-
tributes a percentage to the final image classification. The
deep network can correctly classify image even only “see”
a part of object, and as a result, the top ranking proposal
may fail to meet the standard object detection requirement
(IoU>0.5 between ground truths and predicted boxes). As
shown in Fig. 1 (left), the top-ranking proposal A is too
small. Meanwhile, proposals B, C, and D have similar de-
tection scores. This shows that the WSOD network is not



Figure 2. Detection results from different stages of classifier refinement. Each row represents one stage. Green/red rectangles indicate
detected boxes having high/low overlap with ground truths, and digits in the top right corner of rectangles indicate the IoU. Through
multi-stage refinement, the detector can cover the whole object instead of parts gradually.

discriminative enough to correctly localize object. This is
a core problem of end-to-end deep network based WSOD.
To address this problem, we put forward two improvements
in this paper: 1) Instead of estimating instance weights
through weighted sum pooling, we propose to add some
blocks in the network for learning more discriminative in-
stance classifiers by explicitly assigning binary instance la-
bels; 2) We propose to refine instance classifier online using
spatial relation.

Our motivation is that, though some detectors only cap-
ture objects partially, proposals having high spatial over-
laps with detected parts may cover the whole object, or at
least contain larger portion of the object. In [4], Bilen and
Vedaldi propose a spatial regulariser via forcing features of
highest scoring region and its adjacent regions to be the
same, which significantly improves WSOD performance.
Nevertheless, forcing spatially overlapped proposals to have
the same features seems too rigorous. Rather than taking
the rigorous constraint, we think the features of spatially
overlapped proposals are in the same manifold. Then these
overlapped proposals could share similar label information.
As shown in Fig. 1 (right), we except the label information
of A can propagate to B and C which has large overlap with
A, and then the label information of B and C can propagate
to D to correctly localize object. To implement this idea,
we design some instance classifiers in the network of [4].
The labels of instance could be refined by their spatially
overlapped instances. We name this new network structure
Multiple Instance Detection Network (MIDN) with instance
classifier.

In practice, there are two important issues. 1) How to
initialize instance labels, since there is no instance-level su-

pervision in this task. 2) How to train the network with
instance classifier efficiently. A natural way for classifier
refinement is the alternative strategy, that is, alternatively
relabelling instance and training instance classifier, while
this procedure is very time-consuming, especially consider-
ing training deep networks with a huge number of Stochas-
tic Gradient Descent (SGD) iterations. To overcome these
difficulties, we propose a novel Online Instance Classifier
Refinement (OICR) algorithm to train the network online.

Our method has multiple output streams for different
stages: the first is the MIDN to train a basic instance classi-
fier and others refine the classifier. To refine instance clas-
sifier online, after the forward process of SGD, we can ob-
tain a set of proposal scores. According to these scores, for
each stage, we can label the top-scoring proposal along with
its spatially overlapped proposals to the image label. Then
these proposal labels can be used as the supervision to train
instance classifier in the next stage. Though the top-scoring
proposal may only contain a part of an object, its adjacent
proposals will cover larger portion of the object. Thus the
instance classifier can be refined. After implementing the
refinement procedure multiple times, the detector can dis-
cover the whole object instead of parts gradually, as shown
in Fig. 2. But in the beginning of training, all classifiers are
almost non-trained, which will result in very noisy supervi-
sion of refined classifiers, and then the training will deviate
from correct solutions a lot. To solve this problem, we de-
sign a weighted loss further by assigning different weights
to different proposals in different training iterations. Using
this strategy, all classifier refinement procedures can thus be
integrated into a single network and trained end-to-end. It
can improve the performance benefiting from the classifier
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refinement procedure. Meanwhile, the multi-stage strategy
and online refinement algorithm is very computational ef-
ficient in both training and testing. Moreover, performance
can be improved by sharing representations among different
training stages.

We elaborately conduct many experiments on the chal-
lenging PASCAL VOC dataset to confirm the effective-
ness of our method. Our method achieves 47.0% mAP and
64.3% CorLoc on VOC 2007 that outperforms previous best
performed methods by a large margin.

In summary, the main contributions of our work are
listed as follows.

e We propose a framework for weakly supervised learn-
ing that combines MIDN with multi-stage instance
classifiers. With only supervision of the outputs from
its preceding stage, the discriminatory power of the in-
stance classifier can be enhanced iteratively.

e We further design a novel OICR algorithm that inte-
grates the basic detection network and the multi-stage
instance-level classifier into a single network. The pro-
posed network is end-to-end trainable. Compared with
the alternatively training strategy, we demonstrate that
our method can not only reduce the training time, but
also boost the performance.

e Our method achieves significantly better results over
previous state-of-the-art methods on the challenging
PASCAL VOC 2007 and 2012 benchmarks for weakly
supervised object detection.

2. Related work

MIL is a classical weakly supervised learning problem
and was first proposed in [10] for drug activity prediction.
After that, many solutions have been proposed for MIL
[1, 31, 33]. In MIL, a set of bags are given, and each bag
is associated with a collection of instances. MIL has two
constraints: 1) If a bag is positive, at least one instance in
the bag is positive; 2) If a bag is negative, all instances in
the bag are negative. It is natural to treat WSOD as a MIL
problem. Then the problem turns into finding an instance
classifier only given bag labels. Our method also follows
the MIL line, and the classifier refinement is inspired by the
classifier updating procedure in mi-SVM [ 1] to some extent.
The differences are that, in mi-SVM, it uses an alternative
strategy to relabel instances and retrain a classifier, while we
adopt an online refinement algorithm; the mi-SVM relabel
instances according to the instance score predicted by the
classifier, while we select instances according to the spatial
relation.

Most of the existing methods solve the WSOD problem
based on MIL [3, 4, 7, 16, 24, 28, 31]. For example, Wang et
al. [31] relaxed the MIL restraints into a differentiable loss

function and optimized it by SGD to speed up training and
improve results. Cibis et al. [7] trained a multi-fold MIL
detector by alternatively relabelling instances and retraining
classifier. Recently, some researchers combined CNN and
MIL to train an end-to-end network for WSOD [4, 16, 24].
Oquab et al. [24] trained a CNN network using the max-
pooing MIL strategy to localize objects. But their methods
can only coarsely localize objects regardless of their sizes
and aspect ratios, our method can detect objects more ac-
curately. Bilen and Vedaldi [4] proposed a Weakly Super-
vised Deep Detection Network (WSDDN), which presents
a novel weighted MIL pooling strategy and combines with
the proposal objectness and spatial regulariser for better per-
formance. Based on the WSDDN, Kantorov et al. [16]
used a contrastive model to consider the context informa-
tion for improvement. We also choose the WSDDN as our
basic network, but we combine it with multi-stage classifier
refinement, and propose a novel OICR algorithm to train
our network effectively and efficiently, which can boost the
performance significantly. Different from the spatial regu-
lariser in WSDDN [4] that forces features of highest scor-
ing proposal and its spatially overlapped proposals to be the
same, our OICR assumes features of spatially overlapped
proposals are in the same manifold, which is more reason-
able. Experiments on Section 4 demonstrate that our strat-
egy can obtain more superior results.

The proposal labelling procedure is also related to the
semi-supervised label propagation method [2, 34]. But in
label propagation, it labels data according to the similarity
among labelled and unlabelled data, while we use spatial
overlap as the metric; and there are no available labelled in-
stances for propagation, which is quite different from semi-
supervised methods. Meanwhile, the sharing representation
strategy in our network is similar to multi-task learning [5].
Unlike the multi-task learning that each output stream has
their own relatively independent external supervision, in our
method, supervision of latter streams only depends on the
outputs from their preceding streams.

3. Method

The overall architecture of our method is shown in Fig. 3.
Given an image, we first generate about 2, 000 object pro-
posals by Selective Search [29]. The image and these
proposals are fed into some convolutional (conv) layers
with Spatial Pyramid Pooling (SPP) layer [14] to produce
a fixed-size conv feature map per-proposal, and then they
are fed into two fully connected (fc) layers to generate a
collection of proposal feature vectors. These features are
branched into different streams, i.e., different stages: the
first one is the MIDN to train a basic instance classifier
and others refine classifier. Specially, supervision for clas-
sifier refinement is decided by outputs from their preced-
ing stages, e.g., supervision of the first refined classifier
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Figure 3. The architecture of MIDN with OICR. Proposal/instance feature is generated by the spatial pyramid pooling layer on the convo-
lutional feature map of image and two fully connected layers. These proposal feature vectors are branched into many streams for different
stages: the first one for the basic multiple instance detection network and others for instance classifier refinement. Supervision for classifier
refinement is decided by outputs from their preceding stages. All these stages share the same proposal representations.

depends on the output from the basic classifier, and su-
pervision of k™ refined classifier depends on outputs from
{k — 1} refined classifier.

In this section, we will introduce the chosen basic
MIDN, and explain our OICR algorithm in detail.

3.1. Multiple instance detection network

It is necessary to achieve instance-level supervision to
train refined classifier, yet such supervision is unavailable.
As we have stated before, the top-scoring proposal by in-
stance classifiers and its adjacent proposals can be labelled
to its image label as supervision. So we first introduce our
MIDN to generate the basic instance classifier. There are
many possible choices [4, 7, 16, 31] to achieve this. Here we
choose the method by Bilen and Vedaldi [4] which proposes
a weighted pooling strategy to obtain the instance classifier,
for its effectiveness and implementation convenience. No-
tice that our network is independent of special MIL meth-
ods, so any method that can be trained end-to-end could be
embedded into our network.

As shown in the “Multiple instance detection network”
block of Fig. 3, proposal features are branched into two
streams to produce two matrices x¢,x¢ € RE*IEl of im-
age by two fc layers, where C' denotes the number of
image classes and |R| denotes the number of proposals.
Then the two matrices are passing through two. softmax

layer along different directions: [o(x°)];; = # and
k=1€ *I
d
[o(xD)]);; = Z‘fﬂi?md The proposal scores are generated
k=1€ iF

by element-wise product x* = ¢(x¢) ® o(x4). At last, im-
age score of ¢ class ¢, can be obtained by the sum over all
proposals: ¢. = ZlRl

The interpretation of the two streams framework is as
follows. The [o(x°)];; is the probability of proposal j be-

longing to class i. The [o(x?)];; is the normalized weight
that indicates the contribution of proposal j to image being
classified to class 7. So ¢, is achieved by weighted sum
pooling and falls in the range of (0,1). Given image label
Y = [y1, 92, ..., yc|T € RE*1, where y. = 1 or 0 indicates
the image with or without object c. We can train the ba-
sic instance classifier by standard multi-class cross entropy
loss, as shown in Eq. (1), then the instance classifier can be
obtained according to the proposal score x. More details
can be found in [4].

C
_Z{y010g¢c+(1 —ye)log(l — ¢c) }- (1)
c=1

3.2. Online instance classifier refinement

In the last subsection, we have obtained the basic in-
stance classifier. Here we will expound how to refine in-
stance classifiers online. A natural way to refine classi-
fier is an alternative strategy, that is, fixing the classifier
and labelling proposals, fixing proposal labels and train-
ing the classifier. But it has some limitations: 1) It is very
time-consuming as it requires training the classifier multi-
ple times; 2) Training different classifiers in different refine-
ment steps separately may harm the performance because it
hinders the process to benefit from the shared representa-
tions. Hence, we integrate the basic MIDN and different
classifier refinement stages into a single network and train
it end-to-end.

The difficulty is how to obtain instance labels for re-
finement when there are no available labelled instances.
To deal with this problem, we propose an online labelling
and refinement strategy. Different from the basic instance
classifier, the output score vector x k of proposal j for
refined classifier is a {C' + 1}- dlmensmnal vector, i.e.,
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xfk e ROEHDXL L e {1,2,..,K}, where the k is for
k™ time refinement, K is the total refinement times, and
the {C + 1} dimension is for background (here we rep-
resent the proposal score vector from the basic classifier as
xf10 € RE*1). The xf*, k > 0 is obtained by passing the
proposal feature vector through a single fc layer and a soft-
max over classes layer, as shown in the “Instance classifier
refinement” block of Fig. 3

Suppose the label vector for proposal j is Y;? =
Y152 Y555 s Yorny,)" € R(E+DX1 " In each training it-
eration, after the forward process of SGD, we can get a set
of proposal scores x*(*=1) Then we can obtain the super-
vision of refinement time & according to x®(*=1)_ There
are many possible methods to obtain instance labels using
xTt(k=1) ¢ ¢ labeling an instance as positive if its score ex-
ceeds a threshold, otherwise as negative, as the mi-SVM [1].
But in our case, the score for each instance is changed dur-
ing each training iteration, and for different classes, using
the same threshold may not be suitable, thus it is hard to set-
tle a threshold. Here we choose a different strategy, inspired
by the fact that highly spatially overlapped instances should
have the same label. Suppose an image has class label ¢, we
first select proposal j%~! with highest score for {k — 1}"
time as in Eq. (2), and label it to class c, i.e., y’f o1 = 1

and " ikl = = 0, # c. As different proposals always have
overlaps and proposals with high overlap should belong to
the same class, we can label proposal j*~! and its adjacent
proposals to class ¢ for k™ refinement, i.e., if proposal j
have a high overlap with proposal j%~1, we label proposal j
to class ¢ (ycj = 1), otherwise we label proposal j as back-
ground (yF (C+1)7 = = 1). Here we label proposal j to class c if

the ToU between proposal j and j%~! greater than a thresh-
old I; which is determined by experiments. Meanwhile, if
there is no object ¢ in the image, we set all yfj = 0. Us-
ing this supervision, we can train the refined classifier based
on the loss function in Eq. (3). Through multiple times of
refinement, our detector can detect larger parts of objects
gradually.

jf_l = argmaxxR(k b, 2)
IRl C+1
Lf = |R|Z‘;Z;ywlog:c : 3)

Actually the acquired supervision for refining classifier
is very noisy, especially in the beginning of training, which
will result in unstable solutions. To solve this problem,
we change the loss in Eq. (3) to a weighted version, as in

Eq. (4).

|R| C+1

L= T Z > whiyh logz ¥, &)

r=1 c=1

Algorithm 1 Online instance classifier refinement

Input: Image X and its proposals; image label vector
Y = [y1,...ycl; reﬁnement times K.

Output: Loss weights w”; proposal label vectors Y* =

Where r € {1,..,|R|} and k €

ly1r7 s} y(c+1)rlT'
{1,...., K}.
1: Feed X and its proposals into the network to produce
proposal score matrices x'*, k € {0,..., K — 1}.
2: fork=0to K — 1do
Set all elements in I = [I7, ..
Setall y*+1 =0,c € {1,...
forc=1to C do

3 [lRll to — inf.
4

5

6: if y. = 1 then

7

8

9

,C} and ykgf}rl)r =1

Choose the top-scoring proposal j* by Eq. (2).
for r = 1to |R| do
Compute IoU I/ between proposal r and j*.

10 if I > I, then

11: Set I, = I and wh+t! = gk

12: if 1. > I, then ‘

13: Sety"T! =0,¢ # cand yit! = 1.

where w? is the loss weight and can be acquired by the 11"
line of Algorithm 1. The explanation of such choice is as
follows. In the beginning of training, the wf“ is small, hence,
the loss is also small. As a consequence, the performance
of the network will not decrease a lot though good positive
instances cannot be found. Meanwhile, during the train-
ing procedure, the network can achieve positive instances
with high scores easily for easy bags, and these positive in-
stances are always with high scores, i.e., w¥ is large. On the
contrary, it is difficult to get positive instances for difficult
bags, as a result, these positive instances are always very
noisy. Nevertheless, the refined classifier will not deviate
from the correct solution a lot, because the scores of these

noisy positive instances are relatively low, i.e., w¥ is small.

To make the OICR algorithm more clear, we summarize
the process to obtain supervision in Algorithm 1, where I,
indicates the maximum IoU between proposal r and the top-
scoring proposal. After obtaining supervision and loss for
training refined classifiers, we can get the loss of our over-
all network by combining Eq. (1) and Eq. (4), as Eq. (5).
Through optimizing this loss function, we can integrate the
basic network and different classifier refinement stages into
a single network, and share representations among different
stages.

K

L=Ly+» Lf ©)

k=1
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Figure 4. Results on VOC 2007 for different refinement times and
different training strategies, where “OICR” indicates our OICR
training strategy, “alternative” indicates the alternative strategy.

[ Loss [ mAP (%) [ CorLoc (%) ]
unweighted 32.8 50.6
weighted 37.9 57.3

Table 1. Results on VOC 2007 for different losses.

4. Experiments
4.1. Experimental setup

In this section we will perform thorough experiments to
analyse our OICR and its components for weakly super-
vised object detection.

Datasets and evaluation measures We evaluate our
method on the challenging PASCAL VOC 2007 and 2012
datasets [1 1] which have 9, 962 and 22, 531 images respec-
tively for 20 object classes. These two datasets are divided
into train, val, and test sets. Here we choose the trainval
set (5,011 images for 2007 and 11, 540 for 2012) to train
our network. As we focus on weakly supervised detection,
only image-level labels are utilized during training. For test-
ing, there are two metrics for evaluation: mAP and CorLoc.
Average Precision (AP) and the mean of AP (mAP) is the
evaluation metric to test our model on the testing set, which
follows the standard PASCAL VOC protocol [ 1]. Correct
localization (CorLoc) is to test our model on the training
set measuring the localization accuracy [9]. All these two
metrics are based on the PASCAL criteria, i.e., IoU>0.5
between ground truths and predicted boxes.

Implementation details Our method is built on two pre-
trained ImageNet [8] networks: VGG_M [6] and VGG16
[27], each of which has some conv layers with max-pooling
layer and three fc layers. We replace the last max-pooling
layer of the two models by SPP layer, and the last fc layer
and softmax loss layer by the layers described in Section 3.
To increase the feature map size from the last conv layer,
we replace the penultimate max-pooling layer and its sub-
sequent conv layers by the dilated conv layers [32]. The
new added layers are initialized using Gaussian distribu-
tions with 0-mean and standard deviations 0.01. Biases
are initialized to 0. During training, the mini-batch size for
SGD is set to 2, and the learning rate is set to 0.001 for the

33 ~+-OICR 53 ~-OICR

03 0.4 0.5 0.6 0.7 ‘ 0.3 0.4 0.5 0.6 0.7
ToU threshold ToU threshold

Figure 5. Results on VOC 2007 for different IoU threshold /.

first 40K iterations and then decrease to 0.0001 in the fol-
lowing 30K iterations. The momentum and weight decay
are set to 0.9 and 0.0005 respectively.

As we have stated in Section 3, Selective Search (SS)
[29] is adopted to generate about 2,000 proposals per-
image. For data augmentation, we use five image scales
{480,576, 688, 864, 1200} (resize the shortest side to one
of these scales) and cap the longest image side to less than
2000 with horizontal flips for both training and testing. We
refine instance classifier three times, i.e., X = 3 in Sec-
tion 3.2, so there are four stages in total. The IoU thresh-
old I; in the 12" line of Algorithm 1 is set to 0.5. During
testing, the mean output of these three refined classifiers is
chosen. We also follow the [18, 20] to train a supervised
object detector by choosing top-scoring proposals given by
our method as pseudo ground truths to further improve our
results. Here we train a Fast RCNN (FRCNN) [12] detec-
tor using the VGG16 model and the same five image scales
(horizontal flips only in training). SS is also chosen for
proposal generation to train the FRCNN. Non-maxima sup-
pression (with 30% IoU threshold) is applied to compute
AP and CorLoc.

Our experiments are implemented based on the Caffe
[15] deep learning framework. All of our experiments are
running on a NVIDIA GTX TitanX GPU. Codes for re-
producing the results are available at https://github.
com/ppengtang/oicr.

4.2. Ablation experiments

We first conduct some ablation experiments to illustrate
the effectiveness of our training strategy, including the influ-
ence of classifier refinement, OICR, weighted loss, and the
IoU threshold I;. Without loss generality, we only perform
experiments on VOC 2007 and use the VGG_M model.

4.2.1 The influence of instance classifier refinement

As in the blue line of Fig. 4, we can observe that compared
with the basic network, even just refining instance classifier
one time can boost the performance a lot (mAP from 29.5
to 35.6 and CorLoc from 49.9 to 56.0), which confirms the
necessity of refinement. If we refine the classifier multiple
times, the results can be improved further. But when re-
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‘Method ‘ aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv ‘ mAP ‘
WSDDN-VGG_F [4] 429 560 320 176 102 61.8 502 290 38 362 185 31.1 458 54.5 10.2 154 363 452 50.1 438 | 345
WSDDN-VGG-M [4] 436 504 322 260 938 585 504 309 79 361 182 31.7 414 52.6 8.8 140 378 469 534 479 | 349
IWSDDN-VGG16 [4] 394 501 315 163 126 645 428 426 101 357 249 382 344 55.6 9.4 147 302 407 547 469 | 3438
IWSDDN-+context [16] 57.1 520 315 76 115 550 531 341 1.7 331 492 42.0 473 56.6 15.3 128 248 489 444 478 | 363
OICR-VGGM 53.1 571 324 123 158 582 567 396 09 448 399 310 540 62.4 4.5 206 392 381 489 486 | 379
OICR-VGG16 580 624 31.1 194 130 651 622 284 248 447 306 253 378 65.5 15.7 241 417 469 643 62.6 | 41.2
[WSDDN-Ens. [4] 464 583 355 259 140 667 530 392 89 418 266 386 447 59.0 10.8 173 407 49.6 569 508 | 39.3
OM+MIL+FRCNN [20] 545 474 413 208 177 519 635 461 218 57.1 221 344 505 61.8 162 299 407 159 553 402 | 395
(OICR-Ens. 585 630 351 169 174 632 608 344 82 497 410 313 519 64.8 13.6 23.1 41.6 484 589 587 | 420
(OICR-Ens.+FRCNN 655 672 472 216 221 68.0 685 359 57 631 495 303 647 @ 66.1 13.0 256 500 571 602 59.0 | 47.0

Table 2. Average precision (in %) for different methods on VOC 2007 test set.

lower part shows results of combing multiple models.

The upper part shows results using a single model. The

‘Method ‘ aero bike bird boat bottle bus car cat chair cow table dog horse nmbike person plant sheep sofa train v ‘ mean ‘
IWSDDN-VGG_F [4] 68.5 675 567 343 328 699 750 457 171 681 305 406 672 829 28.8 437 719 620 628 582 | 542
[WSDDN-VGG_M [4] 65.1 634 597 459 385 694 770 507 301 688 340 373 61.0 829 25.1 429 792 594 682 641 | 56.1
[WSDDN-VGG16 [4] 65.1 588 585 331 398 683 602 59.6 348 645 305 430 568 824 25.5 41.6 615 559 659 637 | 535
[WSDDN-+context [16] 833 686 547 234 183 736 741 541 86 651 471 3595 670 83.5 353 399 670 497 635 652 | 55.1
OICR-VGG_M 81.7 729 565 314 363 756 816 570 73 747 471 460 782 88.8 12.2 462  66.0 567 658 649 | 57.3
OICR-VGG16 81.7 804 487 49.5 328 817 854 40.1 40.6 795 357 337 605 88.8 21.8 579 763 599 753 814 | 60.6
OM+MIL+FRCNN [20] 782 67.1 618 381 361 61.8 788 552 285 688 185 492 641 73.5 21.4 474 646 223 609 523 | 524
IWSDDN-Ens. [4] 689 687 652 425 406 726 752 537 297 681 335 456 659 86.1 27.5 449 760 624 663 668 | 58.0
OICR-Ens. 854 780 61.6 404 382 822 842 465 152 80.1 452 419 738 89.6 18.9 560 742 621 730 774 | 612
(OICR-Ens.+FRCNN 858 827 o628 452 435 848 87.0 468 157 822 51.0 456 837 912 222 597 753 651 768 781 | 64.3

Table 3. CorLoc (in %) for different methods on VOC 2007 trainval set. The upper part shows results using a single model. The lower part

shows results of combing multiple models.

finement is implemented too many times, the performance
tends to be saturated (the improvement from 2 times to 3
times is small). Maybe this is because the network tends
to converge so that the supervision of 3 time is similar to
2" time. In the rest of this paper we only refine the clas-
sifier 3 times. Notice that in Fig. 4, the “0 time” is similar
to the WSDDN [4] using SS as proposals. Our result is a
little worse than theirs (30.9 mAP in their paper), due to the
different implementing platform and details.

4.2.2 The influence of OICR

Fig. 4 compares the results of different refinement times and
different training strategies for classifier refinement. As we
can see, whether for our OICR algorithm or the alternative
strategy, results can be improved by refinement. More im-
portantly, compared with the alternatively refinement strat-
egy, our OICR can boost the performance consistently and
significantly, which confirms the necessity of sharing rep-
resentations. Meanwhile, our method can also reduce the
training time a lot, as it only requires to train a single model
instead of training K + 1 models for K times refinement in
the alternative strategy.

4.2.3 The influence of weighted loss

We also study the influence of our weighted loss in Eq. (4).
So here we train a network based on the Eq. (3). From Ta-
ble 1, we can see that using the unweighted loss, the im-
provement from refinement is very scant, and the perfor-

[ Method [ mAP (%) | CorLoc (%) |
WSDDN-+context [16] 34.9 56.1
OICR-VGG M 346 60.7
OICR-VGG16 37.9 62.1
OICR-Ens. 382 635
OICR-Ens.+FRCNN 42.5 65.6

Table 4. Results for different methods on VOC 2012. Detailed
per-class results can be found in Table 1 and Table 2 of the Sup-
plementary Material.

mance is even worse than the alternative strategy. Using the
weighted loss can achieve much better performance, which
confirms our theory in Section 3.2.

4.2.4 The influence of IoU threshold

In previous experiments, we set the IoU threshold I; in the
12% line of Algorithm 1 to 0.5. Here we conduct experi-
ments to analyse the influence of I;. Asin Fig. 5, I; = 0.5
outperforms other choices, and the results are not very sen-
sitive to the I;: when changing I; from 0.5 to 0.6, the perfor-
mance only drops a little (mAP from 37.9 to 37.8, CorLoc
maintains 57.3). Here we set I; to 0.5 in other experiments.

4.3. Comparison with other methods

We report our results for each class on VOC 2007 and
2012 in Table 2, Table 3, and Table 4. Compared with other
methods, our method achieves the state-of-the-art perfor-
mance using single model, and even outperforms the re-
sults by combining multiple different models [4, 20]. Spe-
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Figure 6. Some detection results for class bicycle, bus, cat, chair, dog, motorbike, person, and train. Green rectangle indicates success cases

(IoU>0.5), and red rectangle indicates failure cases (IoU<0.5).

cially, our methods achieves much better performance than
the method by Bilen and Vedaldi [4] using the same CNN
model. Notice that [4] not only uses the weighted pooling
as we stated in Section 3.1, but also combines the object-
ness measure of EdgeBoxes [35] and the spatial regulariser,
which is much complicated than our basic MIDN. We be-
lieve that our performance can be improved by choosing
better basic detection network, like the complete network
in [4] and using the context information [16]. As reimple-
menting their method completely is trivial, here we only
choose the simplest architecture in [4]. Even in this simpli-
fied case, our method can achieve very promising results.
We also show some visualization comparisons among the
WSDDN [4], the WSDDN+context [16], and our method in
Fig. 1 of the Supplementary Material.

Our results can also be improved by combing multiple
models. As shown in the tables, if we simply sum up the
scores produced by the VGG_M model and VGG16 model
(OICR-Ens. in tables), there is little improvement. Also, as
mentioned in Section 4.1, we train a FRCNN detector using
top-scoring proposals produced by OICR-Ens. as ground
truths (OICR-Ens.+FRCNN in tables). As we can see, the
performance can be improved further.

Though our method significantly outperforms other
methods for some class, like “bicyle”, “bus”, “motorbike”,
etc, the performance is poor for classes like “cat”, “dog”,
and “person”. For analysis, we visualize some success and
failure detection results on VOC 2007 trainval by OICR-

Ens., as in Fig. 6. We can observe that, our method is robust
to the size and aspect of objects, especially for rigid objects.
The main failures for these rigid objects are always due to
overlarge boxes that not only contain objects, but also in-
clude their adjacent similar objects. For non-rigid objects
like “cat”, “dog”, and “person”, they are always with great
deformation, while there is less deformation of their most
representative parts (like head), so our detector is still in-
clined to find these parts. An ideal solution is yet wanted
because there is still room for improvement.

5. Conclusion

In this paper, we present a novel algorithm framework
for weakly supervised object detection. Different from tra-
ditional approaches in this field, our method integrates a ba-
sic multiple instance detection network and multi-stage in-
stance classifiers into a single network. Moreover, we pro-
pose an online instance classifier refinement algorithm to
train the proposed network end-to-end. Experiments show
substantial and consistent improvements by our method.
Our learning algorithm is potential to be applied in many
other weakly supervised visual learning tasks. In the future,
we will explore other cues such as instance visual similarity
for performing instance classifier refinement better.
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