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We analyse numerical solutions in the annulus model of rotating convection outside
the tangent cylinder in a spherical shell. This model is capable of producing zonal
flows with multiple jets. We investigate the conditions under which multi-jet solutions
can be found. Although boundary friction reduces the strength of the zonal flow,
it enhances the formation of multi-jets. More general models have a well-defined
Ekman-layer term. In the annulus model, the Ekman-layer term has a similar form,
but with variable strength. We have explored how the strength of the Ekman-layer
term affects the form and strength of the zonal flows. We find that strong multi-jet
zonal flows can be found for realistic values of the boundary friction, and hence have
implications for convection in experiments and enclosed planetary cores. In addition,
at higher Rayleigh numbers the importance of boundary friction is enhanced relative
to bulk viscosity. Convection in the annulus model often occurs in the form of short-
lived bursts as opposed to quasi-steady equilibriums. We have investigated when these
events occur and their characteristics. In particular, we find precursors and afterglows
of the convective bursts. We have obtained the β-scaling for a range of quantities
when the thermal forcing is moderate. An examination of the components of the
energy rate of change shows that the total Ekman-layer dissipation is of second
order in the large β limit. However, the β-scaling of the forces driving the zonal flow
seems to suggest that the zonal Ekman-layer dissipation remains important. We have
introduced the concept of flow Taylorization, an analogue to the Taylorization used
in magnetohydrodynamics studies and find a β-scaling of this quantity compatible
with the moderate strength of the zonal flow. We also determine the typical length
scale on which convection operates and compare this to the numerically determined
length scale.

1. Introduction
The study of thermal convection in rotating spherical shells has applications in

meteorology, oceanography and planetary science. Large zonal flows are observed
in the atmospheres of the outer planets, and differential rotation is observed in the
Sun and is likely in other stars. All these phenomena are believed to be driven by
the interaction of convection and rotation. Although convection in planetary cores
may be affected by magnetic fields, an understanding of the non-magnetic problem is
useful for understanding planetary dynamos.

In these problems, a key issue is the predicting of the form and strength of the
differential rotation. In the solar case, this can be tested against helioseismology
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results. This work has been reviewed by Toomre (2003) and Elliott (2003). Another
outstanding problem is the formation of multi-jets as observed in Jupiter’s atmosphere,
where a zonal flow with alternating direction provides a banded system of jets that
extends over the whole planet (Limaye 1986; Porco et al. 2003). These azimuthal
winds are much stronger than the radial convection.

The interior of Jupiter is believed to consist of a core of metallic hydrogen with
a radius of around 55 000 km, surrounded by an envelope of molecular hydrogen
and helium, approximately 15 000 km deep. Scale analysis of conditions in the core
(Starchenko & Jones 2002; Jones 2003) and observations of the magnetic field of
Jupiter (Russell, Yu & Kivelson 2003) suggest that the flow in the core is very
slow compared to the zonal flow observed at the surface. It remains an open problem
whether the zonal flows are confined to a thin layer in the top few hundred kilometres
of the planet or extend deep into the interior as suggested by Busse (1976). This
controversy has been reviewed by Yano (1998).

Nonlinear three-dimensional simulations of rotating convection in spherical shells
were pioneered by Gilman (1977, 1978a, b). Although he analyses slowly rotating
systems, as appropriate to the Sun, he finds significant influence of the Coriolis force
when the driving is not too large. Zhang (1992) considers rapidly rotating shells.
These simulations are at the onset of convection, and also reach to weakly nonlinear
solutions. In the latter case, he explores zonal flow generation by Reynolds stresses.
More work on rapidly rotating shells has been performed by Tilgner & Busse (1997),
Grote & Busse (2001), Christensen (2001, 2002), and Busse (2002), exploiting the
improvements in computational resources. In particular, it is found that strong zonal
flows may be generated, being either approximately steady or strongly oscillatory.
These latter oscillations are caused by regular bursts of convection (Grote & Busse
2001), which we will investigate further in this paper.

Three-dimensional numerical simulations are numerically very expensive and in
general they have problems reaching the small viscous dissipation levels that apply
in many planetary convection problems. An important alternative to numerical
simulations are laboratory experiments exploring convection in rapidly rotating
systems (Busse & Carrigan 1976; Manneville & Olson 1996; Aubert et al. 2001). In
these experiments, centrifugal acceleration replaces acceleration due to gravity. The
fluid is cooled at an inner sphere (or cylinder) to drive convection. These systems
allow a low ratio between the viscous force and the Coriolis force.

Several models take advantage of the strong Coriolis force which tends to reduce
the dependence on the coordinate along the rotation axis, thus making the problem
quasi-two-dimensional. The annulus model developed in Busse (1970) exploits this
fact. Also the models in Aubert, Gillet & Cardin (2003), Gillet & Jones (2006) and
Rotvig (2006) belong to this family of quasi-geostrophic models. They show that their
models in many respects compare well with corresponding three-dimensional results in
the region outside the tangent cylinder. In shallow-layer models, two-dimensionality is
enforced by the strong density stratification in the surface layers. This model type has
been simplified further by forcing a turbulent input at small wavelength and studying
the subsequent time-dependent evolution (Cho & Polvani 1996; Yano, Talagrand &
Drossart 2005).

The present paper is based on the annulus model. Being a simplified model, it has,
of course, some shortcomings. One such is the lack of density variations as observed
in giant gas planets. When the Rossby and Ekman numbers are small, and the driving
is not too large, we still expect convection to be largely independent of the coordinate
along the rotation axis. However, compressibility affects vorticity generation and the
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Figure 1. The duct geometry. The angle of inclination θT > 0 and θB < 0.

β-parameter (Evonuk & Glatzmaier 2004; Ingersoll & Pollard 1982). In Brummell &
Hart (1993) and Jones, Rotvig & Abdulrahman (2003, hereinafter referred to as JRA),
it is shown that the annulus model is able to produce strong zonal flows with a few
jets. Also the convection bursts occur. However, as shown in JRA, multi-jet behaviour
begins to occur when the ratio of the viscous force to the Coriolis force is sufficiently
small. In this paper we study these phenomena extensively.

This paper is organized as follows. We define the model set-up in § 2. In § 3, we
consider the results of a large number of numerical simulations, determining the
Ekman-layer strengths at which multi-jet solutions occur. In § 4, we investigate the
bursting phenomenon, showing that precursors and afterglow effects are present, and
analyse some waves excited by the bursts. We study the components of the energy
fluctuations and the balances in the zonal flow equation. In § 5, we introduce the
concept of flow Taylorization and find its β-scaling. Finally, in § 6, we derive the
convection length scale and compare this to the numerical results.

2. The model
We consider a rotating and incompressible fluid contained in a periodic duct of

length Lx along the x-axis (figure 1). The duct has vertical sidewalls and tilted top
and bottom boundaries. The angle of inclination of the latter boundaries are θT and
θB , respectively, measured clockwise from ez. The angular velocity Ω is along the
z-axis. We choose the uniform gravity g in the y-direction. The x- and y-directions
correspond to the azimuthal and opposite radial directions in spherical geometry. The
convection problem in the Boussinesq approximation is then given by

E

(
∂u
∂t

+ u · ∇u
)

+ 2ez × u = −∇P − Ra′T ey + E∇2u, (2.1a)

∂T

∂t
+ u · ∇T =

1

Pr
∇2T , (2.1b)

∇ · u = 0. (2.1c)
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The pressure P includes the centrifugal potential. The length scales are taken as in
the spherical dynamo benchmark (Christensen et al. 2001),

r : d, t : d2/ν, u : ν/d, P : ρνΩ, T : �T, (2.2)

where (ν, ρ) is the kinematic viscosity and density. The system is heated at the inner
boundary and �T denotes the temperature difference between the inner and outer
wall. The Rayleigh, Ekman and Prandtl numbers are

Ra′ =
αg�T d

νΩ
, E =

ν

Ωd2
, Pr =

ν

κ
. (2.3)

Here, α is the thermal expansion coefficient at constant pressure, and κ is the thermal

diffusivity. We will decompose the temperature T̃ + T̂ into a basic state profile T̃ with

no heat sources, ∇2T̃ = 0, and a perturbation T̂ . The temperature perturbation T̂ is
zero at the boundaries. Stress-free boundaries are imposed at the vertical walls, and
non-slip boundary conditions at the top and bottom surface. The Ekman layers at
the non-slip boundaries are described in Greenspan (1968). At a boundary point, the
perpendicular, inward directed, unit vector is denoted by en. The normal component
of the Ekman suction uE may then be written as

en · uE =
E1/2

2
en · ∇ ×

{
1√

|en · ez|
[en × u + sign(en · ez)u]

}
. (2.4)

In the two-dimentional quasi-geostrophic models introduced by Busse, the velocity
and temperature are approximated by

u = −∇ × V (x, y) ez + u′(r), T̂ = T̂ (x, y), |u′| � |∇ × V ez|. (2.5)

The angles of inclination, θT and θB , have absolute magnitudes much less than 1.

The basic temperature profile is taken as T̃ (y) = y. Under these assumptions the
z-averaged z-vorticity equation becomes

∂∇2V

∂t
+ J (V, ∇2V ) − β

∂V

∂x
= −Ra

Pr

∂T̂

∂x
− C|β|1/2∇2V + ∇2∇2V, (2.6)

where the Rayleigh number Ra = PrRa′/E = αg�T d3/νκ , and the Jacobian is defined
by

J (A, B) =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
. (2.7)

The β parameter and the Ekman-layer strength are

β = 2(θT − θB)
d

Lz

E−1, C =

(
2

|θT − θB |
d

Lz

)1/2

. (2.8)

We assume that β > 0, corresponding to a region outside the tangent cylinder in
spherical geometry. We note that specification of (β, C) determines the two numbers

1

E

(
d

Lz

)2

=
βC2

4
,

1

θT − θB

d

Lz

=
C2

2
. (2.9)

However, the geometry is too loosely defined to determine (E, d/Lz, θT , θB). In Rotvig
(2006), who considers the effects of curved top and bottom boundaries with finite
angle of inclination, this degeneracy is removed. Under the above assumptions the
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heat equation (2.1b) becomes

∂T̂

∂t
+ J (V, T̂ ) = −∂V

∂x
+

1

Pr
∇2T̂ . (2.10)

Similarly to spherical geometry, we define the zonal flow by

uZ = 〈ux〉xex = −∂〈V 〉x

∂y
ex, (2.11)

where again the z-dependent component u′ has been neglected. The x-average is

defined by 〈A〉x = (1/Lx)
∫ Lx

0
A dx. Key quantities analysed in this paper are the total

kinetic energy and the zonal kinetic energy defined by

Ek =
1

Lx

∫
(∇V )2 dS, EZ

k =
1

Lx

∫
(〈∇V 〉x)

2 dS. (2.12)

From the kinetic energy we may estimate the Reynolds number by Re =
√

Ek .
For the numerical integration of equations (2.6) and (2.10) we expand the stream-

function and temperature in the form

A =

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

Alm exp(ilx(2π/Lx)) sinmπy. (2.13)

This expansion allow us to define an (m̂ + 1)-jet solution as one in which the kinetic
energy associated with the (l, m) = (0, m̂) mode dominates over all other (0, m) modes
most of the time.

In this paper, we investigate solutions to equations (2.6) and (2.10) with Pr =1
and Lx = 2π. In the following section we undertake an extensive parameter study
of the zonal flow. In these simulations (Ra/Rac, β, C) ∈ [1, 10] × [7.07 × 104, 7.07 ×
105] × [3.16 × 10−3, 3.16]. Subsequently, we analyse three specific solutions in greater
detail: run Ia denotes a typical two-jet solution at moderate Rayleigh number without
boundary friction, (Ra/Rac, β, C) = (2.75, 5 × 105, 0). Run Ib also has no boundary
friction and has parameter values (Ra/Rac, β, C) = (2.5, 5 × 105, 0) close to run Ia,
but the zonal flow is dominated by m = 2, i.e. it is a three-jet solution. A multi-
jet solution, defined by the zonal flow having a dominating wavenumber m � 2,
is uncommon without boundary friction. Run II is a typical multi-jet solution,
in this case a six-jet solution, at moderate Rayleigh number including boundary
friction, (Ra/Rac, β, C) = (2.5, 7.07 × 105, 0.316). To ease comparison, this C value
is identical to the one used in JRA. All the β-scalings calculated in this paper have
(Ra/Rac, C) = (2.5, 0.316).

3. Windows of multiple-jet solutions
The annulus model may be viewed as one of the simplest possible models of

rapidly rotating convection outside the tangent cylinder in a spherical shell. This
simplicity implies efficient computer implementation, and it allows investigation in
regimes outside the reach of three-dimensional models. However, there are clearly
discrepancies between the present model and the fully three-dimensional case. The
form of C is given by equation (2.8), but in more complex models, involving curved
boundaries, compressibility and magnetic fields, the functional form of C may alter.
Rotvig (2006) analyses a duct with curved top and bottom boundaries. In a simplified
version of this system, β(y) and C(y) may be identified as the coefficients in front
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of −∂xV and −|β|1/2∇2V , respectively in equation (2.6). Typically, it turns out that
C ∈ [0.5, 1.5]. A prerequisite for this system to be able to produce multi-jet solutions is
that the present model has this capability with C ∈ [0.5, 1.5]. It is therefore important
to know in what ways the results depend on C.

For given β , an extensive parameter study in C requires evaluation of convection
onset at many values of (C, l). Doing this by timestepping is impractical. Instead, we
may formulate the linear problem as a generalized eigenvalue problem

Ax = λBx, (3.1)

where the time-dependence of the solution is in the form x ∝ eλt . At onset of
convection λ= −iω. Two different spectral methods have been employed, (i) Sine
expansion in y, equation (2.13), and (ii) Chebyshev expansion in y

A =

Nx−1∑
l=−(Nx−1)

Ny+NA−1∑
m=0

Alm exp(ilx(2π/Lx))Tm(2y − 1), (3.2)

where NA depends on the number of boundary conditions for A. The former method
has the advantage of implicit boundary conditions, whereas these conditions must
be explicitly specified in the Chebyshev method. In this latter method, the boundary
conditions produce rows of zeros in the matrix B which then becomes singular.
A Lapack routine has been used to solve equation (3.1) for both methods which
compare successfully. The large number of linear problems as a function of (C, l)
allows efficient parallelization in the (C, l)-plane. The result for β = 3.16 × 105 is
shown in figure 2 where we have explored the range from zero boundary friction
up to large Ekman-layer strengths. We denote Rac of the most unstable l-mode by
Rac(C). As expected, Rac(C) increases for increasing Ekman-layer strength. However,
Rac(C) has a maximum at C = 5.2. This is probably due to an increased x-length-scale
of the flow. Figure 2(b) shows the frequency ωc(C, l). For l � 44, the lines start to lose
their quasi-linear appearance when C is sufficiently small. In the panel, however, only
the quasi-linear part of the lines is shown. The frequency of the most unstable l-mode
is denoted by ωc(C). Near the maximum of Rac(C), we observe that {C, ωc(C)} is
close to the region where the ωc-lines lose their quasi-linear appearance. Finally, we
may note that the positive (prograde) phase velocity is slightly slowed down towards
higher C. In addition, the group velocity near onset of convection changes sign near
the maximum of Rac(C) being negative for small Ekman-layer strength.

Based on the knowledge of Rac(C), we have performed a nonlinear parameter study
in C focusing on the zonal wind and multi-jet aspect of the solutions. The result is
shown in table 1. As a starting point, we put C = 0.316, as in JRA, and then step C

up and down by factors of about 2. Only values of C that produce zonal flows with
energy larger than 5 % of the total energy are considered. The lower cutoff in C is at
the point where either C < 3.16 × 10−3 or when two successive C-values both result
in two-jet solutions. The Ekman dissipation term introduces a second relaxation time
τ = 1/C|β|1/2. For the simulations in table 1 we have τ ∈ [3.8×10−4, 8.4×10−1]. This
additional relaxation time hence does not imply longer integration times. However, in
some cases, e.g. when (Ra/Rac, β, C) = (5, 3.16 × 105, 7.07 × 10−3) so that τ = 0.25,
we observe oscillations in the zonal flow with periods close to τ , but different from
the bursting period.

In general, with a few exceptions, we find that decreasing C enhances the zonal flow
strength. This result agrees well with the three-dimensional results in Gilman (1978b)
and Christensen (2001), where stress-free boundary conditions produce stronger zonal
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Figure 2. The linear problem for β = 3.16 × 105. (a) Critical Rayleigh number Rac for onset
of convection as a function of the Ekman-layer strength C and the azimuthal mode number
l. The latter labels the lines in the panel. (b) Frequency of the solutions. The squares give the
l-index of the most unstable mode as a function of C. The vertical lines depict the maximum
of Rac(C), see also text.

flows than non-slip boundaries. Decreasing C, however, also reduces the number of
jets. Typically, local depressions in zonal flow strength are located at C-values where
a change in the number of jets takes place. This observation was also made in
JRA, but as a function of β . At such a location, it may take a long time before
the solution has converged. We observe several long C-strides of three-jet solutions.
At (Ra/Rac, β) = (2.5, 7.07 × 105), the first long C-stride of four-jet solutions has
emerged.
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β

C 7.07 × 104 1.41 × 105 3.16 × 105 7.07 × 105

3.16 × 100

1.41 × 100

7.07 × 10−1 − , 2 − , 2 − , 2 − , 3
3.16 × 10−1 3 : 15 (65), 14 3 : 33 (100), 35 4 : 39 (100), 40 5 : 44 (100), 48
1.41 × 10−1 2 : 53 (100), 55 3 : 42 (100), 59 3 : 64 (100), 67 4 : 62 (100), 63
7.07 × 10−2 2 : 74 (100), 75 2 : 78 (100), 79 3 : 66 (100), 74 3 : 77 (100), 80
3.16 × 10−2 1 : 38 (93), 64 2 : 81 (100), 82 2 : 84 (100), 85 3 : 73 (100), 79
1.41 × 10−2 1 : 61 (100), 75 2 : 82 (100), 83 2 : 87 (100), 89 3 : 23 (100), 32
7.07 × 10−3 2 : 81 (100), 83 2 : 88 (100), 89 2 : 60 (100), 79
3.16 × 10−3 2 : 81 (100), 83 2 : 67 (100), 70 2 : 64 (100), 81

3.16 × 100

1.41 × 100 − , 2 − , 3 − , 3 − , 5
7.07 × 10−1 2 : 9 (85), 10 2 : 9 (78), 12 3 : 27 (100), 30 4 : 42 (100), 45
3.16 × 10−1 2 : 59 (100), 61 2 : 63 (100), 65 3 : 66 (100), 67 4 : 65 (100), 67
1.41 × 10−1 1 : 81 (100), 84 2 : 78 (100), 80 2 : 56 (100), 68 2 : 54 (92), 70
7.07 × 10−2 1 : 88 (100), 90 2 : 81 (100), 82 2 : 82 (100), 84 2 : 51 (100), 68
3.16 × 10−2 1 : 92 (100), 94 1 : 91 (100), 92 2 : 46 (100), 69
1.41 × 10−2 1 : 94 (100), 95 2 : 68 (100), 70 2 : 67 (100), 68
7.07 × 10−3 2 : 69 (100), 70 2 : 70 (100), 71
3.16 × 10−3 2 : 65 (100), 68 1 : 95 (100), 96

3.16 × 100 − , 2 − , 2
1.41 × 100 − , 4 − , 5 2 : 6 (53), 11 4 : 8 (47), 16
7.07 × 10−1 2 : 19 (59), 22 2 : 42 (100), 47 2 : 39 (100), 42 3 : 48 (100), 57
3.16 × 10−1 1 : 29 (78), 36 2 : 43 (100), 71 2 : 72 (100), 75 2 : 59 (100), 66
1.41 × 10−1 1 : 69 (100), 73 1 : 76 (100), 79 1 : 48 (100), 84 2 : 72 (100), 76
7.07 × 10−2 1 : 77 (100), 80 1 : 90 (100), 93 2 : 75 (100), 77
3.16 × 10−2 2 : 75 (100), 78
1.41 × 10−2 1 : 95 (100), 97
7.07 × 10−3 1 : 96 (100), 97
3.16 × 10−3

Table 1. Zonal flow characteristics as a function of (Ra/Rac, β, C), given as percentages. The
three subtables have Ra/Rac = 2.5, 5.0 and 10.0, respectively. Each entry is defined as follows.
The last percentage is the time-averaged ratio of the zonal energy to the total kinetic energy.
Where this number is � 5 % no further information is given (a dash). For a stronger zonal
flow, the peak component mp(t) is studied. The most frequent value m′

p of mp(t) is given as the
first number, which, for clarity, is bold when greater than one. Then follows the time-average
(%) of the ratio between the energy of the m′

p component of the zonal flow and the total

kinetic energy during its prime time, i.e. when mp = m′
p . Then finally, in parentheses, the ratio

between prime time and the total integration time is shown.

Increasing C leads to a rather abrupt cutoff of the zonal flow. For Ra/Rac = 2.5,
this happens at approximately constant C in the β-range investigated. The same is
true for Ra/Rac = 5, but at a higher C and with a steeper increase in the zonal flow
strength. For Ra/Rac = 10, however, the zonal flow cutoff increases with β . In all three
cases of the forcing we also note that the cutoff of multi-jet solutions, resulting from
decreasing C, decreases with β . Thus windows of C-values, producing strong multi-jet
zonal flows, have appeared. These windows widen as β is increased, so they are
wedge shaped in the (β, C)-plane. The windows persist to very small values of C. This
implies that in more general theories, which may be able to introduce terms similar
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to the Ekman-layer term, but these being based on other physical processes, only a
weak presence of these processes is required to produce multi-jet solutions. Finally, we
may note that the C-windows include realistic values, when these are due to curved
boundaries, especially at high forcing and high β . Large values of β , equivalent to
small E, are required before these windows appear. This result relates well to Gilman
(1978b) and Christensen (2001), who find only two-jet solutions outside the tangent
cylinder at relatively high Ekman numbers. Rotvig (2006) demonstrated that in a
three-dimensional Boussinesq shell with non-slip boundaries, imposed temperature
contrast, and a ratio of 0.35 between the inner and outer radius, multi-jet solutions
begin to emerge when E < 5 × 10−6.

4. Zonal force balance and the bursting phenomenon
4.1. Zonal force balance

The Reynolds stresses play an important role in the mean flow generation. To find
an expression for the Reynolds force we x-average equation (2.6)

− ∂

∂y

[
∂〈ux〉x

∂t

]
+ 〈J (V, ∇2V )〉x = − ∂

∂y

[
−C|β|1/2〈ux〉x +

∂2〈ux〉x

∂y2

]
, (4.1)

where we used (2.5). The nonlinear term is

〈J (V, ∇2V )〉x = 〈ez · ∇ × (u · ∇u)〉x = − ∂

∂y
〈ex · (u · ∇u)〉x = − ∂

∂y

〈
∂

∂xj

(uxuj )

〉
x

= − ∂2

∂y2
〈uxuy〉x. (4.2)

Integrating equation (4.1) along y, we obtain the x-averaged x-component of the
momentum equation

∂〈ux〉x

∂t
= − ∂

∂y
〈uxuy〉x − C|β|1/2〈ux〉x +

∂2〈ux〉x

∂y2
. (4.3)

The constant of integration is zero since the zonal mass flux, 〈ux〉xy , is zero, see
equation (2.13). In equation (4.3) the right-hand-side terms are the Reynolds force,
the Ekman-layer drag, and the bulk viscous force, respectively.

4.2. Energy fluctuations

Energy rates of change provide estimates of various force balances. In order to obtain
an expression for the time-derivative of the kinetic energy (2.12), we first rewrite it as

Ek =
1

Lx

∫
(∇V )2 dS = − 1

Lx

∫
V ∇2V dS. (4.4)

We can show that ∫
∂V

∂t
∇2V dS =

∫
V

∂∇2V

∂t
dS. (4.5)

So
dEk

dt
= − 2

Lx

∫
V

∂∇2V

∂t
dS. (4.6)

We split the energy rate of change into the following components

dEk

dt
=

dEB
k

dt
+

dEE
k

dt
+

dEV
k

dt
, (4.7)
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where the time-derivatives,

ĖB
k =

2Ra

LxPr

∫
V

∂T̂

∂x
dS, ĖE

k = −2C|β|1/2

Lx

∫
(∇V )2 dS, ĖV

k = − 2

Lx

∫
(∇2V )2 dS,

(4.8)

are the power input from the buoyancy force, the viscous dissipation by the Ekman
drag, and the dissipation by the bulk viscous force, respectively.

4.3. Symmetry

We note that a solution (V, T̂ ) to equations (2.6) and (2.10) that satisfies the boundary
conditions provides us with a solution (V2, T̂2) to the same problem but with β replaced
by −β

(V2, T̂2)|(x,y) = (−V, T̂ )|(Lx−x,y). (4.9)

This solution is a reflection of the original one about x = Lx/2 and with a sign change
in the velocity potential. The velocity becomes (u2x, u2y)|(x,y) = (−ux, uy)|(Lx−x,y).

In contrast to the fully three-dimentional problem, the annulus has a symmetry
along the radial direction. For a solution (V, T̂ ) to equations (2.6) and (2.10) satisfying
the boundary conditions, there exists a second solution (V3, T̂3) to the same system

(V3, T̂3)|(x,y) = −(V, T̂ )|(x,1−y), (4.10)

obtained by reflection about y = 1/2 and with sign changes in both the velocity
potential and temperature. The velocity of the new solution is (u3x, u3y)|(x,y) =
(ux, −uy)|(x,1−y). This means that for a zonal flow with m odd, so that the zonal
flow changes sign about y = 1/2, the annulus model cannot determine the overall
sign of the zonal flow. As noted by Busse (2002), this symmetry is destroyed in the
curved annulus model (Busse & Hood 1982), which in its simplest form replaces β by
β0+(y−1/2)β1. They show that the spherical case, β1 < 0, leads to positive (prograde)
flow at y = 0 and negative flow at y = 1, in agreement with fully three-dimensional
spherical shell simulations (Christensen 2002).

4.4. The bursting phenomenon

In run Ia, in which the zonal flow is positive at y = 0, periodically enhanced Reynolds
forces, induced by bursts of convective flow, reinforce the zonal flow (see figures 3,
4a, b). In the intermediate quiet periods, the zonal flow 〈ux〉x provides a strong shear,
suppressing the convective flow uy . The Reynolds force is not strong enough to
overcome viscous dissipation and the zonal flow decays exponentially. Eventually,
the weakened shear permits a new discharge of convection, thereby increasing the
Reynolds force and the zonal flow. The recovered shear turns off convection and the
cycle repeats. This type of phenomenon is hence a relaxation oscillation.

These intermittent discharges of convection occur in several different geometries.
In the present geometry, it was first noted by Brummell & Hart (1993). Grote &
Busse (2001), and Christensen (2001, 2002) observed it in a spherical shell at inter-
mediate Rayleigh numbers. As seen in figure 4(b), a burst is asymmetric in the radial
y-direction being strongest in the inner half of the container. At maximum, the
convective flow nearly fills the entire volume, except for weak regions near the walls.

A burst precursor may be seen in the (t, y)-dependent r.m.s. of the temperature√
〈T̂ 2〉x (see figure 4e). This quantity builds up linearly in time at the outer wall. At

burst onset, the precursor of enhanced temperature fills a quarter of the container.
During the burst, the temperature is highest in the inner half of the container. After
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Figure 3. Run Ia. From above we have total kinetic energy Ek (solid), zonal kinetic energy EZ
k

(dashed) which is almost the entire energy, r.m.s. mean Reynolds force

√
〈|∂y〈uxuy〉x |2〉y (solid),

kinetic energy of ux − 〈ux〉x (dashed), kinetic energy of uy (dotted), and r.m.s. temperature√
〈T̂ 2〉xy (solid). These quantities are plotted on a logarithmic scale. For clarity, the r.m.s.

temperature has been displaced by 4.0 on the logarithmic scale.

the convective discharge, the enhanced temperature decays rapidly in the outer half,
whereas a strong long-lasting afterglow is observed in the inner half of the container.
The precursor may be related to the x-dependence of the thermal boundary layers
being much stronger at the outer than at the inner wall (see figure 4c). Figure 4(d)
shows the long radial plumes during a burst. The afterglow may help to suppress
convection, and so bursts do not appear until both the shear and the afterglow have
diffused away. The z-component of the vorticity is w = (∇ × u)z = ∇2V . In figure 4(f )
we observe that the generation of mean vorticity 〈w〉x is strongest near the walls.
However, these vortices rapidly leave the walls, maintaining a mean vorticity in the
interior.

Without boundary friction, multi-jet solutions are rare for β < 106. In a narrow
window of the Rayleigh number, Ra/Rac ∈ [2.00, 2.75] at β = 5.0 × 105, two-jet
solutions are produced at the end points, whereas a three-jet zonal flow is found at
Ra/Rac = 2.5 (see figure 5a and JRA). The zonal component contains 88 % of the
total kinetic energy. As in run Ia, the burst phenomenon is strong.

In run Ib we also observe a large-scale m = 3 wave in ux , with wavelength around
6.2 in the x-direction, which persists for longer ducts, Lx = 4π, 8π. The m = 3 nature
of this wave can be seen in figure 5(a): the negative zonal flow is enhanced (reduced)
at y = 1 (y = 0) for x ∈ [1, 3]. Here, the positive central jet is at maximum upward
displacement. If the wave were dominated by an m = 1 mode, the central jet would
have been displaced downwards in this region. Figure 5(b) shows the energy density of
ux along x = 3.13 and figure 5(c) the same quantity along y = 0.65. From figure 5(c)
we determine the angular frequency ω ∼ 2π/0.0012 = 5.2 × 103 and the wavenumber
k ∼ 2π/6.2 = 1.0. Rossby and thermal Rossby waves fit these (ω, k) values reasonably
well. A discussion of Rossby waves in the β-plane model may be found in, for example,
Stewartson (1978). Assuming a small perturbation of the linear part of inertia and
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Figure 4. Run Ia. (a) Mean kinetic energy density 〈u2
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(t, y)-plane.

the Coriolis force in the form

A = A0 exp(i(kx − ωt)) sinmπy, (4.11)

we obtain Rossby waves with dispersion relation

ω =
βk

k2 + m2π2
. (4.12)
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Busse (1994) derives the solution at onset of convection. Therein the streamfunction
and temperature are in the form (4.11) by ansatz. The critical value of (Ra, ω, k) as
a function of β is then determined. Here we consider a small perturbation in the
form of a thermal Rossby wave, but for given (β, Ra, k) = (5 × 105, 7.8 × 107, 1.0). In
the neighbourhood of this point, the dispersion relation of the thermal Rossby wave
takes the form (4.12) to a good approximation. In our case with m = 3, the frequency
becomes ω ∼ 5.6 × 103, which is not far from the observed value. Since the period of
the wave is of the same order of magnitude as the duration of a burst, it may be that
this wave is generated by the convective bursts.

In run II, the burst phenomenon is absent (see figure 6a). Plots of the quantities in
figure 3 for run II also appear quasi-stationary. Figure 6(b) illustrates the suppression
of convection in regions with strong shear. In other cases, the boundary friction
typically damps the convective bursts as well, but not always as fully as in run II.
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For the runs in table 1, we typically find bursting solutions when the Ekman-layer
strength is an order of magnitude smaller than the upper cutoff of the zonal flow.

4.5. Balances of energy fluctuations, and balances of zonal forces

In run Ia, the energy decays in intervals between bursts owing to the small buoyancy
energy input (see figure 7). During bursts, the leading balance in the energy fluctuations
is between buoyancy and bulk viscosity, giving a small overall positive energy rate of
change. The situation in run II is somewhat similar, see the dashed curve in figure 8(a).
The main balance is between the buoyancy energy input and bulk dissipation (as
during a burst in run Ia), and the total energy rate of change is now negligible,
as expected in a quasi-steady state. The energy dissipation caused by the viscous
boundary layers is an order of magnitude smaller than the leading terms.

At (Ra/Rac, C) = (2.5, 0.316), the computational costs involved in searching for β-
scalings are manageable. We have considered the interval β ∈ [7.07 × 103, 7.07 × 106],
which also includes run II. As seen in figure 8(a), the Ekman dissipation remains of
second order up to large β . However, as shown in table 1, the effect of the zonal
Ekman dissipation is still quite dramatic: (i) The zonal flow strength is weakened,
and (ii) Multi-jet solutions are much more easily produced at high β . Figure 8(b)
shows that Ekman dissipation becomes dominant over bulk dissipation as the forcing
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strength is increased for fixed β . The increased forcing implies an increased strength
of the zonal flow, but the ability of the Ekman layers to create multi-jets has
diminished (see table 1). Figure 9 shows the β-dependence of various quantities. For
β ∈ [1.41 × 106, 7.07 × 106] these scale as

Ek = 18β0.70, EZ
k = 3.1β0.77, Ekin(ux − 〈ux〉x) = 14β0.61, Ekin(uy) = 15β0.62,√

〈T̂ 2〉xy = 4.1β−0.35,
√

〈|∂y〈uxuy〉x |2〉y = 0.84β0.93, m′
p = 0.068β0.32.

⎫⎬⎭ (4.13)

In this β-interval, the zonal energy is still growing relative to the total energy, whilst
the energy Ekin(ux −〈ux〉x) and the convective energy are declining. Based on equation
(4.13), we may compare the Ekman-layer dissipation to the Reynolds force in the
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zonal flow equation (4.3)

Cβ1/2|〈ux〉x |
|∂y〈uxuy〉x | = 0.66β−0.045, (4.14)

which is 0.32 at β = 7.07 × 106. As seen in figure 6(d), the first-order derivative of the
zonal flow ∂y〈ux〉x is almost a step function and |∂y〈ux〉x | is quasi-constant. This makes
it difficult to estimate the second-order derivative. From equation (4.13), we find that
the length-scale of the zonal flow scales as β−0.32. A crude estimate of the Ekman-
layer dissipation to the bulk viscous dissipation is hence Cβ1/2|〈ux〉x |/|∂yy〈ux〉x | ∼
β1/2−2×0.32 = β−0.14. Taken together, the above estimates may suggest a balance
between the mean Reynolds force and the mean Ekman-layer dissipation. However,
these terms will eventually be balanced by an increasing mean bulk dissipation at
larger β . In this situation, the length scale of the zonal flow will change, m′

p ∼ β1/4,
maintaining the new balance between the zonal forces (see Morin & Dormy 2006).

5. Taylor’s condition and geostrophic velocity
Originally, Taylor’s condition was associated with the magnetic field in electrically

conducting and inviscid flows (Taylor 1963). In the present paper, however, where
Reynolds stresses play an important role, it is also of interest to look at Taylorization
of the nonlinear part of inertia. A. M. Soward (personal communication 2001) has
given an elegant proof of Taylor’s condition in the non-plane-parallel case. The
modification of this proof for the plane-parallel case is described in Appendix A of
Rotvig & Jones (2002). In the present geometry, the adjustment of the original proof
is straightforward because here, the top and bottom boundaries are nearly, but not
exactly, plane-parallel. Below, we describe the necessity of Taylor’s condition. The
sufficiency is described in Soward (2001).
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Equation (2.1a), with the linear part of inertia and the viscous force being neglected,
may be written as

ez × u = −∇P + G, (5.1a)

G = −E

2

{
(∇ × u) × u +

Ra

Pr
T ey

}
. (5.1b)

We have merged the gradient component of u · ∇u with the pressure force and then
rescaled P by a factor 2. Only when G satisfies Taylor’s condition is it possible to find
solutions (u, P ) to equation (5.1a) that satisfy no-penetration boundary conditions.
We parameterize the top and bottom boundary by f : (x, y) → {x, y, f (x, y)} and
g : (x, y) → {x, y, g(x, y)}, respectively. Thus, perpendicular outward directed vectors
are nT = −∇f + ez and nB = ∇g − ez (see figure 10a). No-penetration boundary
conditions are, nT · uT = 0, nB · uB = 0. The specific integral along the z-axis is

〈A〉 =
∫ f

g
A dz′. Taking this integral of equation (5.1a) we find

ez × 〈u〉 = −{∇〈P 〉 + nT PT + nBPB} + 〈G〉. (5.2)

The quantity H = 〈G〉 − nT PT − nBPB satisfies ∇ × H = 0. Thus, any closed path
integral of H is zero. In particular, path integrals along closed geostrophic contours
reduce to ∮

〈G〉 · dl = 0, (5.3)

since dl || nT × nB , see also below. Equation (5.3) is Taylor’s condition. The sufficiency
of this condition is more complicated to show. Here, we note only that Soward
constructs a single-valued solution

u = −∇ × Q + 1
2
(nT × ∇ΦB − nB × ∇ΦT ), (5.4a)

P = ez · Q + 1
2
(ΦT + ΦB), (5.4b)

Q = 1
2

[∫ z

g

G dz′ −
∫ f

z

G dz′
]

, (5.4c)
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to equation (5.1a) where ΦT and ΦB are functions of (x, y). These functions are
determined by integrating the no-penetration boundary conditions

(nT × nB) · ∇ΦT = −nT · ∇ × 〈G〉, (5.5a)

(nT × nB) · ∇ΦB = nB · ∇ × 〈G〉, (5.5b)

along geostrophic contours.
A solution to equation (5.1a) is determined only up to a geostrophic flow, i.e. any

solution (u, P ) to the homogeneous equation where G = 0. Greenspan (1968) shows
that the geostrophic flow is in the form

uG = −dΦ

dh
nT × nB, (5.6)

where Φ depends only on the height h = f − g. In our model, we may therefore
define the geostrophic velocity as

uG = 〈ux〉xzex = −∂〈V 〉x

∂y
ex, (5.7)

where we neglected the z-dependent component u′. The geostrophic flow is hence
identical to the zonal flow (2.11).

In the duct, the path integral in Taylor’s condition (5.3) is taken along constant
height contours and segments of x = 0 and x = Lx (see figure 10b). The condition
then becomes

〈{(∇ × u) × u}x〉x = const. (5.8)

The constant is zero, since

A = {(∇ × u) × u}x = −
(

∂uy

∂x
− ∂ux

∂y

)
uy = −∇2V

∂V

∂x
= 0 (y = 0, 1). (5.9)

For a zonal flow, we note that A = 0 uniformly. The usual way of defining the
Taylorization as a measure of Taylor integrand cancellation along the rotation axis
(see e.g. Fearn 1998) does not work in the present case since here no z-averaging is
involved in equation (5.8). Instead, we define the flow Taylorization as

Tay =
1

β

√
〈|〈A〉x |2〉y

Ek

=
1

β

√
〈|∂y〈uxuy〉x |2〉y

Ek

, (5.10)

where the β-dependence of the Ekman number has been retained. Care has been
taken to make this form independent of the flow strength. In a system with finite
viscosity, the zonal flow component of a Taylor flow would rapidly decay away, see
equation (4.3).

In figure 11, the Taylorization for run Ia is shown as a function of time. We note
that Tay increases weakly during quiet periods. This is due to a decaying kinetic
energy, but constant mean Reynolds force (see figure 3). During bursts, Tay increases
temporarily by an order of magnitude. This growth is counteracted by an increasing
kinetic energy. However, the convection forms of the burst result in strong mean
Reynolds forces, and hence rapidly drives up the Taylorization.

At (Ra/Rac, C) = (2.5, 0.316), we may derive the β-scaling of the Taylorization
from equation (4.13)

Tay ∼ β0.93−1−0.70 = β−0.77, (5.11)
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see also figure 12(a). The relatively weak exponent (� −1) confirms that the zonal and
non-zonal parts of the flow are comparable in this case. When increasing the forcing
at constant β , we expect Tay to decrease significantly owing to an increased zonal
flow component. This is confirmed by figure 12(b). The three runs at Ra/Rac =
2.5, 5.0. and 10.0 have kinetic energy Ek = 2.1 × 105, 1.9 × 106 and 2.1 × 107, res-
pectively. The r.m.s. mean Reynolds force is increasing less steeply,

√
〈|∂y〈uxuy〉x |2〉y =

2.2 × 105, 9.1×105 and 6.0 × 106, indicating the approach towards a flow Taylor state.

6. Convection length scale
Figure 13 shows the spectrum of the kinetic energy

Ek =

Nx−1∑
l=−(Nx−1)

Ny−1∑
m=1

1

2

(
k2

x + k2
y

)
|Vlm|2, (6.1)
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for a snapshot of run II, where the wavenumbers (kx, ky) = (2πl/Lx, πm). We note
the peak of the zonal flow at (kx, ky) = (0, 5π). Aside from this peak, the energy
spectrum is roughly symmetric along kx = ky , implying that typical length scales in
the x- and y-direction are comparable. This observation is common in the numerical
simulations which usually require an l-resolution three times larger than the m-
resolution. We denote this length scale by L. This symmetry is slightly surprising
because at onset of convection (l, m) = (0.67β0.34, 1), see JRA. This feature may
explain the minor asymmetry between the square (kx, ky) ∈ [20, 40] × [0, 20] and
its reflection (kx, ky) ∈ [0, 20] × [20, 40]. Clearly, L is much smaller than the radial
length scale associated with the zonal flow. We take the view that L is the dynamical
length scale on which convection operates. The convection vortices hence have a
quasi-circular shape in the (x, y)-plane. Below, we determine the β-scaling of L.

The following scale analysis is based on balances in the z-vorticity equation (2.6) and
the heat equation (2.10) operating in the nonlinear regime. Balancing the z-vorticity
advection, the inviscid Coriolis term, and the buoyancy term we have

|J (V, ∇2V )| ∼ β

∣∣∣∣∂V

∂x

∣∣∣∣ , β

∣∣∣∣∂V

∂x

∣∣∣∣ ∼ Ra

∣∣∣∣∂T̂

∂x

∣∣∣∣. (6.2)

The balance of the Coriolis and buoyancy forces was also found by Aubert
et al. (2001). A balance between the temperature advection and the basic state term
gives

|J (V, T̂ )| ∼
∣∣∣∣∂V

∂x

∣∣∣∣ . (6.3)

Equations (6.2) and (6.3) may be rewritten as

uxuy

L2
+

u2
x

LL0

∼ βuy, βuy ∼ Ra

∣∣∣∣∂T̂

∂x

∣∣∣∣, ∣∣∣∣∂T̂

∂x

∣∣∣∣ ∼ uy

ux

, (6.4)

respectively. We made use of ux � uy . This is a good approximation in the (Ra/

Rac, C) = (2.5, 0) case: in figure 3, where ux ∼ 〈ux〉x , we observe ux − 〈ux〉x ∼ uy . In
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a similar figure for run II, where ux ∼ 1.7〈ux〉x , we also find ux − 〈ux〉x ∼ uy , so that
the zonal energy is approximately half the total kinetic energy. In equation (6.4), we
introduced the radial length scale L0 (� L) of ux which may be different from L in
the case of a strong zonal flow, ux ∼< ux >x . In this latter case, L0 is known from the
number of jets in the zonal flow. Since Ra ∼ β4/3, see JRA, the system (6.4) constitutes
three equations in four unknowns (ux, uy, |∂xT̂ |, L). We may rearrange equation (6.4)

ux ∼ β1/3, uy ∼ β−1/3 L{
L2 + O(β−2/3)

}
L0

,

∣∣∣∣∂T̂

∂x

∣∣∣∣ ∼ β−2/3 L

{L2 + O(β−2/3)}L0

. (6.5)

Clearly, we must determine L. Equation (6.5) suggests that the convection length
scale should not be far away from L ∼ β−1/3. We confirm this by application of the
mean Reynolds force scaling

|∂y〈uxuy〉x | ∼ 1

{L2 + O(β−2/3)}L0

∼ βλRF , (6.6)

where we used ∂y(uxuy) ∼ uxuy/L0 + uxuy/L ∼ uxuy/L and equations (6.5). Let us
consider the case (Ra/Rac, C) = (2.5, 0.316), so that ux ∼ 1.7〈ux〉x and L0 ∼ L.
Assuming L ∼ βλ, we determine λ by solving max(3λ, −2/3 + λ) = −λRF . This
equation always has a solution and we find

L ∼ β−λRF /3 = β−0.31, (6.7)

where we used equation (4.13) for the value of λRF when β ∈ [1.41 × 106, 7.07 × 106].
In the strong zonal flow case, we proceed as follows. Setting L0 ∼ βλ0 we must solve
max(2λ, −2/3) = −(λRF + λ0) = −λS , which does not always have a solution. We
must require that λS � 2/3. Then

L ∼ β−λS/2. (6.8)

Since ux ∼ 〈ux〉x , we may determine the radial length scale of ux by the Rhines
length scale associated with the zonal energy, L0 ∼

√
UZ/β , see (Rhines 1975). If the

β-scaling of the zonal energy and the mean Reynolds force were given as in equation
(4.13), we would obtain λ0 = −0.31 and L ∼ β−0.31 again.

A numerical study of the convective length scale at (Ra/Rac, C) = (2.5, 0.316)
confirms that the β-scaling of convection has λ ≈ −1/3. There are several ways to
determine the length scale of the convective component uy . Four possible definitions
of the x-length scale are(

L(1)
x , L(2)

x , L(3)
x , L(4)

x

)
=

(√
〈u2

y〉xy

〈(∂xuy)2〉xy

,
〈|uy |〉xy

〈|∂xuy |〉xy

,

√〈∣∣∣∣ uy

∂xxuy

∣∣∣∣〉
xy

,

√〈∣∣∣∣ ∂xuy

∂xxxuy

∣∣∣∣〉
xy

)
. (6.9)

The y-length scales (L(1)
y , L(2)

y , L(3)
y , L(4)

y ) of the convective flow may be defined in a

similar way. For β ∈ [1.41 × 106, 7.07 × 106], we find(
L(1)

x , L(2)
x , L(3)

x , L(4)
x

)
= (1.98β−0.32, 2.03β−0.32, 4.54β−0.32, 4.41β−0.34), (6.10a)(

L(1)
y , L(2)

y , L(3)
y , L(4)

y

)
= (3.67β−0.33, 3.57β−0.33, 7.19β−0.33, 5.38β−0.35). (6.10b)

For the length scales 1–3, the y-length scale is approximately twice the x-length scale
whilst the length scale 4 results in almost equal x- and y-length scales. The scalings
are all close to β−1/3.
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7. Conclusions
At moderate thermal driving, we have demonstrated β-scaling of several quantities.

From these, we find that the Ekman dissipation remains important in the zonal
flow equation, whilst bulk dissipation is the main source of energy depletion of the
total flow. We have developed scaling arguments for the convective length scale and
successfully compared this to the numerical simulations.

We have added to the understanding of the bursting phenomenon which takes
the form of a relaxation oscillation. A short burst of convection enhances the zonal
flow and rapidly changes the x-averaged temperature. Then follows a long period of
relaxation in which the zonal flow and the temperature are smoothed out by diffusion.
The next burst occurs when this smoothing has proceeded far enough to allow the
unstable temperature gradient to overcome the stabilizing effect of the shear flow.
The burst is shown to occur throughout the layer, but the convection-quiet times
have more structure with thermal precursors and afterglows. Large-scale waves can
be excited by the bursts, and their dispersion relation has been examined and shown
to be consistent with thermal Rossby waves.

The presence of Ekman suction giving a boundary friction term can dramatically
affect the solutions. The boundary friction influences the zonal flow, reducing the
strength of the zonal flow, and making multi-jets much easier to find. In addition,
we have explored how the behaviour is affected by varying the boundary friction
parameter C. This is of interest because this parameter is non-constant in applications.
In particular, we have shown that, at sufficiently large β , windows of C exist in which
multi-jet solutions occur with the zonal flow containing more kinetic energy than
the convection. Provided Ra/Rac is sufficiently large, these windows include realistic
values of C when this quantity is in the form found in a simplified boundary curvature
model. Applications of these results include experiments and enclosed planetary cores,
where the outer surface is non-slip. For the gaseous planets, it is appropriate to
assume a stress-free outer boundary, suggesting that the multi-jets observed outside
the tangent cylinder in these planets and those found in experiments on rotating
thermal convection are maintained by different mechanisms. However, our solutions
along the lower boundary (small Ekman-layer strength) of the multi-jet windows
demonstrate that only very weak viscous effects are required at the outer boundary
to obtain more than two jets outside the tangent cylinder at low Ekman number.

The computational work was performed on the Linux clusters (Opteron, 2.2 GHz;
Xeon, 3.0 GHz) at the GWDG calculation center, Göttingen, funded by Niedersachsen
and the Max-Planck-Society. In addition, use was made of the Northern UK MHD
cluster (Xeon, 2.4 GHz) at the University of St Andrews, funded by SRIF and PPARC,
and the Southern UK MHD cluster (Xeon, 2.2 GHz) at University of Exeter, funded
by PPARC and University of Exeter. This work was partially supported by PPARC
grant PPA/G/S/2000/00018.
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