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1 Introduction

The cross-section at the LHC for particles charged under QCD will generally be larger than

that for colourless particles, and so many of the discovery channels used in the search for

new physics involve the detection of hard, hadronic jets. The large mass hierarchy between

any (often heavy, in order to avoid existing exclusion limits) new particle produced and

those of the decay products often implies that many jets will be produced in the decay of

a new state. The finger prints of any such new physics will, however, have to be found
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amongst a large contribution to the same signature from multi-jet processes within the

Standard Model. Therefore, a detailed understanding of the Standard Model processes

will assist in the search for new physics. Examples of Standard Model processes acting as

background to many searches for new physics are e.g. W,Z+jets (especially with 3,4 jets

or more).

However, even the nature of some Standard Model processes is best studied in events

with multiple jets. For example, the CP -structure of the induced Higgs boson couplings to

gluons through a top-loop could be measured by a study of the azimuthal angle between

the two jets in events with a Higgs boson in association with dijets [1, 2].

In both examples, hard radiative corrections will be sizeable at the LHC, by which we

mean that the exclusive (n + 1)-jet rate is a significant component of the inclusive n-jet

rate. And more so in many of the regions of interest for searches of new physics. Therefore,

a tree-level description of the inclusive n-jet process will be unsatisfactory for the involved

analyses beyond just a measurement of the cross section.

The reason for the increased importance in many situations of hard, perturbative cor-

rections at the LHC over the situation at previously, lower energy colliders is very simple.

Two effects act to suppress hard corrections: the increasing powers of the perturbative

coupling, and the increase in the light-cone momentum fraction of the partons extracted

from the proton beyond that necessary for the final state without the additional hard jet.

The suppression from this last kinematic effect is caused by the decrease in the parton

density functions (pdf) as the light-cone momentum fraction x is increased. However, for

processes with at least two particles in the final state, there is a fine trade-off between

the suppression from the pdf and the increasing phase space for additional emission in-

between the most forward/backward hard jet (even when this additional emission is hard

in transverse momentum), as the rapidity span between the two most forward/backward

jets is increased. At previous, lower-energy colliders, this balance was tipped more towards

a suppression than will be the case at the LHC.

At previous colliders, the “significant” rapidity separation of the two objects, which is

necessary for the opening of phase space for additional radiation, would already bring the

light-cone momentum fractions into the region of extremely fast falling pdfs as x → 1, thus

effectively vetoing additional emissions. However, the situation is different for the LHC pro-

cesses discussed above, since in the case of e.g. W -boson production with at least 3 jets, two

jets will naturally be produced with a size-able separation in rapidity [3]. In this case, there

is only a small suppression for additional (especially central) radiation, even when the ad-

ditional jets have a sizeable transverse momentum. This holds true also for other processes,

provided the hard scattering amplitude has a mechanism for effectively radiating into the

rapidity span. This is the case when colour is exchanged between the particles either side

of the span, whereas a colour-singlet exchange leads to less radiation in the span [4, 5].

While a fixed order (e.g. LO or NLO) calculation may be adequate for the description

of sufficiently inclusive quantities like the total inclusive cross section, the question is to

what extent a given theoretical description allows for the radiation into the phase space

which becomes available with the increase in partonic centre of mass energy — and how

important the description of this radiation is for a given observable. The current paper
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discusses these problems, and presents results obtained in a recently proposed all-order

perturbative framework.

It is clear that a NLO calculation allows for just one, also hard, additional emission

above the minimum number of jets required in the analysis. The all-order description of

a parton shower, on the other hand, captures the soft and collinear emissions, but will

underestimate the amount of hard radiation. This deficiency can be repaired order-by-

order through a CKKW-L-style matching [6–8], or to full NLO accuracy [9, 10] for low

multiplicities. In both cases, the deficiency of the parton shower in describing hard radi-

ation is repaired by the use of full tree-level matrix elements. The maximum multiplicity

applied in the tree-level matching is limited by the time for evaluation of the tree-level

matrix elements. Since in a CKKW-L-style analysis the matching scale should be cho-

sen somewhat smaller than the transverse scale required in the definition of jets to avoid

matching artefacts, the matching procedure will run out of available matrix elements at a

lower multiplicity than the maximum for which the LO process has been calculated. This

can be viewed simply as a result of the attempt within the matching procedure to describe

not just the total rate, but also the final state configuration.

The framework of High Energy Jets (HEJ) [11, 12] provides an all-order description

of processes with more than two hard jets, based on an approximation which captures

the hard, wide-angle emissions missed in a shower-approach based on soft and collinear

splitting functions. HEJ does not try to redo the job of the shower, but focuses specifically

on the part not done by a parton shower. Work is in progress to combine the description

of HEJ with a parton shower [13]; the most important component of the matching between

HEJ and a parton shower is the avoidance of double counting of soft radiation, which is

treated to all orders in both descriptions.

The formalism of HEJ is inspired by that underlying [14–16] the BFKL equation [17],

and as such, an approximation for both real and virtual corrections is obtained to all orders,

obviously with all IR divergences cancelling between the two contributions. Differently to

the BFKL approach, however, HEJ applies an approximation only to the partonic scattering

amplitudes, and not the phase space integration, which is performed for each explicit

multiplicity. In this respect, HEJ resembles a parton shower formulation of an all-order

summation. Furthermore, by applying the approximations at the level of the scattering

amplitude M (and not |M|2), it is possible to supplement [11, 12] the approximations with

the requirement of e.g. gauge invariance, and thereby obtain a formalism, which reproduces

more accurately the fixed order perturbative results when checked order by order, while

simultaneously being sufficiently simple that all-order results can be explicitly obtained.

In the current paper, we develop further the formalism of High Energy Jets by matching

to fixed order results and include some sub-leading corrections. Furthermore, we demon-

strate the application of HEJ to the production of at least two and at least three jets.

The structure of the paper is as follows: in section 2 we briefly review the formalism

within High Energy Jets, which allows approximate all-order results to be obtained [11, 12].

In section 3 we describe the matching of these amplitudes to full, high-multiplicity tree-

level results. In section 4 we include some sub-leading corrections, which stabilise the

dependence on the scale choice [18, 19]. In section 5 we present results for dijet production

– 3 –
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obtained with the full formalism of High Energy Jets, and discuss observables and distribu-

tions for which the higher-order corrections are particularly important in order to obtain

a perturbatively stable description. These can lead to a direct experimental test of the

importance of the correct perturbative description.

The all-order results presented in this paper are obtained using the implementation of

the formalism of High Energy Jets in a fully flexible parton-level Monte Carlo generator,

which can be downloaded at http://cern.ch/hej.

2 All orders with high energy jets

The all-order perturbative framework of High Energy Jets (HEJ ) initiated in ref. [11,

12, 20, 21] is addressing some of the short-comings in the description of multiple hard,

perturbative corrections in both the (low) fixed-order and in the parton shower formulation.

The perturbative description obtained with HEJ reproduces the correct, all-order, full QCD

limit for both real and virtual corrections to the hard perturbative matrix element for the

hard, wide-angle emissions which underpin the perturbative description of the formation

of additional jets. The central parts of the formalism were presented in ref. [11, 12] and

discussed further in ref. [22, 23]. In this section, we will give just a brief overview of the

formalism on which the approximations are based; the next section will then discuss how

to incorporate matching corrections to full, high multiplicity tree-level accuracy.

2.1 Dominance of the t-channel poles, and current-current scatting

In the standard parton shower formalism, the physical picture is one of successive branch-

ings off s-channel propagators, governed by the DGLAP splitting functions [24–27]. Such

a framework can sum to leading logarithmic accuracy, and to all orders the behaviour

dictated by the soft and collinear s-channel singularities arising in the perturbative correc-

tions to a given scattering amplitude. It describes correctly emissions with small invariant

mass to the hard scattering amplitude.

The limit of pure N -jet amplitudes for large invariant mass between each parton of

similar transverse momentum is described by the FKL-amplitudes [14, 15], which are at

the foundation of the BFKL framework [17]. The physical picture arising from the FKL

amplitudes is one of effective vertices connected by t-channel propagators. The reduction of

the formalism to the two-dimensional BFKL integral equation relies on many kinematical

approximations, which are extended to all of phase space. Using an explicit (or so-called

iterative) solution to the BFKL equation [28–30], it is however straightforward to show

that despite the logarithmic accuracy (in ŝ/t̂), the perturbative expansion of the (B)FKL

solution does not give a satisfactory description of the results obtained order by order with

the true perturbative series from QCD [21].

High Energy Jets [11, 12] inherits the idea of effective vertices connected by t-channel

currents in order to reproduce the correct limit of N -jet amplitudes, but goes beyond

controlling just the logarithmic accuracy like the FKL formalism. The kinematic build-

ing blocks of the FKL formalism depend on transverse momenta only, as a result of the

– 4 –
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kinematic limits applied in order to separate the amplitude into effective vertices sepa-

rated by t-channel exchanges [31]. In the following, we will discuss how to obtain a better

approximation for the t-channel singularities.

The 2 → 2 scattering qQ → qQ obviously proceeds through just a t-channel exchange

of the gluon current generated by a quark. A good formalism for the description the t-

channel poles should get at least this very simple process exact. The colour and helicity

averaged and summed square of this simple scattering amplitude is given by

|Mtree
qQ→qQ|2 = g4 4

9

s2 + u2

t2
. (2.1)

Despite its simplicity, this amplitude can already be used to illustrate the problem of

the approximations made in the standard BFKL procedure. The limit of Multi-Regge-

Kinematics is defined for the scattering process pA, pB → p1, . . . , pn in terms of transverse

momenta and rapidities y = ln
(

E+pz

E−pz

)

as the following conditions

∀i ∈ {2, . . . , n − 1} : yi−1 ≫ yi ≫ yi+1, ∀i, j : |pi⊥| ≈ |pj⊥|, (2.2)

or alternatively

∀i, j : |pi⊥| ≈ |pj⊥|, sij → ∞, (2.3)

where sij = 2 pi.pj and s = 2 pA.pB . For the 2 → 2 process, the MRK limit of the

Mandelstam variables is given by t → −k2
⊥, s ≈ −u → ∞. The effective approxima-

tion applied in the BFKL formalism (both at LL and NLL) for the 2 → 2 process is

|MBFKL,Tree
qQ→qQ |2 = g4 8

9
s2/(k2

⊥)2. However, for much of the kinematics relevant at the LHC,

t and −k2
⊥ differ by at least an order of magnitude, and s and u differ significantly, leading

to a gross overestimation of the cross section, if the BFKL approximation is applied.

In eq. (2.1), the s2-component arises from scattering of quarks of the same helicities

(e.g. q−Q− → q−Q−), whereas the u2-component arises from the scatting of unlike helicities

(e.g. q−Q+ → q−Q+). Since this difference is important in obtaining sufficient accuracy,

HEJ is based on the calculation of scattering processes at the amplitude level (as opposed

to the square of the amplitude), and the sum over helicities is performed explicitly. For

the qQ-process then, the obvious choice of formalism is that of current-current scattering.

In the spinor notation for the quark currents (see ref. [11] for details), j−µ
a1 = ū−

1 γµu−
a

is written as 〈1|µ|a〉, and then the (colour and coupling stripped) matrix element for the

process q−pa
Q−

pb
→ q−p1

Q−
p2

reads

Mq−Q−→q−Q− = 〈1|µ|a〉g
µν

t
〈2|ν|b〉. (2.4)

While it is possible to shorten this expression by use of the Fierz identity, we choose to

keep the formulation in terms of currents, as this will prove useful for the generalisation to

other processes, including W,H,Z+jets.

Let us denote the spinor string (for helicities ha, h1, hb, h2 of the quarks) appearing in

the amplitude as

Shahb→h1h2

qQ→qQ = 〈1 h1|µ|a ha〉 gµν 〈2 h2|ν|b hb〉. (2.5)

– 5 –
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This complex number can be calculated using any explicit representation for the spinors

(see e.g. ref. [11, 12]), and we will denote the sum over helicities of the absolute square of

this number by

‖SqQ→qQ‖2 =
∑

ha,ha,hb,h2

∣

∣

∣
Shahb→h1h2

qQ→qQ

∣

∣

∣

2

. (2.6)

Of course in this case non-zero contributions arise only when ha = h1 and hb = h2.

The colour and helicity summed and averaged matrix element for the scattering process

qQ → qQ is then

|MqQ→qQ|
2

=
1

4 (N2
C − 1)

‖SqQ→qQ‖2

·
(

g2 CF
1

t1

)

·
(

g2 CF
1

t2

)

.

(2.7)

with t1 = (pa−p1)
2 and t2 = (−pb+p2)

2 (obviously t1 = t2 in this case of a 2 → 2-process),

which equals eq. (2.1).

The point of this tour de force through the simple formalism of qQ-scattering is that

using this formalism, the amplitudes for qg-scattering can be recast in a very similar form.

In fact, a careful analysis [12] of the helicity structure in qg → qg-scattering reveals that

all the amplitudes where the helicity of the gluon is unchanged1 factorise again into two

currents contracted over a t-channel pole. For example, the fully colour-dressed scattering

amplitude for the process q−(pa) + g+(pb) → q−(p1) + g+(p2) equals [12]

Mq−g+→q−g+ = −ig2 p∗2⊥
|p2⊥|

(

t2eat
b
1e

√

p−b
p−2

− tbeat
2
1e

√

p−2
p−b

)

〈1|µ|a〉 gµν

t
〈b|ν|2〉, (2.8)

with p⊥ = px + i py, p− = E − pz. We have taken the negative z-direction to be that of

the incoming gluon, without loss of generality. We immediately recognise the kinematic

structure (in terms of currents) of q−Q+-scattering, multiplied by a momentum-dependent

colour factor. The colour summed and averaged scattering matrix element is

|Mq−g+→q−g+ |2 =
1

N2
C − 1

|〈b|ρ|2〉〈1|ρ|a〉|2

·
(

g2 CF
1

t1

)

·
(

g2

[

1

2

1 + z2

z

(

CA − 1

CA

)

+
1

CA

]

1

t2

)

,

(2.9)

where z = p−2 /p−b (and again t1 = (pa − p1)
2 = (pb − p2)

2 = t2). This has a striking

similarity to the amplitude for qQ-scattering (see eq. (2.7)). In fact, it differs only by the

1All helicity-flip amplitudes are identically zero.
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slightly more complicated colour factor in square brackets, which replace the CF in the

case of quark scattering. In the MRK limit p−2 → p−b this tends to CA, and the qg scat-

tering matrix element is equal to the one for qQ rescaled by CA/CF , just as expected [32].

Eq. (2.9) is, however, the exact result, and the square bracket is strictly larger than CA,

and uniformly decreasing for increasing z. Small z here reflects a large change in light-cone

momentum for the gluon, and unsurprisingly a strong acceleration is reflected in an effec-

tively stronger interaction (though this is unrelated to the higher order perturbative effect

of the running of the coupling).

The perhaps most interesting result of using the formalism of currents directly is the

obvious display that this process has just a t-channel pole (i.e. no poles in the s or u-

channel), exactly like the seemingly simpler qQ-scattering process. The pure t-channel

structure, and the same colour factors, hold true for all the helicity assigments which give

a non-zero contribution.

In the case of pure gluon scattering, it could seem a little arbitrary to discuss the s, t,

and u-channels. However, in the cases of scattering of two gluons of opposite helicities, like

g−g+ → g−g+ it turns out again that the scattering amplitude has just a t-channel pole,

and is again just the contraction of two currents with special colour factors, which depend

only on the acceleration of each gluon during the scattering.

The brief summary presented here of the studies in ref. [11, 12, 22, 23] illustrates

how the t-channel exchange is completely well-defined (for 2 → 2 processes) not just for

qQ-scattering, but also for scattering processes involving gluons. This is displayed in a

formalism based on helicity amplitudes and currents, without resorting to kinematic ap-

proximations or limits.

2.2 All orders real corrections

The previous section demonstrated that the t-channel pole of the full scattering amplitudes

is much more important for the accurate description of the scattering processes than the

zoo of Feynman diagrams would suggest. We demonstrated how this t-channel pole can

be described exactly for many processes by a formalism based on the scattering of specific

helicity currents. For example, the colour summed and averaged amplitudes for both

qQ → qQ and qg → qg scattering are described exactly by a formalism of pure quark

current scatterings, with colour factors depending on the flavour (quark or gluon) of the

scattered partons.

In the current section we will describe briefly the approximations to the real, radiative

corrections of the 2 → 2 process in High Energy Jets. The soft and collinear regions are

already well understood by the description in a parton shower. HEJ focuses instead on the

hard, radiative corrections. The aim is to build a framework which is sufficiently accurate

for a “first guess” for the impact of the radiative corrections (i.e. to all order with a certain

logarithmic accuracy), but which then is also sufficiently flexible to include matching to

the full fixed-order result, where this is accessible. The control of the cross section to lead-

ing logarithmic accuracy in log(s/t) requires control of the hard scattering matrix element

to leading power in s/t, as s/t → ∞. As discussed in the previous section, and in more

depth in e.g. ref. [11, 12, 21], the control of the leading power alone is achieved already

– 7 –
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in the formalism of Fadin-Kuraev-Lipatov [14–16], but this is insufficient to ensure a good

description of the scattering amplitudes in the energy regime of the LHC. The formalism

described here combines the right limit at s/t → ∞ (or more generally the MRK limit) with

complete gauge-invariance. It is already clear that the description of the 2 → 2-processes

discussed in the previous section is gauge invariant, since it describes the t-channel pole of

the full scattering amplitude exactly. In the current section we will build a gauge-invariant

approximation to 2 → n-processes.

2.2.1 Dominant n-jet configurations

First, we will discuss briefly which processes dominate the 2 → n partonic scattering in the

MRK limit. For any 2 → n scattering process, the final state particles can obviously be or-

dered according to rapidity. Apart from exceptional phase space points (of zero measure),

no two particles will have the same rapidity.

At the currently implemented accuracy, the HEJ amplitudes will describe the leading

contribution (in the invariant mass between two neighbouring partons) to the n-jet pro-

duction process. For a given n-jet kinematic configuration, many of the possible partonic

channels will be systematically suppressed. These channels will not be summed to all or-

ders, but will be included “only” through matching corrections. Consider now the rapidity

ordered final state jets. The leading contributions to the n-jet configurations are those

where the flavour of the most forward jet equals that of the incoming parton of positive

light-cone momentum, and the flavour of the most backward jet is identical to that of

the incoming parton of negative light-cone momentum. The leading contribution to jet

production between the jets extremal in rapidity is given by pure gluon emissions. Such

processes can proceed through a gluon exchange between all rapidity-ordered particles.

Changing the flavours of two jets, such that a single gluon propagator between the two

jets is replaced by a t-channel quark propagator, automatically leads to a suppression of

1/sij for sij → ∞, where sij is the invariant mass between the two jets. We choose to call

the leading configurations FKL-configurations, since they are the same as those which are

considered in the amplitudes by Fadin-Kuraev-Lipatov [14–16, 33–35].

2.2.2 Amplitudes and effective vertices

The all-order approximations of the n-parton FKL-configurations are constructed similarly

to the 2 → 2 scattering amplitudes considered in section 2.1, as effective vertices connected

by t-channel propagators. In the case of the partons of largest or smallest rapidity, these

are directly the effective currents discussed in the previous section. The emission of ad-

ditional gluons is performed by gauge-invariant,2 effective vertices. These were derived

in ref. [11], and take into account the leading contribution from emissions off both the t-

channel exchange and the two incoming and the most forward/backward outgoing partons.

The effective vertex for the emission of a gluon of momentum pg = q1 − q2, V µ(qi, qi+1), is

2by which we of course mean fully gauge invariant, not just up to sub-asymptotic terms as it is often

meant in the BFKL literature.
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Figure 1. The analytic structure of a scattering amplitude in High Energy Jets.

given by [11]

V ρ(qi, qi+1) = − (qi + qi+1)
ρ

+
pρ

A

2

(

q2
i

pi+1 · pA
+

pi+1 · pB

pA · pB
+

pi+1 · pn

pA · pn

)

+ pA ↔ p1

− pρ
B

2

(

q2
i+1

pi+1 · pB
+

pi+1 · pA

pB · pA
+

pi+1 · p1

pB · p1

)

− pB ↔ pn.

(2.10)

This form of the effective vertex is fully gauge invariant; the Ward Identity, pg · V = 0 can

easily be checked. This allows for a meaningful approximation to the scattering amplitude

to be constructed.

Another approximation of HEJ is then the systematic omission of interference effects

between identical particles, since such effects are suppressed by the invariant mass between

the particles. Essentially, each emission is treated as a distinguishable particle, just like

in a parton shower. The resulting tree-level approximation for a 2 → n scattering is illus-

trated in figure 1. Virtual corrections modify the t-channel propagators and are discussed

together with regularisation in the next section. The tree-level HEJ-approximation for the

square of the amplitude describing a qQ-scattering process with n jets in the final state is

then given by [11]

∣

∣

∣
Mt

qQ→qg...gQ

∣

∣

∣

2

=
1

4 (N2
C − 1)

‖SqQ→qQ‖2

·
(

g2 CF
1

t1

)

·
(

g2 CF
1

tn−1

)

·
n−2
∏

i=1

(−g2CA

titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

,

(2.11)

where ‖SqQ→qQ‖2 indicates the square of pure current-current scattering of section 2.1. In

the case of scattering of gluons, the terms in this sum are weighted with helicity-dependent

colour factors [12], one of which is listed in eq. (2.9). All the building blocks for constructing

the High Energy Jets-scattering amplitudes are listed in appendix A.
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2.3 All orders virtual corrections

The virtual corrections are approximated with the Lipatov ansatz for the t-channel gluon

propagators (see ref. [11] for more details). The Lipatov Ansatz states that order by order,

the leading logarithmically virtual corrections to the full n-parton scattering amplitude in

the MRK limit can be obtained by the following replacement in the scattering amplitudes:

1

ti
→ 1

ti
exp [α̂(qi)(yi−1 − yi)] (2.12)

with

α̂(qi) = −g2 CA
Γ(1 − ε)

(4π)2+ε

2

ε

(

q2/µ2
)ε

. (2.13)

This ansatz for the exponentiation of the virtual corrections in the appropriate limit of the

n-parton scattering amplitude has been proved to even the sub-leading level [31, 36–38].

In section 4 we will discuss parts of the next-to-leading logarithmic corrections, which can

be included as corrections of the type β0 log(Q2/µ2).

2.4 Generation and regularisation of the cross section

We will now discuss the construction of the all-order, regularised dijet cross section. The

necessary details for constructing a generator were already given in ref. [11, 21], but the

discussion here is more detailed. We begin by defining the matrix element squared built

from the t-channel factorised picture (eq. (2.11)) combined with the virtual corrections

discussed in the previous section:

∣

∣

∣
Mt,v

ε f1f2→f1g·gf2

∣

∣

∣

2

=
1

4 (N2
C − 1)

‖Sf1f2→f1f2
‖2

·
(

g2 Kf1

1

t1

)

·
(

g2 Kf2

1

tn−1

)

·
n−2
∏

i=1

(−g2CA

titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1
∏

j=1

exp [2α̂(qj)(yj−1 − yj)] ,

(2.14)

where f1, f2 indicate the flavour (quarks or gluon), Sf1f2→f1f2
is the sum of contracted

currents, and Kf1
is CF if f1 = q and CA if f1 = g. These pieces are all given explicitly in

appendix A.

The dijet inclusive cross section is simply constructed as the explicit phase space

integral over the explicit sum of real, radiative corrections, including the leading, all-order

virtual corrections. We illustrate the procedure with qQ-scattering, but the generalisation

to incoming gluons is straightforward using the gluon currents and factors detailed in
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appendix A.

σqQ→2j =

∞
∑

n=2

n
∏

i=1

(
∫

d2pi⊥ dyi

2 (2π)3

) |Mt,v
ε f1f2→f1g·gf2

|
2

ŝ2
xafA,q(xa, Qa) x2fB,Q(xb, Qb)

× (2π)4 δ2

(

n
∑

k=1

pk⊥

)

O2j({pi}).

(2.15)

Here, (pi⊥, yi) denote the transverse momentum and rapidity of the i’th final state parton.

The parton momenta fractions are given by

xa =
∑

i

|pi⊥|√
s

exp(−yi), xb =
∑

i

|pi⊥|√
s

exp(yi), (2.16)

with
√

s the total hadronic centre-of-mass energy. In eq. (2.15),
√

ŝ denotes the total par-

tonic centre-of-mass energy, ŝ = xaxbs, and fA,q(xa, Qa), fB,Q(xB , QB) denote the relevant

parton density functions for parton A,B respectively at the resolution scales QA, QB . We

will discuss the choices of scales further in section 4. The function O2j({pi}) takes as argu-

ments all the final state partons, and returns 1 if there are at least two jets, according to

the chosen jet-definition. It is otherwise zero. In the current study, we choose to apply the

anti-kt algorithm as implemented in FastJet [39], with a R-parameter of 0.6; however,

obviously any jet-definition can be applied on the partonic ensemble.

The integration over transverse momentum runs from 0 to infinity. We choose to gen-

erate only the rapidity ordered phase space (i.e. yi−1 < yi < yi+1) using the approach of

ref. [40], since the HEJ -amplitudes |Mt,v
ε |

2

take as argument the rapidity ordered set {pi}.
The phase space integration of standard fixed-order amplitudes can be done in a similar

way (and indeed is done in the matching-procedure of section 3), where then an additional

Monte Carlo sampling is performed over the identification between the particle leg and the

rapidity ordered set of momenta. The phase space generation method of ref. [40] is very

efficient for processes dominated by t-channel poles.

The matrix elements |Mt,v
ε |

2

are divergent for any pi⊥ → 0. We will first discuss

how for all but the extremal partons, this divergence cancels with the pole in ε from

the virtual corrections implemented according to the Lipatov Ansatz for the resummed

t-channel propagators (we will then return to the case of the extremal partons below).

Consider the limit where the transverse momentum of the ith emitted gluon is vanish-

ing. In this limit,

∣

∣

∣
Mt,v

ε pa pb→p1 ··· pi−1 pi pi+1 ··· pn

∣

∣

∣

2
pi

2→0−→
(

4 g2 CA

pi
2

)

∣

∣

∣
Mt,v

ε pa pb → p1 ··· pi−1 pi+1 ··· pn

∣

∣

∣

2

,

(2.17)

where the matrix element on the r.h.s. has n − 1 final state particles, and p2
i is the sum

of the squares of the transverse components of pi in the Euclidean metric. By integrating
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over the soft region p2
i < λ2 of phase space in D = 4 + 2ε dimensions we find

∫ λ

0

d2+2εp dyi

(2π)2+2ε 4π

(

4g2CA

p2

)

µ−2ε

=
4g2CA

(2π)2+2ε4π
∆yi−1,i+1

π1+ε

Γ(1 + ε)

1

ε
(λ2/µ2)ε.

(2.18)

The square of the matrix element on the left hand side of eq. (2.17) contains the

exponential exp(2α̂(qi)∆yi−1,i+1). By expanding the exponential to first order in g2 and in

ε, the resulting pole in ε does indeed cancel that of eq. (2.18), and the combined effect of one

soft real emission and the first term in the expansion of the Reggeised propagator is a factor

∆yi−1,i+1
αsNC

π
ln

(

λ2

q2

)

(2.19)

multiplying the (n−1)-particle matrix element. It is clear that the nested rapidity integrals

of additional soft radiation in the t-channel factorised multi-parton amplitudes will build

up the exponential needed to cancel the poles from the virtual corrections to all orders in

αs. The divergence arising from a given real emission is therefore cancelled by that arising

from the virtual corrections in the Reggeised t-channel propagator of the matrix element

without the relevant real emission. Therefore, if indeed eq. (2.17) had been an equality for

p2
i < λ2, then the regularised HEJ matrix element squared would be:

|Mreg({pi})|
2

=
1

4 (N2
C − 1)

‖Sf1f2→f1f2
‖2

·
(

g2 Kf1

1

t1

)

·
(

g2 Kf2

1

tn−1

)

·
n−2
∏

i=1

(−g2CA

titi+1
V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1
∏

j=1

exp
[

ω0(qj, λ)(yj−1 − yj)
]

,

ω0(qj , λ) = − αsNC

π
log

q2
j

λ2
,

(2.20)

which should only be evaluated for p2
i > λ2, and a simple phase-space slicing would then

have been sufficient to organise the cancellation of divergences. However, while eq. (2.17)

does describe the divergence in the soft limit, it is not an exact identity. We can account

for the finite difference by including an integration over

−1

titi+1
V µ(qi, qi+1)Vµ(qi, qi+1) −

4

p2
i

(2.21)

for p2
i < λ2. Numerically, it turns out to be sufficient to account for the difference and in-

clude this integral for values of |pi| above roughly 0.2 GeV. The regulated matrix elements
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for HEJ are then given by

∣

∣Mreg
HEJ({pi})

∣

∣

2
=

1

4 (N2
C − 1)

‖Sf1f2→f1f2
‖2

·
(

g2 Kf1

1

t1

)

·
(

g2 Kf2

1

tn−1

)

·
n−2
∏

i=1

(

g2CA

( −1

titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)−
4

p2
i

θ
(

p2
i <λ2

)

))

·
n−1
∏

j=1

exp
[

ω0(qj, λ)(yj−1 − yj)
]

,

ω0(qj , λ) = − αsNC

π
log

q2
j

λ2
.

(2.22)

Since the t-channel factorised matrix elements are very fast to evaluate and the regular-

isation procedure does not add any complexity (because of the simple IR structure of

the t-channel factorised matrix elements), the radiative corrections to all orders can be

constructed as an explicit phase space integral over each number of gluons emitted:3

σqQ→2j =
∞
∑

n=2

n
∏

i=1

(
∫ pi⊥=∞

pi⊥=0

d2pi⊥

(2π)3

∫

dyi

2

) |Mreg
HEJ({pi})|

2

ŝ2

× xafA,q(xa, Qa) x2fB,Q(xb, Qb) (2π)4 δ2

(

n
∑

k=1

pk⊥

)

O2j({pi}).
(2.23)

The cancellation of the poles in ε ensures that the logarithmic dependence on λ gener-

ated by the effective lower limit on the transverse momentum integrals cancels with the

logarithmic λ-dependence of the virtual + unresolved-real correction, which generates the

exponential factors of eq. (2.19). This is similar to the explicit construction of the solution

to the BFKL evolution, where the very weak dependence of the solution on λ at leading

logarithmic accuracy was studied in ref. [28, 29], and in ref. [19] at next-to-leading loga-

rithmic accuracy. In appendix B we investigate the stability under variations in λ of a few

of the cross-sections and distributions discussed throughout this paper. We find that the

residual λ-dependence is very weak — see section B for further details. We then gener-

ally choose to use λ = 0.5 GeV. Note that these findings are in good agreement with the

conclusions from the studies of the λ-dependence of the explicit solutions to the BFKL

equations [19, 28, 29, 41], where the convergence of the phase space integration could be

checked explicitly against an analytic solution.

The only remaining unregulated divergences of |Mreg
HEJ|

2
are related to the region of zero

transverse momenta of the partons extremal in rapidity.4 A similar situation was discussed

in ref. [21], where simply a cut on the transverse momentum of the extremal partons was in-

troduced, and the dependence of the cross section on this cut studied. We have refined the

3The lower limit on the transverse momentum in the phase space integrals is understood to be small,

but non-zero, so eq. (2.21) can still be evaluated numerically.
4Actually, with the emission vertex of eq. (2.10) there is also a collinear divergence for emissions close to

the extremal partons from parts symmetrising pA ↔ p1 and pB ↔ pn. We avoid this divergence by not aver-

aging over the two contributions for emissions which are clustered into the same jets as the extremal partons.
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Figure 2. The dependence of the dijet cross section on the transverse momentum of the parton of

lowest or highest rapidity. The step at 30GeV is caused by the requirement of minimum 30GeV

transverse momentum by the hard jets.

treatment for the current study. If there is no hard jet associated with the extremal partons,

they could be viewed as not participating in the proper hard scattering of the event. In the

parton shower picture, such emissions would be counted as (in this case) initial state radia-

tion, and the divergence regulated by the Sudakov form factors. The treatment of these are

beyond the scope of the current paper, and we will simply require that the extremal partons

are associated with (i.e. a member of) a hard jet. With this requirement, the dependence

on a lower cut-off of the momentum allowed for the extremal partons is weak. This is

illustrated in figure 2 for a dijet-sample at the 7TeV LHC, requiring just5 two anti-kt-jets

with absolute rapidities less than 4.5, and with transverse momenta above 30 GeV. We see

that the contribution from transverse momenta much smaller than the jet scale is small.

The requirement that the extremal partons be associated with a hard jet has to a large ex-

tent regulated the divergence for vanishing transverse momentum of the extremal partons

(compare with figure 16 of ref. [21]). In the results discussed in section 5, we will choose a

lower limit on the transverse momentum of the extremal partons, which is 5GeV smaller

than the minimum transverse momentum required on hard jets. Removing the very small

contribution from smaller scales simply improves the phase space integration. Furthermore,

the unregulated divergence at zero transverse momentum has to be explicitly removed.

5Note that such a simple cut is problematic for NLO studies, because the truncation of the perturbative

series introduces a large logarithmic dependence on any difference in the value of the cut applied on the

two jets [42].
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The construction of an explicit integration over emissions to all orders relies on an

efficient phase-space generator [20, 21], which should sample final states with the number

of particles varying by more than an order of magnitude. The problem is significantly

different to that of a so-called general purpose Monte Carlo (Pythia [43], Herwig [44],

SHERPA [45]), since in these approaches, the approximation to the virtual corrections is

defined such that the emission of particles is unitary, i.e. does not change the total cross

section, which allows for a simple probabilistic interpretation. In HEJ, an approximation

to the virtual corrections is calculated, and introduces a suppression of the regularised

matrix element for any final state with a finite number of partons, as the rapidity length

of the event is increased. This is countered by the (positive) contribution from the emis-

sion of additional gluons, and introduces a correlation between the number of final state

partons and the typical rapidity length of an event. It is absolutely crucial to incorporate

this probabilistic correlation in the phase space generator in order to obtain satisfactory

numerical stability in a finite amount of time. Such a phase space integrator can be effi-

ciently implemented by following the ideas of ref. [40]. The fully exclusive formulation in

a flexible Monte Carlo facilitates the study of any observable.

3 Matching

The previous sections have set up the all-order approximations to jet production of High

Energy Jets, and discussed the implementation as a flexible Monte Carlo, integrating ex-

plicitly over n-particle phase space. The resummation procedure generates only certain

partonic phase space configurations (FKL-configurations, see section 2.2.1). The dijet pro-

duction process is calculated within this approximation as (for notational brevity, we have

omitted the label indicating the use of the regularised amplitudes)

σresum
2j =

∑

f1,f2

∞
∑

n=2

n
∏

i=1

(
∫ pi⊥=∞

pi⊥=0

d2pi⊥

(2π)3

∫

dyi

2

) |Mf1f2→f1g···gf2

HEJ ({pi})|
2

ŝ2

× xafA,f1
(xa, Qa) x2fB,f2

(xb, Qb) (2π)4 δ2

(

n
∑

k=1

pk⊥

)

O2j({pi}),

(3.1)

where the first sum is over the flavours f1, f2 of incoming partons. The distribution of

any observable can be obtained by simply binning the cross section in eq. (3.1) in the

appropriate variable formed from the explicit momenta. Obviously, multi-jet rates can also

be calculated by multiplying by further multi-jet observables O3j ,O4j , . . . in eq. (3.1).

In section 3.1 we will discuss how the amplitudes for the FKL-states included in

eq. (3.1) can be corrected to full tree-level accuracy, limited only by the availability of

full tree-level matrix elements. In section 3.2 we will discuss the inclusion of all remaining

partonic configurations (in practice for up to 4 jets).

3.1 Matching for FKL configurations

Firstly, we want to match the description of the FKL n-jet configurations to the full tree-

level matrix elements and thus improve upon the approximations inherent to the resum-

mation. This can be straightforwardly done because of the flexibility inherent in eq. (3.1).
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Let Oe
nj({pi}) denote the measurement function for exclusive n-jet production acting on

the partonic phase space. This function will return one if the chosen jet-algorithm finds

exactly n hard jets in the m-partonic phase space point, and returns zero otherwise. Fur-

thermore, it will give access to the momenta of the n jets, {pJl
({pi})}. We note that

O2j({pi}) =
∑∞

n=2 Oe
nj({pi}). In principle, we would then want to simply multiply each

exclusive jet measure function with

|Mf1f2→f1g···gf2 ({pJl
({pi})}) |

2

|Mt,f1f2→f1g···gf2({pJl
({pi})})|

2
, (3.2)

where the numerator is simply the (spin and colour summed and averaged) square of the

full n-jet tree-level matrix element, and the denominator is the HEJ -approximation to this

tree-level. This would ensure tree-level accuracy of the n-jet rates, while simultaneously

weighing the n-jet samples with the virtual corrections from HEJ.

However, a few modifications to this näıve approach are necessary. Firstly, the jet

momenta may not be of zero invariant mass. Secondly, the transverse momenta of the jets

generally will not sum to zero, since some of the partons generated in the event may not

be included in the hard jets. We therefore have to construct a new set of n jet-momenta

to be used in the matching. We start by making each jet momentum equal to the sum

of the parton momenta of each jet (each jet contains mostly just one hard parton after

the HEJ -resummation). We then redistribute the transverse momenta of any partons not

belonging to a jet among the hard jets, and remove these softer partons from the list of

particles (and momenta) used in the matching. We choose to distribute the momenta in

proportion to the transverse momenta of the resolved jets. If the sum of the momenta of

the non-jet partons is q and the scalar sum of the transverse momenta of the jets is P⊥,

the new set of hard momenta pnew
Jl

is given by

pnew
Jl

= pJl
+ q ∗ |pJl⊥

|
P⊥

. (3.3)

The energy component of each jet is then finally reset to put it on-shell, and the momenta

of the incoming partons are defined by energy/momentum conservation.

This reshuffling of momenta is illustrated for a sample event in figure 3, which has

eleven partons in the final state, in a momentum configuration leading to four hard jets with

transverse momentum above 30 GeV, found with the anti-kt jet algorithm, as implemented

in FastJet [39]. The red circles show the positions in rapidity-phi space of the partons;

the radii of the circles are proportional to the transverse energy of each parton and jet

(and do not, therefore, represent the area of each jet). The green circles indicate the jets

of the original event. As expected, they coincide with the hardest quarks/gluons. The

blue circles indicate the reshuffled momenta used in the matching. Note, this procedure

does not change the kinematics of the actual event; only the reweighing of the event to full

tree-level accuracy is performed with matrix elements evaluated for the slightly modified

momenta. If the threshold on the transverse momenta of jets was set very low, and the

jets were finely resolved (small R-parameter), then no reshuffling of momenta would be
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Figure 3. This plot shows for an example event the momenta of the partons (red), the resultant

jets from FastJet (green) and the reshuffled momenta described in the text (blue). The radii of the

circles are proportional to the transverse momentum of the particle or jet described.

necessary. However, the full matrix elements can only be evaluated for states of relatively

low multiplicity (with MadGraph [46], we limit ourselves to matching of up to four jets).

So with a low jet matching scale, the available fixed order matrix elements for matching

would cover only a small part of the total cross section. A similar issue occurs for the

CKKW-L [6, 7] or MLM [8] style matching of parton shower algorithms.

We then reweigh each event generated with the following multiplicative matching fac-

tor, evaluated with the on-shell hard momenta as found by the described procedure:

wn−jet ≡

∣

∣

∣
Mf1f2→f1g···gf2

({

pnew
Jl

({pi})
})
∣

∣

∣

2

∣

∣

∣
Mt,f1f2→f1g···gf2

({

pnew
Jl

({pi})
})
∣

∣

∣

2
. (3.4)

In this notation, we have suppressed the flavour and momentum-dependence of wn, but it

is obviously calculated on an event-by-event basis. The FKL-matched cross section is then

found as

σresum,match
2j =

∑

f1,f2

∞
∑

n=2

n
∏

i=1

(
∫ pi⊥=∞

pi⊥=λ

d2pi⊥

(2π)3

∫

dyi

2

) |Mf1f2→f1g···gf2

HEJ ({pi})|
2

ŝ2

×
∑

m

Oe
mj({pi}) wm−jet

× xafA,f1
(xa, Qa) x2fB,f2

(xb, Qb) (2π)4 δ2

(

n
∑

i=1

pi⊥

)

O2j({pi}).

(3.5)

The impact of this matching procedure can be seen in figure 4, which displays the

differential dijet cross section wrt. the rapidity difference ∆yfb between the most for-

ward/backward hard jet, within the following set of cuts:

pj⊥ > 60GeV |yj| < 4.5 anti − kt, R = 0.6. (3.6)
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Figure 4. This plot shows the impact of matching in jet production, as a function of rapidity

span. The initial HEJ approximation is shown (red, dot-dashed) together with matching to FKL

configurations (blue, dashed) and matching to both FKL and non-FKL configurations (green, solid).

The matching scale is set equal to the general jet scale of 60 GeV. The red (dot-dashed)

curve is the result of the pure resummation; the blue (dashed) curve is obtained after

matching of the states arising in the resummation up to four hard jets. The correction is

small throughout, being slightly more significant at low rapidity spans.

3.2 Matching for non-FKL configurations

The processes and partonic configurations which do not arise in the resummation are in-

cluded straightforwardly by adding these to the dijet rate found by the (matched) eq. (3.1).

For example, we can add the remaining contribution to the exclusive dijet rate as

σnon−FKL
2j =

∑

f1,f2

∑

ff1,ff2

2
∏

i=1

(
∫ pi⊥=∞

pi⊥=p⊥min

d2pi⊥

(2π)3

∫

dyi

2

) |Mf1f2→ff1ff2({pi})|
2

ŝ2
(3.7)

× Θ({fi}, {pi}) xafA,f1
(xa, Qa) x2fB,f2

(xb, Qb) (2π)4 δ2

(

n
∑

i=1

pi⊥

)

O2j({pi}),

where p⊥min is the minimum transverse momentum required for hard jets. The function

Θ({fi}, {pi}) returns one if the parton and momentum configuration is of non-FKL status.

If only rapidity ordered sets of momenta pi are generated, then one needs to also sum (or

Monte Carlo sample) over all possible assignments between momenta and the particles in

the process. The generalisation to the three and four jet states is straightforward, and the

final result for the dijet rate is

σ2j = σresum,match
2j +

∑

n

σnon−FKL
nj . (3.8)

Each component is implemented by explicit Monte Carlo sampling over phase space and an

evaluation of matrix elements. Therefore, any observable can be constructed and studied,

also after matching has been included in the formalism.
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The impact of the non-FKL states is indicated on figure 4, where the green (solid) line

is obtained from the sum of all terms in eq. (3.8). This correction is again more significant

for small rapidity spans, as we expect.

4 Logarithmic corrections to the scale choice

The discussions so far have made no assumptions on the scale choice made for the evalu-

ation of αs or the pdfs. In this section we will compare the results arising for a fixed scale

choice (of e.g. the minimum jet transverse momentum), and a scale choice made event by

event equal to the maximum jet transverse momentum of the event. Finally, we will in-

clude pieces of the next-to-leading logarithmic corrections to the BFKL kernel, which will

stabilise the dependence on the scale choice. This will then form the basis of the standard

scale choice for the results presented in section 5.

The connection between the formalism of High Energy Jets and that of BFKL [14–

16, 33, 47] is that in the limit of large invariant mass between all partons (conditions relaxed

for neighbouring pairs of particles at NLL [48]), then the amplitudes underlying the BFKL

formalism coincide with those of HEJ (and with those of full QCD). The NLL correc-

tions to the BFKL kernel have two origins: the one-loop corrections to one-gluon emission,

and the contribution from two-gluon and quark-anti-quark-emission in quasi-multi-Regge-

kinematics (i.e. not necessarily a large invariant mass between the pair of particles). The

net result of the corrections is a sum of an expression with the same functional form as the

LL kernel, multiplied by a running coupling logarithm, and a term of a more complicated

kinematic structure [18, 19]. The relevant discussion of the regularisation of the NLL cor-

rections to the BFKL kernel was presented in ref. [18, 19, 41]. We repeat it here, with a

notation tailored to the present application.

The NLL BFKL kernel is expressed in terms of a transverse momentum, which is

the transverse momentum of the emitted gluon, or the sum of transverse momenta of

the emitted pair of gluons or quark-anti-quark pair. All other kinematic dependence is

integrated over before arriving at the BFKL kernel. In D = 4 + 2ε the BFKL amplitudes

obey the following relation at NLL accuracy (compare with eq. (2.17))

∣

∣

∣
MBFKL

pa pb→p1 ··· pi−1 pi pi+1 ··· pn

∣

∣

∣

2

= Kr(pi)
∣

∣

∣
MBFKL

pa pb → p1 ··· pi−1 pi+1 ··· pn

∣

∣

∣

2

, (4.1)

with Kr(pi) = Kr
ε (pi) + Kr(pi), where Kr(pi) is irrelevant for the current discussion, and

Kr
ε (pi)=

4 g2
µµ−2ε CA

p2
i

[

1+
g2
µµ−2εCAΓ(1−ε)

(4π)2+ε

(

β0/NC
1

ε

{

1−
(

p2
i

µ2

)ε(

1−ε2 π2

6

)}

+

(

p2
i

µ2

)ε(
4

3
− π2

3
+

5

3

β0

NC
+ ε

(

14ζ(3) − 32

9
− 28

9

β0

NC

))

)]

,

(4.2)
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with β0 = 11
3

NC − 2
3
nf . The NLL-corrections to the trajectory give

α̂(q2) = − ḡ2
µ

2

ε

(

q2/µ2
)ε

(

1 +
ḡ2
µ

ε

[

(β0/NC)

(

1 − π2

6
ε2

)

−
(

q2

µ2

)ε(
11

6
+

(

π2

6
− 67

18

)

ε +

(

202

27
− 11π2

18
− ζ(3)

)

ε2

− nf

3NC

(

1 − 5

3
ε +

(

28

9
− π2

3

)

ε2

))

])

.

(4.3)

By applying the same regularisation procedure as discussed in section 2.4 we find that for

both the real emission (evaluated above p2
i > λ2) and for the trajectory the term found at

LL accuracy is multiplied by a running coupling logarithm. For the real emission this is:
(

4 g2
µ CA

p2
i

)(

1 −
g2
µ

(4π)

β0

4π
lnp2

i /µ
2

)

. (4.4)

For the regularised trajectory we find

ω0(q, λ) =
αs CA

π
ln

(

λ2

q2

) (

1 +
αs

2

β0

4π
ln

µ4

q2λ2

)

. (4.5)

These results are in complete agreement with what was found in ref. [18, 19]. The logarithm

of the trajectory may seem a little odd (being dependent on λ), but it reproduces the NLL

BFKL results when expanded in β0. Besides, the study of the pure NLL BFKL correction

in ref. [18, 19, 49], show that the organisation of the cancellation of soft divergence is

completely stable for the values explored for λ.

We finish off this section with a simple study illustrating the impact of various scale

choices on the average number of hard jets versus the rapidity difference between the most

forward/backward jet within the cuts of eq. (3.6). We apply three different choices: 1) a

fixed scale choice of 60 GeV, 2) a common scale choice, chosen event by event, of the largest

transverse momentum of any jet, and 3) the latter, including the logarithmic corrections

discussed above.

This observable is just one of many with a strong correlation with the number of hard

jets — in order to describe the region of phase space of large ∆yfb, it is clearly imperative

to describe correctly the emissions of many hard jets. Other such examples are studied in

the next section. The obvious expectation is that for a larger value of αs (smaller scale),

one would see more hard jets than for a smaller value of αs (larger scale). Indeed, this

is found in figure 5 for rapidity differences less than roughly 5. Furthermore, we see that

including the logarithmic corrections outlined above leads to a prediction in-between that

of the fixed, low scale choice of 60 GeV, and the choice of the hardest jet scale. This is of

course entirely as expected. For larger rapidities, phase space constraints become increas-

ingly important, and the scale at which the pdfs are evaluated will influence the details.

Eventually, as ∆yfb increases further, the average number of hard jets decreases as the

phase space for additional radiation is reduced when the energy of the forward/backward

jets gets close to the total available hadronic energy.
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Figure 5. The average number of hard jets (p⊥ > 60GeV) in inclusive dijet production as a

function of the difference in rapidity ∆yfb between the most forward/backward hard jet.

5 Results

In this section we present results for dijet- and trijet-studies within these cuts (identical to

those of eq. (3.6) in section 3.1):

pj⊥ > 60GeV |yj| < 4.5 anti − kt, R = 0.6. (5.1)

We choose as the standard scale choice µr = maxj(p⊥j), and include the running coupling

logarithms from NLL accuracy, as discussed in section 4. As shown explicitly in appendix C,

the all-order framework of High Energy Jets is free from the instability seen in the NLO-

calculation of dijet production [42] when the transverse momentum cut on the two jets is

equal. This problem simply arises from the fact that in a three-particle system, the cut on

the transverse momentum of two particles automatically changes the phase space explored

by the transverse momentum of the third particle. The infra-red region of the real emission

corrections to the dijet system is explored in the limit where the two transverse momenta

of the hard jets are equal. An off-set ∆p⊥ in the cut of the two hardest jets modifies the

soft phase space for additional real emission, and can therefore introduce a logarithmic

dependence on ∆p⊥. However, this dependence seems specific to cross sections terminated

at NLO, and is washed away in several other all-order frameworks, e.g. POWHEG [10, 50,

51] (NLO matched to a parton shower) and the BFKL generator studied in ref. [30]. Since

the problem is related to a fixed-order perturbative calculation rather than any observation

or our description, we will proceed with an equal cut on the transverse momentum of all

jets. Since the numerical estimate of the dijet cross section with equal cuts on the transverse
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Figure 6. The differential dijet-rate with respect to the rapidity difference between the most

forward and most backward hard jet (left) and the transverse momentum of the hardest and second-

hardest jet of the event (right).

momenta differs significantly from LO to NLO, and again from NLO to NLO with a parton

shower (like e.g. POWHEG [10, 50, 51]) it will be interesting to confront such data with

the theoretical descriptions, including the one of High Energy Jets.

We will apply the anti-kt jet-clustering algorithm as defined and implemented in

ref. [39] with R = 0.6. We define ∆yfb as the rapidity difference between the most for-

ward and most backward hard jet. The average number of jets in the events is an obvious

indication of the importance of the hard, higher order corrections that are resummed in

High Energy Jets. In section 5.1.1 we study simple characteristics of the inclusive sample

generated with HEJ ; we then move on to discuss distributions in p⊥, HT (scalar sum of

transverse momenta) and sij (invariant mass between hardest jets), where the corrections

have a particularly large impact. Other all-order approaches like e.g. Cascade [52, 53]

calculate higher order corrections in the kt-factorisation scheme through the evolution of

off-shell pdfs convoluted with a 2 → 2 (off-shell) hard scattering matrix element. It would

be interesting to compare the predictions for these observables also from such a framework.

5.1 Dijet studies

5.1.1 Rapidity and transverse momentum distributions

In figure 6 we have plotted the differential cross section with respect to both ∆yfb (left) and

the transverse momentum of the hardest and second-hardest jet in the event (right). The

dijet rate is peaked at zero rapidity difference, and the radiative corrections have clearly

induced a difference in the transverse momentum distribution of the hardest and second-

hardest jet (which is obviously identical at leading order). The transverse momentum

spectrum is compared to that arising in a LO calculation (using the MSTW2008LO pdf

set, and setting the renormalisation and factorisation scale equal to p⊥j). The LO spectrum

is significantly softer then that of the hardest jet arising in HEJ.
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Figure 7. The differential cross section with respect to HT (top left), and the normalised spectrum

(top right). The radiative corrections implemented in High Energy Jets enhance the high-HT -tail

significantly. The bottom plot is of the average number of hard jets (transverse momentum above

60GeV) in the events as a function of HT . Hard radiative corrections, as those included in HEJ,

are clearly important in the description of events with large HT .

5.1.2 ∆yfb, HT , sj1j2 and the average number of jets

In figure 5 we plotted the average number of hard jets (transverse momentum larger than

60 GeV) according to the anti-kt jet algorithm with R = 0.6 in the inclusive dijet sample,

as a function of the rapidity span ∆yfb between the most forward and most backward hard

jet. As expected, there is a strong correlation between ∆yfb and the average number of

hard jets. The average number of hard jets rises monotonously until ∆yfb ≈ 7, simply

because the partonic phase space increases. However, as the rapidity span is increased

further, the parton density functions fall off so steeply as x → 1 that the production of

additional hard jets beyond the required dijet system is effectively vetoed.

One observable which is often used in the search for signals of new physics at hadron

colliders is the scalar sum of transverse energy (or momentum) in the hard event. For the

jet studies, we define it as

HT =
∑

j

|p⊥j|, (5.2)

where the sum runs over the jets found with a given jet-algorithm, with a transverse mo-
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Figure 8. The differential cross section with respect to the square of the invariant mass sij between

the two hardest jets (top left), and the normalised spectrum (top right). The bottom plot is of the

average number of hard jets (transverse momentum above 60GeV) in the events as a function of

sij . Please see text for discussion.

mentum bigger than some hard cut-off. In figure 7 (top right) we plot the differential cross

section wrt. HT as obtained both at leading order QCD, and within HEJ. The distribution

is clearly more pronounced at large HT when the higher order corrections from HEJ are

included. This is made very clear on the plots of the normalised HT -distribution at the

top right of figure 7. The bottom plot in figure 7 is of the average number of jets in the

events as a function of HT . We see that the average number of jets starts at 2, and very

quickly rises above 3 (already at roughly 600 GeV). A priori, one might have expected the

large-Ht tail to be dominated by two hard jets. Figure 7 clearly demonstrates this is not

the case. Furthermore, the very high average number of jets in the large-HT tail of the dijet

distribution suggests that a veto on further hard jets beyond two would be very efficient

in suppressing the QCD contribution to large-HT dijet events. The rise in the number of

hard jets is a direct consequence of the t-channel colour exchange, and therefore may be

different between the QCD process and any process originating from new physics.

In figure 8 we plot the same three quantities for sij, the square of the invariant mass

between the two hardest jets of the event. From the top-right plot of the normalised dis-

tribution we see that the corrections implemented in HEJ lead to a relative enhancement
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at small sij, and a suppression at large sij compared to the LO result. This behaviour

can be explained by the fact that the radiative corrections implemented in HEJ will fill

the rapidity span between the two LO jets, as seen in e.g. figure 5. The hardest jets are

likely to be the ones that are radiated centrally in rapidity (a similar effect was seen in

ref. [21]). For any value of the rapidity span ∆yfb between the most forward and most

backward hard jet, the higher order corrections implemented in HEJ can produce a central

jet, which has a slightly harder transverse momentum spectrum than the extremal ones,

and is therefore more likely to be the one(s) used in the definition of sij. For all values of

∆yfb, the HEJ -corrections will lead to a smaller value ∆yh of the rapidity span between

the two hardest jets in the event. This in turn induces a smaller value of sij than would

be the case in the description of LO exclusive dijets.

The average number of jets versus sij is shown at the bottom of figure 8. At small val-

ues of sij it is peaked at almost 3.8, then falls off abruptly to 2 already at sij = 2 ·104GeV2,

and then rises to a plateau at 2.25. This behaviour is a sum of two effects. The events at

small sij are dominated by the cases where two additional (central) jets have been radiated

by the HEJ -mechanism; these two jets are often the hardest (in pt), and therefore define

sij (which can be small since the jets can be aligned in p⊥ (i.e. they do not have to be

back-to-back in azimuth as dijets at LO) and close in rapidity). The strong peak at small

sij is therefore an (at least) α2
s-correction to the tree-level dijets. There is another effect,

giving rise to a distribution increasing with sij, starting at 2 for sij = 0 and then reaching

the plateau. This is just the standard O(αs)-effect of one hard radiation. The value 2.25 is

not too far from the value for the average number of jets in the fully inclusive dijet sample

generated with HEJ, so the plateau is just an indication of only a small correlation between

sij and the average number of jets. However, for the O(αs)-correction of additional jets to

arise and the average number of jets to rise from the LO value of two, a rapidity difference

between the two jets is required (c.f. figure 5), and this naturally leads to an increase in

ŝij . This is why the average number of jets is close to 2 only for small ŝij.

While the integral of the curves for dσ/dHT and dσ/dsij are equal to the total

cross section, the same neither is nor should be the case for the average number of jets

vs. dσ/dHT and dσ/dsij. Here, instead the integrals
∫

dσ/dHT AvgJets(Ht) dHT and
∫

dσ/dsij AvgJets(sij) dsij should equal the average number of jets in the inclusive dijet

sample. As shown in figures 7 and 8, dσ/dHT spans 7 orders of magnitude whereas dσ/dsij

spans only about 4. Therefore, the average number of jets can rise very high in the tail of the

HT -distribution, and still have little impact on the average number of jets in the inclusive

dijet sample. However, the large-HT -tail is of course of particular interest in BSM searches.

5.2 Trijet studies

In this section we will briefly present the distributions discussed previously, but this time

for events with at least three hard jets. Many of the features identified in inclusive dijet

production, like e.g. the strong correlation between the average number of jets and the

rapidity difference between the most forward and most backward hard jet are found also

for 3-jet production.
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Figure 9. The differential 3-jet cross section with respect to HT (top left), and the normalised

spectrum (top right). The radiative corrections implemented in High Energy Jets enhance the high-

HT -tail significantly. The bottom plot is of the average number of hard jets (transverse momentum

above 60GeV) in the events as a function of HT . Hard radiative corrections, as those included in

HEJ, are clearly important in the description of events with large HT .

On the top of figure 9 we compare the results for the HT -distribution in 3-jet production

as obtained in leading order and in High Energy Jets. Top left is the distribution in absolute

numbers, on the top right the distribution is divided by the total 3-jet cross section. Just

as in the dijet case, the higher order corrections implemented in HEJ hardens the spectrum

in HT . The average number of hard jets vs. HT is shown on the lower left of figure 9. The

distribution rises to 3.6 at HT = 800 GeV and then drops off slightly for increasing HT . We

note that the in the trijet case, the average number of jets rises 0.6 units above the minimum

required, whereas in the dijet case it rises a full 1.2 units. Both cases represent of course

large corrections to the simplistic tree-level point of view. The lower right plot on figure 9 is

of the average number of jets vs. the rapidity span between the most forward/backward hard

jets. It rises from 3 to roughly 3.8 at rapidity differences between 7 and 8, before dropping

back down towards 3, again because the increase in x necessary for additional radiation

leads to a pdf suppression. An increase in the centre-of-mass energy of the proton-proton

collision will obviously lead to a further increase in the number of hard jets produced.

In figure 10 we study the distributions in the invariant mass between the two hardest

jets in the event. Similarly to the dijet-case, we find that the results from HEJ are sup-
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Figure 10. The differential 3-jet cross section with respect to the square of the invariant mass

sij between the two hardest jets (top left), and the normalised spectrum (top right). The bottom

plot is of the average number of hard jets (transverse momentum above 60GeV) in the events as a

function of sij . Please see text for discussion.

pressed at large sij compared to the 3-jet LO estimate. The bottom plot on figure 10 is

of the average number of jets in inclusive 3-jet events as a function of the invariant mass

between the two hardest jets. The distribution is very strongly peaked at small sij for

exactly the same reason as the dijet case: the correction from additional jet production

allows for two central (and thus generally slightly harder in transverse momentum) jets,

which can form a system of small invariant mass. In fact, the average number of jets in

inclusive 3-jet production at small sij is almost identical to the average number of jets in

inclusive dijet production at small sij.

5.3 Gaps between di-jets

It is possible to construct several observables which are sensitive to additional radiation

from the dijet-system, and thus can be used as a direct test of the description arrived at

using various descriptions like e.g. fixed order [54–59], shower, Cascade [52, 53], analytic

approaches [60, 61] and HEJ. There is a small challenge in defining quantities which are

stable within each perturbative framework. We have already discussed that the NLO

calculation for dijet production is unstable in a setup of equal transverse momentum cuts

on the two jets [30, 42], but that it can be stabilised by requiring e.g. cuts of 65 GeV
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and 60 GeV on the hardest and next-to-hardest jet. Some dijet observables will then be

calculable in several frameworks. A well-studied example of an “inclusive” dijet observable

is the average of cos(π − φjj) vs. ∆yfb. At LO, the two jets are obviously back-to-back,

and cos(π − φjj) = 1. The benefit of this observable is that it is completely inclusive in

the radiation between the two jets (this inclusiveness allows for studies also within (semi-

)analytic approaches of BFKL [62, 63]) - any emission will cause a decorrelation, whether

or not it is identified as a separate jet. An experimental study of this quantity could serve

as a strong test of the description of higher order corrections.

Instead of studying the effect of additional radiation through its impact on the jets

extremal in rapidity, one can study the radiation in-between the dijets directly. The Atlas

collaboration have published a note on such a study in early data from the LHC [64]. They

present data for the so-called “gap fraction”, defined as the fraction of dijet events with

no additional hard jets between the two (in rapidity). We have already seen (e.g. figure 5)

that the average number of hard jets in dijet events increases with the rapidity difference

between the forward/backward jet, and this should obviously be reflected in the “gap

fraction”. These early studies also serve to guide jet veto studies for Higgs boson production

in association with dijets [3, 65]. For these studies, it is of interest to use a small transverse

scale for the vetoing of further jets. The Atlas study defined jets using the anti-kt algorithm,

with R = 0.6, and a transverse scale of 30 GeV. In order to ensure a sufficiently small dijet-

rate (and thus an acceptable scaling factor for the trigger), a harder scale was required. We

will here concentrate on the part of the study, where the average transverse momentum of

the two jets extremal in rapidity was required to be above 60 GeV. The cuts used are then:

pj⊥ > 30GeV p̄⊥ > 60GeV |yj| < 4.5 anti − kt, R = 0.6. (5.3)

where p̄⊥ is the average transverse momentum of the most forward/backward jets.

Figure 11 presents the prediction for both the average number of hard jets (with a

transverse momentum larger than 30 GeV) and the gap fraction obtained using HEJ, within

the cuts in eq. (5.3). We have also indicated the variation in both quantities between a

scale choice of 30 GeV, max(p⊥j) and of max(p⊥j) including the logarithmic corrections

discussed in section 4, all using the pdfs included in MSTW2008 [66]. For the last, “central”

scale choice we also present the results obtained by using NNPDF2.0 [67], including the

full envelope of the 100 uncertainty pdfs. The uncertainty induced by the pdfs on these

quantities is completely negligible (they begin to play a role at ∆yfb > 8). The uncertainty

estimate induced by a variation in the renormalisation and factorisation scale between

30 GeV (the minimum transverse scale for jets) and max(p⊥j) is increasing for increasing

rapidity spans, and amounts to a variation between 3.6 and 4.0 in the average number

of jets (with a transverse momentum larger than 30 GeV) for a rapidity span of 7. These

results are marked by the outer solid lines (on both plots). The central solid line is obtained

by choosing the renormalisation scale max(p⊥j), but including the logarithms as discussed

in section 4. The results obtained by choosing the renormalisation scale as 30 GeV and

including the logarithms is almost identical.

The pdf and scale uncertainty of the predictions for the average number of jets and

the gap fraction are sufficiently small that the the ideas and calculations presented here

can be meaningfully confronted with data, once it has become available.
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Figure 11. The average number of jets and gap fraction vs. the rapidity difference ∆yfb between

the most forward and most backward jets. The upper and lower solid lines are for scale choices of

30GeV and max(p⊥j) respectively. The central solid lines are for a scale choice of max(p⊥j) plus

the logarithms of section 4 for MSTW2008 [66] uncertainty pdf sets. The difference between the

sets is barely observable. Also shown in dotted and dashed lines are the results with the uncertainty

sets from NNPDF2.0 [67].

6 Summary and conclusions

We have discussed the implementation of the framework of High Energy Jets [11, 12] in

a flexible Monte Carlo; the new components discussed in the present paper include 1) the

organisation of the all-order cancellation of IR divergences between real and virtual correc-

tions (section 2.4), 2) matching to high multiplicity tree-level matrix elements (section 3),

and 3) the inclusion of higher order logarithmic terms to stabilise the scale dependence

(section 4).

In section 5 we studied the impact of the perturbative corrections included in High

Energy Jets on a number of dijet and trijet distributions. We find that compared to LO,

the distribution is harder in both the transverse momentum and in HT (the scalar sum

of transverse jet momenta), while the invariant-mass distribution between the two hardest

jets is softened. Similar results hold for trijet-observables. Therefore, the understanding of

the radiative corrections could lead to better methods for suppressing the Standard Model

contribution in new-physics searches.

The effect of hard, perturbative corrections is cleanly displayed by the average number

of hard jets versus the observable in question. This is particularly true for the rapidity

span between the most forward/backward hard jets, which is a direct measure of the phase

space available for hard radiation.

Finally, in section 5.3, we presented the prediction obtained from High Energy Jets of

an observable sensitive to inter-jet radiation, which is currently under study by Atlas [64].

We find that the theoretical uncertainty on the quantities studied is dominated by the scale

choice, while the variation induced by pdf uncertainties is completely negligible.

The generator High Energy Jets is available at http://cern.ch/hej.
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A The building blocks for the regularised High Energy Jets-cross sec-

tions

We define here in one place the necessary building blocks to construct an amplitude in the

HEJ framework:
∣

∣Mreg
HEJ({pi})

∣

∣

2
=

1

4 (N2
C − 1)

‖Sf1f2→f1f2
‖2

·
(

g2 Kf1

1

t1

)

·
(

g2 Kf2

1

tn−1

)

·
n−2
∏

i=1

(

g2CA

( −1

titi+1
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4
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(
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)

))

·
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∏

j=1

exp
[

ω0(qj , λ)(yj−1 − yj)
]

.

(A.1)

Our momentum convention will be that pA and pB represent the momenta of the forward

and backward moving initial partons respectively. The outgoing momenta of all quarks and

gluons are then numbered in decreasing rapidity so p1 is the most forward etc. We then

define qi to be the momenta which correspond to the t-channel momenta in the effective

t-channel exchange picture, that is

q1 = pA − p1, qi = qi−1 − pi 2 ≤ i ≤ n − 1. (A.2)

The current pieces, ‖Sf1f2→f1f2
‖2, indicate the square of pure current-current scatter-

ing. For quarks this is

‖SqQ→qQ‖2 =
∣
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Anti-quarks are treated in the same way with j−a1 → j̄−a1 = v̄−a γµv−1 . For gluons it is more

complicated as there is an overall factor for helicity conserving channels (see eq. (2.9)):

‖Sqg→qg‖2 =
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(A.4)

For this example of a backward-moving parton z = p−n /p−b . The result for a forward-moving

gluon is the same with pa ↔ pb, p1 ↔ pn and z = p+
1 /p+

a .

Gluon-gluon scattering is the natural generalisation of what has gone before. There

are now two relevant ratios z1 = p+
1 /p+

a and z2 = p−2 /p−b . Then we define

‖Sgg→gg‖2 =
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(A.5)
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λ (GeV) σ(2j) (µb) σ(3j) (µb) σ(4j) (µb)

0.2 1.58 5.90 E-2 9.6±0.1 E-3

0.5 1.58 5.93 E-2 10.1±0.1 E-3

1.0 1.59 5.95 E-2 9.7±0.2 E-3

2.0 1.61 5.99 E-2 9.2±0.2 E-3

Table 1. Exclusive n-jet cross sections for different values of the regularisation parameter λ. The

errors shown are statistical — they are not shown for the 2j and 3j rates because they are smaller

than the last quoted digit.

Returning to the remaining pieces of eq. (A.1), the factors Kf1
are straight-forward and

inspired by the exact high-energy limit: Kq = CF for a quark of any flavour and Kg = CA

for gluons.

The emission vertices were given in eq. (2.10):

V ρ(qi, qi+1, pA, pB , p1, pn) = − (qi + qi+1)
ρ

+
pρ

A

2

(

q2
i

pi+1 · pA
+

pi+1 · pB

pA · pB
+

pi+1 · pn

pA · pn

)

+ pA ↔ p1

− pρ
B

2

(

q2
i+1

pi+1 · pB
+

pi+1 · pA

pB · pA
+

pi+1 · p1

pB · p1

)

− pB ↔ pn.

(A.6)

The combination of the virtual corrections in section 2.3 and the regularisation in

section 2.4 give the following factor in the exponential in eq. (A.1):

ω0(qj, λ) = − αsNC

π
log

q2
j

λ2
(A.7)

where the bold indicates that it is the sum of the square of the transverse components

which are included in the log.

B Variations of the regularisation parameter λ

In this appendix, we show a few results to demonstrate that our conclusions are not sensitive

to the chosen value of the regularisation parameter λ. This is the scale above which

radiation is considered to be a real emission. The regularisation procedure is described in

full in section 2.4. We again use the cuts defined in eq. (3.6) throughout.

Table 1 shows the exclusive n-jet rates for n = 2, 3, 4, for values of λ from 0.2–2 GeV. We

can see that the changes in λ do not have a large effect, particularly for the 2j and 3j rates.

Figure 12 shows the distribution of the rapidity difference between most forward and

most backward jet, ∆yfb, for different values of λ both for the inclusive 2-jet sample and the

exclusive 3-jet sample. The differences are very small. We use λ = 0.5 GeV as the default.

In the HEJ framework, the number of quarks and gluons is treated as a variable and

contributions are summed over n from 2 to ∞, see eq. (2.23). In practice, there is an upper

cut-off on the value of n. This has a very weak dependence on λ as it stands to reason that
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Figure 13. The inclusive dijet cross section from HEJ as a function of the offset-parameter ∆p⊥.

the lower the cut-off on resolved emissions, the more of them you need to consider to get

the same results. For λ = 0.5 GeV, we use nmax = 22, and find no observable difference in

physical results by varying around this value.

C Stability of equal cut in the transverse momentum of dijets

As discussed in section 5.1, NLO calculations suffer from an instability when the transverse

momentum cuts on the two jets are symmetric [42]. The effect is neatly demonstrated by

integrating the simple BFKL approximation to the 2 → 3 parton matrix element,

|M|2
ŝ2

∝ 1

p2
1⊥p2

2⊥p2
3⊥

(C.1)

over p1⊥>E⊥+∆, p2⊥>E⊥
with p3⊥ constrained by momentum conservation. The result is

then propotional to (see also [30])

− 1

(E⊥ + ∆)2

(

2 log

(

E⊥

E⊥ + ∆

)

+
2E⊥∆ + ∆2

E2
⊥

log

(

2E⊥∆ + ∆2

(E⊥ + ∆)2

))

. (C.2)
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As already discussed, the ∆ log ∆-behaviour for small ∆ arises because a different cut on

the transverse momenta of the two hardest final state partons automatically induces a

cut on the soft phase for the third final state parton. The unphysical ∆ log ∆-behaviour is

solved by allowing multiple emissions from the tree-level dijet configuration, so a cut on the

dijet momenta does not automatically induce a cut on the transverse momenta of further

partons, and the final result obtained in HEJ has a physical behaviour. The result from

HEJ for varying ∆, shown in figure 13, is in line with that expected from the reduction in

phase space with increasing ∆.
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[13] J.R. Andersen, L. Lönnblad and J.M. Smillie, A parton shower for High Energy Jets,

arXiv:1104.1316 [SPIRES].

[14] V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the pomeranchuk singularity in

asymptotically free theories, Phys. Lett. B 60 (1975) 50 [SPIRES].

– 33 –

http://dx.doi.org/10.1088/1126-6708/2007/04/052
http://arxiv.org/abs/hep-ph/0703202
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0703202
http://dx.doi.org/10.1007/JHEP06(2010)091
http://arxiv.org/abs/1001.3822
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.3822
http://arxiv.org/abs/1003.1241
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1003.1241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA,46,712
http://dx.doi.org/10.1016/0370-2693(92)90312-R
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B274,116
http://dx.doi.org/10.1088/1126-6708/2001/11/063
http://arxiv.org/abs/hep-ph/0109231
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0109231
http://dx.doi.org/10.1016/0010-4655(92)90068-A
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB,71,15
http://dx.doi.org/10.1016/S0550-3213(02)00249-3
http://arxiv.org/abs/hep-ph/0108069
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0108069
http://dx.doi.org/10.1088/1126-6708/2002/06/029
http://arxiv.org/abs/hep-ph/0204244
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0204244
http://dx.doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/hep-ph/0409146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0409146
http://dx.doi.org/10.1007/JHEP01(2010)039
http://arxiv.org/abs/0908.2786
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.2786
http://dx.doi.org/10.1103/PhysRevD.81.114021
http://arxiv.org/abs/0910.5113
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0910.5113
http://arxiv.org/abs/1104.1316
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1104.1316
http://dx.doi.org/10.1016/0370-2693(75)90524-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B60,50


J
H
E
P
0
6
(
2
0
1
1
)
0
1
0

[15] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory,

Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [SPIRES].

[16] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The pomeranchuk singularity in nonabelian gauge

theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [SPIRES].

[17] I.I. Balitsky and L.N. Lipatov, The pomeranchuk singularity in quantum chromodynamics,

Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [SPIRES].

[18] J.R. Andersen and A. Sabio Vera, Solving the BFKL equation in the next-to-leading

approximation, Phys. Lett. B 567 (2003) 116 [hep-ph/0305236] [SPIRES].

[19] J.R. Andersen and A. Sabio Vera, The gluon Green’s function in the BFKL approach at

next-to-leading logarithmic accuracy, Nucl. Phys. B 679 (2004) 345 [hep-ph/0309331]

[SPIRES].

[20] J.R. Andersen and C.D. White, A new framework for multijet predictions and its application

to Higgs boson production at the LHC, Phys. Rev. D 78 (2008) 051501 [arXiv:0802.2858]

[SPIRES].

[21] J.R. Andersen, V. Del Duca and C.D. White, Higgs boson production in association with

multiple hard jets, JHEP 02 (2009) 015 [arXiv:0808.3696] [SPIRES].

[22] J.R. Andersen and J.M. Smillie, All-order corrections and multi-jet rates,

PoS(RADCOR2009)019 [arXiv:1001.4463] [SPIRES].

[23] J.R. Andersen and J.M. Smillie, High energy description of processes with multiple hard jets,

Nucl. Phys. Proc. Suppl. 205-206 (2010) 205 [arXiv:1007.4449] [SPIRES].

[24] V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J.

Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [SPIRES].

[25] L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94

[Yad. Fiz. 20 (1974) 181] [SPIRES].

[26] G. Altarelli and G. Parisi, Asymptotic freedom in parton language,

Nucl. Phys. B 126 (1977) 298 [SPIRES].

[27] Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e−

annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977)

641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [SPIRES].

[28] C.R. Schmidt, A Monte Carlo solution to the BFKL equation,

Phys. Rev. Lett. 78 (1997) 4531 [hep-ph/9612454] [SPIRES].

[29] L.H. Orr and W.J. Stirling, Dijet production at hadron hadron colliders in the BFKL

approach, Phys. Rev. D 56 (1997) 5875 [hep-ph/9706529] [SPIRES].

[30] J.R. Andersen, V. Del Duca, S. Frixione, C.R. Schmidt and W.J. Stirling, Mueller-Navelet

jets at hadron colliders, JHEP 02 (2001) 007 [hep-ph/0101180] [SPIRES].

[31] V.S. Fadin, R. Fiore, M.G. Kozlov and A.V. Reznichenko, Proof of the multi-Regge form of

QCD amplitudes with gluon exchanges in the NLA, Phys. Lett. B 639 (2006) 74

[hep-ph/0602006] [SPIRES].

[32] B.L. Combridge and C.J. Maxwell, Untangling large pT hadronic reactions,

Nucl. Phys. B 239 (1984) 429 [SPIRES].

– 34 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA,44,443
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA,45,199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA,28,822
http://dx.doi.org/10.1016/S0370-2693(03)00871-2
http://arxiv.org/abs/hep-ph/0305236
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0305236
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.034
http://arxiv.org/abs/hep-ph/0309331
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0309331
http://dx.doi.org/10.1103/PhysRevD.78.051501
http://arxiv.org/abs/0802.2858
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2858
http://dx.doi.org/10.1088/1126-6708/2009/02/015
http://arxiv.org/abs/0808.3696
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.3696
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RADCOR2009)019
http://arxiv.org/abs/1001.4463
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.4463
http://dx.doi.org/10.1016/j.nuclphysBPS.2010.08.044
http://arxiv.org/abs/1007.4449
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1007.4449
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA,15,438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA,20,94
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B126,298
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA,46,641
http://dx.doi.org/10.1103/PhysRevLett.78.4531
http://arxiv.org/abs/hep-ph/9612454
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9612454
http://dx.doi.org/10.1103/PhysRevD.56.5875
http://arxiv.org/abs/hep-ph/9706529
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9706529
http://dx.doi.org/10.1088/1126-6708/2001/02/007
http://arxiv.org/abs/hep-ph/0101180
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0101180
http://dx.doi.org/10.1016/j.physletb.2006.03.031
http://arxiv.org/abs/hep-ph/0602006
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0602006
http://dx.doi.org/10.1016/0550-3213(84)90257-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B239,429


J
H
E
P
0
6
(
2
0
1
1
)
0
1
0

[33] I.I. Balitsky, L.N. Lipatov and V.S. Fadin, Regge processes in non-Abelian gauge theories (in

Russian), in Leningrad 1979, Proceedings, Physics Of Elementary Particles, Leningrad

Russia (1979), pg. 109 [SPIRES].

[34] V. Del Duca, Parke-Taylor amplitudes in the multi-Regge kinematics,

Phys. Rev. D 48 (1993) 5133 [hep-ph/9304259] [SPIRES].

[35] V. Del Duca, Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in

the high-energy limit, Phys. Rev. D 52 (1995) 1527 [hep-ph/9503340] [SPIRES].

[36] A.V. Bogdan and V.S. Fadin, A proof of the reggeized form of amplitudes with quark

exchanges, Nucl. Phys. B 740 (2006) 36 [hep-ph/0601117] [SPIRES].

[37] V.S. Fadin, M.G. Kozlov and A.V. Reznichenko, Radiative corrections to QCD amplitudes in

quasi-multi-Regge kinematics, Phys. Atom. Nucl. 67 (2004) 359 [Yad. Fiz. 67 (2004) 377]

[hep-ph/0302224] [SPIRES].

[38] V.S. Fadin, The gluon Reggeization in perturbative QCD at NLO, hep-ph/0511121 [SPIRES].

[39] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm,

JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

[40] J.R. Andersen, On the role of NLL corrections and energy conservation in the high energy

evolution of QCD, Phys. Lett. B 639 (2006) 290 [hep-ph/0602182] [SPIRES].

[41] J.R. Andersen and A. Sabio Vera, The gluon Green’s function in N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 699 (2004) 90 [hep-th/0406009] [SPIRES].

[42] S. Frixione and G. Ridolfi, Jet photoproduction at HERA, Nucl. Phys. B 507 (1997) 315

[hep-ph/9707345] [SPIRES].
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