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Abstract: In recent years, we have seen an emergence of data-driven approaches
in robotics. However, most existing efforts and datasets are either in simulation
or focus on a single task in isolation such as grasping, pushing or poking. In
order to make progress and capture the space of manipulation, we would need
to collect a large-scale dataset of diverse tasks such as pouring, opening bottles,
stacking objects etc. But how does one collect such a dataset? In this paper,
we present the largest available robotic-demonstration dataset (MIME) that con-
tains 8260 human-robot demonstrations over 20 different robotic tasks’>. These
tasks range from the simple task of pushing objects to the difficult task of stack-
ing household objects. Our dataset consists of videos of human demonstrations
and kinesthetic trajectories of robot demonstrations. We also propose to use this
dataset for the task of mapping 3rd person video features to robot trajectories. Fur-
thermore, we present two different approaches using this dataset and evaluate the
predicted robot trajectories against ground-truth trajectories. We hope our dataset
inspires research in multiple areas including visual imitation, trajectory prediction
and multi-task robotic learning.
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1 Introduction

One of the biggest success stories in recent Al research is the emergence of data-driven approaches.
And as we can expect a key ingredient in these data-driven approaches is DATA itself. In computer
vision, for example, the emergence of ImageNet [1] was a key moment for data driven methods like
ConvNets. In recent years, data-driven approaches have started to gain momentum in the field of
robotics as well. For example, Pinto and Gupta [2], displayed how data collection can be scaled to
50K examples for tasks such as grasping and how deep learning approaches improve with increasing
amounts of data. Since then, data-driven algorithms have been scaled up in terms of number of
datapoints [3] and shown to be useful for other task such as poking [4].

Most of the existing robotics datasets focus on a single task in isolation such as grasping Pinto and
Gupta [2], Levine et al. [3], pushing [5, 6], poking [4] or knot-tying [7]. This is not surprising; even
the early computer vision datasets initially focused on single tasks such as faces [8] and cars [9].
But the real success of computer vision came from building datasets than span across hundreds and
thousands of categories. What the diversity of data allowed was to learn a generic visual represen-
tation that could then be transferred for variety of tasks. Inspired from this observation, we argue
that it is critical for data-driven manipulation algorithms to be given diverse data of manipulation
tasks with hundreds of different objects. But how do you design and collect a large-scale dataset of
diverse robotic manipulations?

Unlike existing large-scale datasets which focus on simple tasks, self-supervision via random ex-
ploration is unlikely to succeed for complex manipulation tasks like stacking objects. There-
fore, learning complex-manipulation requires supervised learning (demonstrations) rather than self-
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Figure 1: Example datapoints from six diferent task-categories in our MIME Dataset. On the left
we show human demonstration and on the right we show how kinesthetic trajectories are being
collected.(Clockwise from top-left the tasks are stirring, pouring, stacking, wiping, opening a bottle
and passing.)

supervision. But to truly scale the abilities of our agents, we will need to scale the amount of demon-
stration data available. In this work, we take this first step towards creating large-scale demonstration
data: specifically, we collect the largest available robotic demonstration dataset (MIME) that con-
tains 8260 human-robot demonstrations with over 20 different robotic tasks. These tasks range from
the simple task of pushing objects to the difficult task of stacking household objects. Collecting a
dataset of this scale involves several challenging questions: (a) What type of data do we collect?;
(b) How do we collect this data?; and (c) How do we ensure that the collected data is meaningful?

One of the key design decisions in creating MIME is the mode of getting expert demonstrations.
Although several forms of Learning from Demonstration (LfD) data collection strategies are present
in literature, we select two ways of capturing demonstrations: (a) Kinesthetic Demonstrations [10]:
a kinesthetic method for collecting demonstrations since it allows a human demonstrator to both
express their desired motion as well as stay in the constrains of the robot; (b) Visual Demonstra-
tion [11]: Instead of only recording kinesthetic data, we also record a visual demonstration of how
humans perform the same tasks. Hence for every kinesthetic robot demonstration, we also collect a
corresponding video of the same human demonstrator performing the task with their hands.

The next challenge is the process of physically collecting these diverse demonstrations. For small
scale datasets, often a single expert demonstrator collects all the data. However to really scale
demonstration data, we need to get demonstrations from multiple human demonstrators. This comes
with both advantages and disadvanges. The advantages are the kinesthetic data not being biased by a
single demonstrator’s peculiarities and the potential ability to parallelize data collection. The disad-
vantage however is that human demonstrators who haven’t worked with the robot before find it hard
to give kinesthetic demonstrations. We solve this challenge by carefully training the demonstrators
and follow it by crosschecking the data by other human demonstrators.

While we foresee multiple ways of using this dataset (e.g, learning action representation to initialize
RL), in this paper, we introduce and focus on the task of learning a mapping from visual demon-
strations to robotic trajectories. Specifically, given the video of human demonstration, the goal is to
predict the joint angles to achieve the same goal. However, there might be multiple possible robot
trajectories that can lead to same goal state; therefore during test we collect multiple demonstrations
for the same task and use the min-distance from the set of test trajectories as the evaluation metric.
These experiments further validate the utility of MIME.

2 Related Work

2.1 Data Driven Robotics

Inspired from the successes in large scale computer vision datasets [1, 12], natural language
datasets [13] and reinforcement learning frameworks [14, 15], the last few years has seen a growing
interest in large scale robotics [2, 3]. The KITTI driving dataset [16] collected images from a car
that inspired research in several tasks like 3D tracking, visual odometry and optical flow. Similarly



the RGBD SLAM dataset [17] has spurred several papers that have improved the state of the art in
SLAM. We hope that MIME will similarly accelerate research in Learning from Demonstrations.

In the realm of learning from manipulator data, Lenz et al. [18] presented one of the first attempts to
collect grasping data using expert annotations. Pinto and Gupta [2] took the next leap in large scale
data collection where the robots collect data themselves without human supervision. This has been
followed by attempts to scale even further using multiple robots [3], multiple tasks [19], adversarial
learning [20] and curriculum learning [21]. Following grasping, several researchers have looked at
the task of pushing objects[4, 6, 5]. Attempts for large scale data collection has also been pursued
in rope manipulation [7], surgical robotics [22] and opening doors [23]. However all of these tasks
look at single and often simple tasks like grasping or pushing objects. In MIME, we collect data for
around 20 different tasks, which will accelerate robot learning not just for the individual tasks but
for imitation learning in general.

Another direction in scaling up data is in robotic simulators. Simulators offer large scale data that
can be collected much faster than in the real world. Grasplt! [24] developed an interface to eval-
uate robotic grasps in a simulator. DexNet [25, 26] took this further by using cloud computing
and synthetic object models to learn grasp models. In driving, several simulators like CARLA [27]
and AirSim [28] promise easier self driving research. For indoor navigation simulators like AI2-
THOR [29], SUNCG [30] and Matterport3D [31] have emerged. Simulators can also be interleaved
with reinforcement learning for faster learning. Several works [32, 33] show promise in this direc-
tion. However, transferring policies from simulators to the real world is often challenging due to the
reality-gap. This prompts us to create a real-world dataset that would allow for better transfer in the
real world.

2.2 Learning From Demonstrations (LfD)

Learning from demonstrations encapsulates the field of learning robotic strategies or policies from
human or expert demonstrations. An in-depth survey of LfD can be found in Argall et al. [10], Kober
et al. [34]. Compared to self-supervized robot learning, LfD methods allows for learning more
complex policies. Intuitively, an expert demonstration vastly cuts down the exploration space and
can provide strong guidance during policy learning [34]. This has enabled autonomous helicopter
aerobatics [35], table-tennis playing [36] and drone flying [37]. However these methods often focus
on learning from a handful of expert demonstrations for a single task.

Scaling expert demonstrations has been receiving interest recently with Zhang et al. [38] presenting
an approach that using tele-operation to collect demonstrations. Here hundreds of demonstrations
are collected using a Virtual Reality interface for 15 tasks. However, this data isn’t public and used in
a task specific manner. For general purpose demonstrations, kinesthetically moving the robot ensures
that the robot is in good configuration spaces. This allows for easier whole arm manipulation rather
than only end-effector manipulation. Imitation learning using data from multiple tasks has also
shown promise [39]. We believe that our dataset MIME can be used to further research in this area
with more diverse objects and larger complexity of tasks.

Learning from demonstrations with multiple tasks is also connected to multi-task learning in the
domain of computer vision. Large scale datasets like ImageNet [1] allowed for single models to
simultaneously classify for multiple categories. These pre-trained classification models [40] can be
then used to speed up learning for other visual tasks like detection [41] and action classification [11].
However the available large scale visual datasets do not contain physical actions. This makes it hard
to transfer learned information to new tasks. Since MIME contains rich visual information for 20
different tasks, we believe it will accelerate the progress in multi-task learning from demonstrations.

3 The MIME Dataset

We now describe our methodology to collect the MIME demonstration dataset. There are several
challenges in this effort: First, what is the right vocabulary of tasks? Second, how do we scale
up collection of kinesthetic trajectories? Finally, how do we correct the errors made by humans in
demonstration collection?



Figure 2: Multiple views of RGBD data from a robot demonstration.

3.1 Vocabulary of Tasks

The first question that we need to tackle is the vocabulary of tasks for which we collect both the
kinesthetic trajectories and the video of human demonstration. The key consideration in selection of
tasks is: (a) tasks should be easy enough to be performed by our Baxter robot; (b) should not require
haptic feedback for successful performance; (c) diverse enough for us to learn the embedding of
tasks. A complete list of the tasks can be seen in Table 1. Finally to increase the diversity of the
data, we collect demonstrations over a variety of objects which can be seen in Fig. 3.

Table 1: Task-wise data splits

Task train val test Task train val test
Pour 231 29 30 Close book 253 32 32
Stir 406 51 51 Pick (single hand) 524 65 66
Pass 388 48 49 Pick (both hands) 199 25 25
Stack 411 51 52 Poke 433 54 55
Place objectsinbox 293 37 37 Pull (two hands) 372 46 47
Open bottles 378 47 48 Push (two hands) 315 39 40
Push 304 25 26 Toy car trajectories 334 42 42
Rotate 335 42 42 Roll 340 43 43
Wipe 233 29 30 Drop objects 372 46 47
Press buttons 252 31 32 Pull (single hand) 328 41 41

3.2 Robot Setup

To collect the demonstration data, we use a Baxter robot in gravity compensated kinesthetic mode.
The Baxter is a dual arm manipulator with 7DoF arms equipped with two-fingered parallel grippers.
Furthermore, the robot is equipped with a Kinect mounted on the robot’s head, and two SoftKinetic
DS325 cameras, each mounted on the robot’s wrist. The head camera acts like an external camera
observing the task on the table, while the wrist cameras act as eye in robot cameras that move as the
arm moves. During every robot demonstration, all the RGBD images as shown in Fig[2], the robot
joint angles and the gripper positions are synchronized and stored.

3.3 Data Collection Procedure

To collect a large scale demonstration dataset, we need mutiple demonstrators to collect data. This
brings about a unique challenge: new users often find it difficult to kinesthetically operate the robot.
Hence we first train every human demonstrator with lessons to safely handle the robot. Once a
demonstrator is comfortable in operating the robot, a specific task is assigned to the participant.

To facilitate smooth data collection, the participants use specific push buttons on the robot, which
in turn displays the instructions on steps to follow. The main features of this setup are to home
the robot, record data, visualize successive steps in the demo and display hardware or software
errors so the setup can be checked before proceeding. Demonstrations performed by the participants
are reviewed by other participants, who visually verify the collected trajectories using a visualizer
we made. Using certain keyboard keys the reviewer can accept/reject the demo. If rejected, the
trajectories are checked and redone by the demonstrator.

For improved robustness and to avoid bias, every participant gives multiple demonstrations for the
same task using a variety of objects. After completing demonstrations for a particular task, the
participant is assigned a new task. This ensures that each task has multiple demonstrators collecting
data for it. The data collection pipeline was iteratively improved based on participant feedback.
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Figure 3: D1vers1ty within a task. For example, in the task of pouring there is dlvers1ty in objects
(shape, opaque/transparent), arrangement of objects, and how many objects are being poured into.

Note every data point consists of a human demonstration and a corresponding robot demonstration.
We then use a verification stage to check the quality of collected data. Specifically, all the col-
lected data was reviewed by other participants and incorrect demonstrations were removed from the
dataset. An interesting observation is that the erroneous trajectories were mostly collected by newer
participants. After a few trials, the participants developed the ability to accurately manoeuvre the
robot, resulting in less errors and faster trajectories. At the end of the data collection process, we
have 8260 demonstrations for 20 discrete tasks (Table 1).

4 Experiments

We demonstrate the quality of MIME by performing a suite of tasks. These tasks will also highlight
the importance of the various components of our dataset. These tasks are: Task recognition, and
Behaviour Cloning.

To evaluate the algorithms we split the dataset into a train set, validation set, and test set as seen
in Table 1. The distribution of the different task categories is the same over the three splits, with
80% of the data is in the training set, 10% in the validation set and 10% in the test set. However
for each of the test-set demonstrations we collect multiple test trajectories. This captures the multi-
modal nature of our problem and allows us to compute the error by estimating the distance between
predicted trajectories and a set of ground-truth trajectories.

4.1 Task Recognition

We first evaluate on task recognition, where the goal is to classify trajectories based on joint infor-
mation alone. This is done to demonstrate the discriminative signal in the joint angle data.Since joint
trajectories are sequential in nature with trajectory 7 = (sq, $1, ..S7—1), we employ two methods to
evaluate on this task, dynamic time warping and a long short term memory architecture (LSTM) [42]
as our model. While DTW analytically computes the distance between the time series data it can be
slow to use it over large datasets. Hence, we also run a learning based method which captures the
knowledge of the data in its weights.

Dynamic Time Warping(DTW): DTW is an algorithm that is often used to look at the proximity of
different time series data. We employed DTW between each of the trajectories in the test data with
all the trajectories in the training data. We then classified each of the test trajectories into the class
of the trajectory of the training data with which it’s distance was the least. In this experiment, we
again highlight the importance of large-scale data but for the non-learning approach (DTW). Here
we see that using just 10% of data yields an accuracy of 58.9%, while using the full 100%, we get a
significantly higher accuracy of 79.7%.



Learning Methods: We use a single layer LSTM cell followed by a linear layer. At every timestep,
the observed state along with the learned hidden state is used to update the prediction of task class.
The final prediction, when the last observed state is fed in, is used as the predicted task label. Note
that s; represents the vector of joint angles at time ¢ and 7' is the length of our trajectory. Our LSTM
is unrolled for 7" steps and fed s; as input at timestep ¢. The output at every step is a 20 dimensional
vector representing the probability of the predicted task. A cross entropy loss is computed at every
timestep and cumulated to a final loss. This final loss is minimized using the Adam Optimizer [43].

On the held-out test set, we compare the predicted label at the end feeding in a trajectory with the
true label. This LSTM model achieves an accuracy of 61.2%. Furthermore visualizing the confusion
matrix (Fig. 4) depicts an interesting trend of task correlation. In most cases, an incorrectly classified
datapoint is often from a similar task that has similar or overlapping trajectories. For example
picking with a single hand is confused with stacking and placing in a box is confused with picking.
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Figure 4: Confusion matrix of task classification from joint angles.

4.2 Behavioural Cloning

One of the challenging tasks we plan to handle using this dataset is behaviour cloning. Specifically,
in this task: given the third-person video of a human doing a demonstration and the corresponding
robot trajectory for the same task, we want to learn a mapping between visual features to robot
trajectories. We will describe the data, a baseline formulation and evaluation metric in the next
section.

Data Preparation: Since the trajectory sequences of different tasks are of different lengths, we
sub-sample the robot joint angle trajectories and the human demonstration video frames to a fixed
constant length of 50.

Extracting visual features from demonstration: Next, we need to extract visual features for the
input video. One possibility is to use 13D [44] or non-local neural network from Wang et al. [45].
However, in both these cases, the temporal information is lost in the final features. Therefore, instead
for each video we extract 50 sub-clips; each sub-clip is 2-frame clip. We extract features for each
sub-clip using a pre-trained model from Wang et al. [45]. This leads to a temporally ordered set of
50 sub-clip features.

State Vector: Apart from using the demonstration features, our imitation policy needs to observe
the current object location and state to predict the action plan. To capture the current state, we use a
single head-camera image from the robot demonstration instead of the whole video. This image is
passed through a pre-trained VGG network [46] to obtain image features.

Output Space: One possibility is to use the current state vector and video features to regress to joint
angles directly. However, we note that for each demonstration there are multiple ways to imitate it
and hence the multimodal nature of output. Therefore, instead of direct regression, which might
regress to the mean of the multimodal trajectories possible, we plan to use a classification-based
approach.



Specifically, first we use the set of joint angles s; and cluster them using k-means. This allows
vector quantization of the output space and hence the model predicts the output cluster center at
each time instant. But one issue with the above is that if we use one vector-quantization across all
possible joint angles, fine-grained manipulation motion tend to be clustered in one group leading to
the averaging effect. Therefore, instead, we follow a variable sparsity approach for clustering. Since
any trajectory involves first approaching the object and then interacting with it, we cluster the first
half of the trajectories (¢t < 25) sparsely while densely clustering the second half (t > 25). This
helps us better capture the nuances of manipulating the object by finer clustering of the prediction
space near the objects. In total we obtain 600 clusters with 150 in the sparse region and 450 in the
dense region.
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Figure 5: Behavioural Cloning - Model Architecture.

Model Architecture: Now that we have explained our input and output space, we explain our final
model. Our model is visualized in Fig. 5. The goal of this model is to predict the joint angles s
given the original configuration of objects and a human video feature at every time-step. Hence
this LSTM model runs across the length of the human video and gives us the predicted trajectory
corresponding to the task in the human video. The LSTM’s initial hidden state and cell state is set
as the VGG feature of the robot demonstration image. The human demonstration video features are
then used as input into the LSTM sequentially for 50 episodes. The loss for this network is the cross
entropy loss between the predicted joint cluster-number and the ground truth joint cluster-number.

Evaluation: Next, we describe our evaluation metric for comparing predicted trajectories with the
ground-truth trajectories for test videos. We use the Mean Squared Error (MSE) between the pre-
dicted trajectory and the true trajectory. We argue that though the mean square error might not be
the best metric to evaluate the performance of the trajectory it turns out that using the MSE to eval-
uate the performance of a trajectory does help us evaluate how close a predicted trajectory is to one
possible ground-truth. Individual classwise MSE errors are summarized in Table 2. It can be seen
that tasks that are multi-modal in nature, like placing in box, incur a larger loss.

Table 2: Task-wise MSE on held out test set

Task MSE Task MSE
Pouring 0.111 Close book 0.83487
Stirring 0.1061 Single hand picking 0.1262
Passing 0.1396 Both hand picking 0.1172
Stacking 0.106 Poking 0.1179
Placing in a box 0.1403 Two hand pull 0.1066
Opening bottles 0.1245 Two hand push 0.1049
Pushing 0.1325 Toy car trajectories ~ 0.1206
Rotating objects 0.1024 Rolling cylinders 0.1236
Wiping with cloth 0.1435 Dropping 0.1211
Typing on keyboard  0.1149 One hand pull 0.1506



Multimodality in the trajectory predicted: A manipulation task can be solved by multiple differ-
ent trajectories. There could be differences in the trajectory followed to reach the object, differences
in location of grasping, or differences due to where the object was left after manipulation. Hence,
given a state of the environment, there exist several possible trajectories that can achieve the task.
To handle this we took two steps. The steps being classification instead of regression (which was
discussed earlier in this section) and evaluation against multiple ground truths. In the following
paragraph we discuss the second step.

If there are multiple possible trajectories and an approach selects one of them but the GT is the some
other; then the approach gets penalized even though it was correct. To handle this, we collected
multiple ground truth trajectories (while more is better we collected 2 in this paper) for all the tasks
in the test set. The MSE was then calculated as the minimum of the MSE between the predicted
trajectory and the each of the ground truth trajectories. Using this multiple GT trajectories, our MSE
fell from 0.1296 to 0.1076.
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Figure 6: Evaluation of behavior cloning, average trajectory and k-NN approach. The error bars
show +1 standard deviation when training on random splits with a fixed fraction of training data.

4.3 Comparing baselines

We also implemented some other simple baselines to demonstrate how hard the dataset is. Specifi-
cally, we tried two baseline methods.

Average trajectory: In this experiment, we used the average trajectory for each task and use it to
compare with GT trajectory.

k-nearest neighbours: As a second baseline we use Nearest-Neighbor baseline. Specifically, we
compute the video features of the query human demonstration and then use it to retrieve the k-NN
robot trajectories. The MSE loss was computed between the predicted trajectory against the multi-
modal ground truth trajectories. For our experiments we use k=11 as it yielded the best performance.

Fig. 6 illustrates the variation of MSE with respect to the amount of data used. It can be seen
that the behaviour cloning provides increasing performance with increasing amount of data used to
train it. The method also does better than the two baselines while having a steeper improvement in
performance with increase in data.

5 Conclusion

In this paper, we have presented one of the largest human and robot demonstration dataset to date.
Our dataset consist of 8260 human-object interactions and 8260 robot trajectories for the same task
on 20 diverse tasks. We demonstrate the use of our dataset for the task of visual imitation: mapping
3rd-person video features to robot trajectories.
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