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Abstract Composite cylindrical shells, as key components, are widely employed in
large rotating machines. However, due to the frequency bifurcations and dense frequency
spectra caused by rotation, the nonlinear vibration usually has the behavior of com-
plex multiple internal resonances. In addition, the varying temperature fields make the
responses of the system further difficult to obtain. Therefore, the multiple internal res-
onances of composite cylindrical shells with porosities induced by rotation with varying
temperature fields are studied in this paper. Three different types of the temperature
fields, the Coriolis forces, and the centrifugal force are considered here. The Hamilton
principle and the modified Donnell nonlinear shell theory are used to obtain the equilib-
rium equations of the system, which are transformed into the ordinary differential equa-
tions (ODEs) by the multi-mode Galerkin technique. Thereafter, the pseudo-arclength
continuation method, which can identify the regions of instability, is introduced to obtain
the numerical results. The detailed parametric analysis of the rotating composite shells
is performed. Multiple internal resonances caused by the interaction between backward
and forward wave modes and the energy transfer phenomenon are detected. Besides, the
nonlinear amplitude-frequency response curves are different under different temperature
fields.
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1 Introduction

Composite materials have the advantages of high specific stiffness, specific strength, and
good vibration reduction performance, which are widely used in various engineering fields[1–5].
Rotating thin structures, as a key basic structure, have been employed in mechanical, civil, and
aerospace engineering[6–9]. Due to the anisotropy, Coriolis, and centrifugal effects, the vibra-
tion behaviors of rotating composite structures must be different from those of homogeneous
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stationary structures. Hence, it is of great significance to carry out analysis and research on
the dynamic responses of rotating composite thin structures for guiding the corresponding engi-
neering applications. To date, the vibration analysis of rotating composite structures has been
investigated by many scholars[10–12].

When mechanical systems such as rotor systems generate vibrations, the resonances of the
structures such as rotating shells can be caused by appropriate geometrical parameters or
rotation effect, and thus the large amplitude vibrations of these structures may occur under
the transverse loads[13–15]. It affects the normal operation of the rotating structures seriously.
Therefore, the study on nonlinear large amplitude vibrations is very important for the reliability
and safety of the equipment, and the nonlinear vibration cannot be ignored in this case[16–20].

There are some investigations on the nonlinear dynamic responses of rotating composite
structures. A simplified mathematical model to study the nonlinear vibrations of rotating
composite beams was established by Rafiee et al.[21]. Gu et al.[22] performed the nonlinear
vibration of graphene platelets reinforced pre-twisted composite blades. Li et al.[23] reported
the nonlinear vibrations of rotating composite shells under arbitrary boundary conditions.

Moreover, it is worth noting that all the above studies did not consider the influence of the
temperature. Actually, the working environment of these rotating structures is usually with
varying temperature fields, and the temperature will greatly affect the mechanical properties.
Considering the thermal effect, Khosravi et al.[24] analyzed the vibration behavior of carbon
nanotube reinforced rotating composite beams, and found that the instability of the rotating
composite beam under the hinged-clamped boundary conditions could be caused by a decrease
in the temperature. Considering the hygro-thermal effect, Li et al.[25] proposed a general
approach for dealing with the thermal vibration characteristics of functionally graded porous
stepped cylindrical shells. Liu et al.[26] demonstrated that the nonlinear vibrations of rotating
composite eccentric shells were significantly influenced by the external loads, the rotating speed,
and the temperature.

Based on the literature review, there are just a few studies on the dynamic response of
rotating composite structures under the thermal load. There is no literature available to deal
with the multiple internal resonances of composite shells with porosities induced by rotation
under various temperature fields. Hence, this paper aims to reveal the complex mechanisms
of multiple internal resonances and the energy transfer phenomena caused by rotation, and to
conduct the effect of varying temperature fields on the nonlinear vibration characteristics. The
Hamilton principle and modified Donnell nonlinear shell theory are used to gain the equilibrium
equations, which are then transformed into nonlinear ordinary differential equations (ODEs)
by utilizing the multi-mode Galerkin technique. The pseudo-arclength continuation method
is introduced to obtain accurate results. The effects of key parameters on multiple internal
resonances of rotating composite shells are studied.

2 Rotating composite shell model under various thermal loads

In this study, a rotating composite thin shell with a constant rotating speed Ω is made of
ceramic and metal, and the geometry of the shell is presented in Fig. 1. The material properties
vary by gradient from inside to outside, in which the inner and outer surfaces are metal and
ceramic, respectively. Porosities are considered here due to the manufacturing process. The
rotating composite thin shell is under external harmonic excitation and various temperature
fields, wherein three different types of temperature field distributions, namely, uniform tem-
perature (UT) variation, linear temperature (LT) variation, and nonlinear linear temperature
(NLT) variation, are studied here as representative temperature fields.

Case 1 UT variation
At the initial reference Kelvin temperature T0, the temperature of the entire composite thin
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Fig. 1 Schematic views of a rotating functionally graded composite shell with porosities under various
temperature fields (color online)

shell is approximated to rise uniformly to a final value T , and the process can be given by

T = T0 + ∆T, (1)

in which ∆T denotes the temperature difference between the initial state and the final state.
Case 2 LT variation
Assume that the temperature difference changes linearly along the thickness. Then, the

temperature expression can be given by

T (z) = T0 + ∆T
( z

h
+

1
2

)
. (2)

Case 3 NLT variation
The temperature is considered to be a nonlinear change along the shell thickness direction.

Due to the lack of a heat source, a one-dimensional steady-state heat transfer equation is
satisfied as follows:

d
dz

(
κ(z)

dT

dz

)
= 0, (3)

and the boundary condition is

T (z) =





Tc, z =
h

2
,

Tm, z = −h

2
,

(4)

where c and m denote ceramic and metal, respectively, κ(z) denotes the thermal conductivity,
and the non-uniformity of thermal conductivity is given in a power form as

κ(z) = (κc − κm)
( z

h
+

1
2

)N

+ κm, (5)

where N ∈ [0,∞) denotes the power-law index.
By solving Eqs. (3)–(5), the solution of temperature variation T as a nonlinear function of

the thickness z can be obtained.
The temperature-dependent material parameters are

P = P0(P3T
3 + P2T

2 + P1T + P−1T
−1 + 1), (6)

in which P3, P2, P1, P−1, and P0 stand for the temperature coefficients of the constituent
materials.

Due to manufacturing defects, porosities are usually not evenly distributed in the material,
and they are abundant in the middle plane and dissipate gradually towards both ends[27].
Therefore, the effective material parameter is modified as

P (z, T ) = Pc(T )
(
Vc(z)− α

2

(
1− 2|z|

h

))
+ Pm(T )

(
Vm(z)− α

2

(
1− 2|z|

h

))
, (7)
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where Vm and Pm denote the volume fraction and material property of metal, respectively,
Vc and Pc denote those of ceramic, respectively, and α (α ¿ 1) denotes the porosity volume
fraction.

The sum of the two volume fractions is Vm(z) + Vc(z) = 1. The volume fraction of the
rotating composite shell, which obeys the power-law distribution, changes along the thickness
direction as

Vc(z) =
(2z + h

2h

)N

. (8)

As for the rotating composite thin shell with uneven porosity distribution, the effective
material parameter can be rewritten as

P (z, T ) = Pm(T ) + (Pc(T )− Pm(T ))
(2z + h

2h

)N

− α

2
(Pm(T ) + Pc(T ))

(h− 2|z|
h

)
, (9)

where the material property P denotes the general mass density ρ, the elastic modulus E,
Poisson’s ratio ν, or the thermal expansion coefficient αT.

An improved Donnell nonlinear shell theory, which has better accuracy under small circum-
ferential wave numbers, is adopted, where the strain-displacement relation is




εxx

εθθ

γxθ


 =




∂u

∂x
+

1
2

(∂w

∂x

)2

1
R

(∂v

∂θ
+ w

)
+

1
2

( ∂w

R∂θ

)2

∂v

∂x
+

1
R

∂u

∂θ
+

1
R

∂w

∂θ

∂w

∂x



− z




∂2w

∂x2

( ∂2w

R2∂θ2
− ∂v

R2∂θ

)

2
( ∂2w

R∂x∂θ
− ∂v

R∂x

)




. (10)

The stress-strain relation considering the thermal effect is[28]



σxx

σθθ

σxθ


 =




C11 C12 0
C21 C22 0
0 0 C66










εxx

εθθ

γxθ


−




αT(z, T )
αT(z, T )

0


∆T


 , (11)

where

C11 = C22 =
E(z, T )

1− ν(z, T )2
, C12 = C21 =

E(z, T )ν(z, T )
1− ν(z, T )2

, C66 =
E(z, T )

2(1 + ν(z, T ))
. (12)

By using the Hamilton principle, the partial differential equations considering the structure
damping coefficient cd are obtained as

∂Nx

∂x
+

∂Nxθ

R∂θ
+ I0Ω2 ∂2u

∂θ2
= I0

∂2u

∂t2
, (13)
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+

1
R
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1
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where




[Nx, Nθ, Nxθ] =
∫ h/2

−h/2

[σxx, σθθ, σxθ]dz, [Mx,Mθ,Mxθ] =
∫ h/2

−h/2

[σxx, σθθ, σxθ]zdz,

I0 =
∫ h/2

−h/2

ρ(z, T )dz, F (t) = fδ(x− x0)δ(R(θ − θ0)) cos(ωf t),

(16)

in which f represents the amplitude of the radial force, (x0, θ0) denotes the point at which
the radial force is applied, δ represents the Dirac delta function, and ωf denotes the excitation
frequency.

3 Solution method

For a cylindrical shell simply supported at both ends, to discretize this system, the displace-
ment functions are[29]

u(x, θ, t) =
M1∑

m=1

N1∑
n=1

(um,n,c(t) cos(nθ) + um,n,s(t) sin(nθ)) cos
mπx

L

+
M2∑

m=1

u2m−1,0(t) cos
(2m− 1)πx

L
, (17)

v(x, θ, t) =
M1∑

m=1

2N1∑
n=1

(vm,n,c(t) sin(nθ) + vm,n,s(t) cos(nθ)) sin
mπx

L
, (18)

w(x, θ, t) =
M1∑

m=1

N1∑
n=1

(wm,n,c(t) cos(nθ) + wm,n,s(t) sin(nθ)) sin
mπx

L

+
M2∑

m=1

w2m−1,0(t) sin
(2m− 1)πx

L
, (19)

where um,n(t), vm,n(t), and wm,n(t) denote the displacement amplitude components, and M1

and N1 represent the truncated coefficients. The subscript c represents the driving mode, and
the subscript s represents the companion mode.

Substitute Eqs. (17)–(19) into Eqs. (13)–(15) and then transform the motion equations into
nonlinear ODEs by using the multi-mode Galerkin technique. The detailed derivation process
can be found in Refs. [30] and [31].

The system of nonlinear coupled ODEs is expressed in a matrix form as

MẌ + CẊ + KX + GẊ + Γ(X) = F (t), (20)

where X = [u, v, w]T, M , C, and K indicate the mass, the damping, and the stiffness matrices,
respectively, Γ denotes the other nonlinear parts such as the temperature non-linearity, G
represents the gyroscopic matrix caused by the rotation, and F denotes the vector of external
force. Since these matrices all have very tedious expressions, they are not stated here.

Since the moments of inertia of the displacements u and v have little impact on the radial
response, they are not considered here. Therefore, the results can be substituted into Eq. (15)
to obtain the nonlinear ODEs only related to w.

Then, the pseudo-arclength continuation technique can be applied to solve the nonlinear
ODEs on the software MATCONT[32]. This method can be extended to analyze shell structures
with different geometric shapes and boundary conditions by establishing the corresponding shell
displacement functions.
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4 Results and discussion

First, the dimensionless frequency of a rotating infinitely long thin shell is compared with
that obtained by Chen et al.[33] as shown in Table 1. The dimensionless forward and backward
traveling wave frequencies in the table are, respectively, expressed by ω∗ft and ω∗bt. The compar-
ison shows that the derivation in this paper is correct, and the proposed method can effectively
analyze the traveling wave vibrations of rotating shells.

Table 1 Comparison of dimensionless frequencies of a rotating infinitely long thin shell at the room
temperature, when h/R = 0.02, ν = 0.3, ω∗2 = ρR2(1 − ν2)ω2/E, and Ω∗2 = ρR2(1 −
ν2)Ω2/E

Ω∗ n
Chen et al.[33] Present

ω∗bt ω∗ft ω∗bt ω∗ft

0.000 5

2 0.015 90 0.015 10 0.015 90 0.015 10
3 0.044 12 0.043 52 0.044 13 0.043 53
4 0.084 25 0.083 78 0.084 27 0.083 79
5 0.136 07 0.135 68 0.136 08 0.135 69

0.001 0

2 0.016 32 0.014 72 0.016 34 0.014 74
3 0.044 43 0.043 23 0.044 48 0.043 28
4 0.084 49 0.083 55 0.084 56 0.083 61
5 0.136 26 0.135 49 0.136 33 0.135 56

The nonlinear vibration response curves of a stationary thin shell are further compared
as presented in Fig. 2. The corresponding parameters adopted are ρ = 2 796 kg/m3, E =
71.02 × 109 Pa, ν = 0.31, h = 0.247 × 103 m, R = 0.1 m, L = 0.2 m, m = 1, n = 6, and
f = 0.001 2I0hω2

0,mn, and the damping ratio 2ξ1,n = 0.001. It can be found that the results are
consistent with those of Ref. [34].
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Fig. 2 Comparison of nonlinear amplitude-frequency response curves of a stationary thin shell at the
room temperature (color online)

The material properties of the composite shell subject to various temperature fields are
presented in Table 2. If not specified, the other parameters adopted are L = 0.5, R = 1,
h = 0.02, Ω∗ = 0.02, α = 0.1, N = 1, Tm = T0 = 300 K, ∆T = 300 K, (x0, θ0) = (L/2, 0),
2ξ1,n = 0.003, and f = f0I0hω2

0,(m=1,n=4), where f0 represents the modal excitation amplitude,
and its value is 0.002. ω0,(m=1,n=4) is the natural frequency of the mode (m = 1, n = 4) of a
cylindrical shell without rotation. For the sake of simplicity, the subscript “(m = 1, n = 4)”
is ignored. In Fig. 3, with the rotating speed increasing, the forward wave frequency decreases
slightly and increases subsequently, while the backward wave frequency keeps increasing. The
fundamental frequency occurs at (m = 1, n = 4). Additionally, many intersection points
are observed on the Campbell diagram at a specific wave number. As illustrated in Fig. 4,
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the forward wave frequency in the mode (m = 1, n = 4) is the same as the backward wave
frequency in the mode (m = 1, n = 5) at a specific rotating speed. Therefore, due to the
rotation effect, the energy transfer between these two fundamental modes is likely to happen,
and further nonlinear multiple resonance phenomena occur. In order to capture the peculiar
phenomenon correctly, 50 degrees of freedom (DOFs) are considered here as follows: u1,4,c,
u1,5,c, u2,4,c, u2,5,c, u3,4,c, u3,5,c, v1,4,c, v1,8,c, v1,5,c, v1,10,c, v2,4,c, v2,8,c, v2,5,c, v2,10,c, v3,4,c,
v3,8,c, v3,5,c, v3,10,c, w1,4,c, w1,5,c, w2,4,c, w2,5,c, u1,4,s, u1,5,s, u2,4,s, u2,5,s, u3,4,s, u3,5,s, v1,4,s,
v1,8,s, v1,5,s, v1,10,s, v2,4,s, v2,8,s, v2,5,s, v2,10,s, v3,4,s, v3,8,s, v3,5,s, v3,10,s, w1,4,s, w1,5,s, w2,4,s,
w2,5,s, u1,0, u3,0, u5,0, w1,0, w3,0, and w5,0.

Table 2 Material properties of the rotating composite shell subject to various temperature fields

Material Property P0 P−1 P1 P2 P3

Al2O3

E/Pa 349.550× 109 0 −3.853× 10−4 −4.027× 10−7 −1.673× 10−10

µ 0.26 0 0 0 0
ρ/(kg ·m−3) 3 950 0 0 0 0

αT/K−1 6.826 9× 10−6 0 1.838× 10−4 0 0
κ/(W ·m−1 ·K−1) −14.087 −1 123.6 −6.227× 10−3 0 0

Nickel

E/GPa 205.098× 109 0 −2.794× 10−4 −3.998× 10−9 0
µ 0.31 0 0 0 0

ρ/(kg ·m−3) 8 900 0 0 0 0
αT/K−1 9.920 9× 10−6 0 8.705× 10−4 0 0

κ/(W ·m−1 ·K−1) 187.660 0 −2.869× 10−3 4.005× 10−6 −1.983× 10−9
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0.00 0.02

n=5

n=4
n=6

n=3

0.04 0.06 0.08 0.10

0.20

0.25

0.30

0.35

0.40
Forward wave
Backward wave

Intersection points

ω
*

Ω*

Fig. 4 Campbell diagram of the rotating
composite shell in NLT variation
(color online)

Figure 5 presents the nonlinear dynamic responses of the rotating composite thin shell
subject to various temperature fields. There are four coupled peaks in the amplitude-frequency
response curves due to the multiple internal resonances and rotating effect. The first peak
is bending to the left, and the rest peaks turn to the right as the nonlinear frequency ratio
increases, and the amplitude of the second peak is larger than that of the others. Besides,
analysis shows that the bending of the dynamic response curves results in a jump phenomenon.
The jump phenomenon implies a sudden change in amplitude, and the multiple amplitudes mean
several resonance responses. In addition, the locations of the Neimark-Sacker (NS) bifurcation
points and branch point of cycles (BPC) on the response curves vary with different temperature
fields. However, the response curves under the NLT field and those under the LT field have
little difference.

In Fig. 6, the nonlinear dynamic responses for different temperature variations are presented.
The jump phenomenon occurs in these curves. It is known that the dynamic response curves of
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Fig. 5 Nonlinear amplitude-frequency response curves of the rotating composite shell subject to
various temperature fields: (a) UT, (b) LT, and (c) NLT (color online)

the rotating composite shell bend to the left when they have softening property and to the right
when they have hardening one. It is known that the nonlinear amplitude-frequency response
curve of the rotating composite shell bends to the left and right when it has the softening and
hardening characteristics, respectively. The resonance amplitudes increase significantly and the
resonance region moves to the left with the increase in the temperature change. The results
show that the energy increment induced by the temperature change has a notable effect on the
dynamic responses. Besides, for the UT type, more peaks appear on the response curve by
increasing the temperature change.
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Fig. 6 Nonlinear amplitude-frequency response curves of the rotating composite shell for different
temperature variations: (a), (c), and (e) ∆T = 300 K; (b), (d), and (f) ∆T = 400K (color
online)

Figure 7 illustrates the nonlinear dynamic responses for different porosity volume fractions.
Here, α = 0 corresponds to the rotating composite shell without porosity. One can find that the
porosity volume fraction has a notable effect on the nonlinear vibration behavior of the rotating
composite thin shell. Examining Figs. 7(a) and 7(b) shows that the peaks with respect to the
unstable solution decrease with the increase in the porosity. This is because that addition will
lead to a decrease in the shell stiffness, consequently weakening the nonlinear coupling induced
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Fig. 7 Nonlinear amplitude-frequency response curves of the rotating composite shell for different
porosity volume fractions: (a), (c), and (e) α = 0; (b), (d), and (f) α = 0.1 (color online)

by the large deformation of the rotating composite shell. Additionally, a trend is observed
that the resonance region moves towards the direction of the larger dimensionless nonlinear
frequency with the porosity volume fraction increasing.

The nonlinear dynamic responses for different power-law indexes are presented in Fig. 8.
As the dimensionless nonlinear frequency increases, the amplitude peaks of the driving mode
w1,4,c/h increase as the power-law index increases. At the same time, the partial stable solution
on the first resonance peak is converted to an unstable solution for all the three temperature
types. Furthermore, it is revealed from these figures that the resonance regions of the driven
mode w1,4,c move to the lower dimensionless nonlinear frequency by increasing the power-law
index.

As shown in Fig. 9, the nonlinear dynamic responses for different dimensionless rotating
speeds are investigated. The results demonstrate that the nonlinear dynamic response curves
are sensitive to the rotating speed. A very significant difference is that the nonlinear harden-
ing/softening spring behaviors attenuate as the dimensionless rotating speed increases. That
is because the increase in the rotating speed weakens the coupled effect between the modes.
Moreover, as the rotating speed increases, the peak values of the nonlinear amplitude-frequency
response curves gradually decrease, and the resonance regions move to the direction of the larger
dimensionless nonlinear frequency.

5 Conclusions

The multiple internal resonances of composite cylindrical shells with porosities induced by
rotation with varying temperature fields are investigated. It is shown that the nonlinear vibra-
tion response exhibits both hardening and softening characteristics, and four coupled peaks and
an energy transfer phenomenon are detected due to the multiple internal resonances induced
by the rotation effect. In addition, the locations of the BPC and NS points vary with the
temperature fields, but the dynamic response curves under the NLT and LT fields have little
difference. Besides, the energy increment induced by the temperature variation has notable
influence on the nonlinear dynamic responses. For the UT type, more peaks appear on the
response curves as the temperature change increases. Furthermore, the resonance region moves
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Fig. 8 Nonlinear amplitude-frequency response curves of the rotating composite shell for different
power-law indexes: (a), (c), and (e) N = 0; (b), (d), and (f) N = 1 (color online)
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Fig. 9 Nonlinear amplitude-frequency response curves of the rotating composite shell for different
dimensionless rotating speeds: (a), (c), and (e) Ω∗ = 0.01; (b), (d), and (f) Ω∗ = 0.02 (color
online)

towards the direction of the larger dimensionless nonlinear frequency by increasing the porosity
volume fraction. As the dimensionless nonlinear frequency increases, the amplitude peaks of
the driving mode w1,4,c/h increase with the increase in the power-law index. Moreover, the
nonlinear hardening/softening spring behaviors attenuate as the dimensionless rotating speed
increases.
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