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Abstract— Multiple kernel clustering (MKC) has been inten-
sively studied during the last few decades. Even though they
demonstrate promising clustering performance in various appli-
cations, existing MKC algorithms do not sufficiently consider
the intrinsic neighborhood structure among base kernels, which
could adversely affect the clustering performance. In this paper,
we propose a simple yet effective neighbor-kernel-based MKC
algorithm to address this issue. Specifically, we first define a
neighbor kernel, which can be utilized to preserve the block
diagonal structure and strengthen the robustness against noise
and outliers among base kernels. After that, we linearly combine
these base neighbor kernels to extract a consensus affinity matrix
through an exact-rank-constrained subspace segmentation. The
naturally possessed block diagonal structure of neighbor kernels
better serves the subsequent subspace segmentation, and in
turn, the extracted shared structure is further refined through
subspace segmentation based on the combined neighbor ker-
nels. In this manner, the above two learning processes can be
seamlessly coupled and negotiate with each other to achieve
better clustering. Furthermore, we carefully design an efficient
iterative optimization algorithm with proven convergence to
address the resultant optimization problem. As a by-product,
we reveal an interesting insight into the exact-rank constraint in
ridge regression by careful theoretical analysis: it back-projects
the solution of the unconstrained counterpart to its principal
components. Comprehensive experiments have been conducted
on several benchmark data sets, and the results demonstrate the
effectiveness of the proposed algorithm.

Index Terms— Kernel method, multiple kernel learning,
neighbor kernel, subspace segmentation.

I. INTRODUCTION

M
ULTIPLE kernel clustering (MKC) [1]–[6] provides

an elegant framework to group samples into clusters
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by extracting and enhancing common structure from com-

plementary information sources (base kernels). Based on the

criteria that are utilized to guide the common cluster structure

extraction, existing methods can be roughly categorized into

four branches, i.e., margin-based [1], [7], spectral clustering-

based [4], [8], [9], kernel k-means-based [3], [10]–[15], and

kernel decomposition-based [2], [16]–[21] algorithms. Among

these algorithms, margin-based methods extend the maximum

margin classification formulation [22], [23] into the field of

unsupervised learning by simultaneously assigning labels and

maximizing the margin between different clusters [1], [7].

Spectral clustering-based methods adopt cotraining and coreg-

ularization mechanisms to look for clusters that are consis-

tent across views [4], [8]. Kernel k-means-based algorithms

construct an optimal kernel that integrates intrinsic informa-

tion from all views for k-means clustering [3], [12], [24].

Comparatively, kernel decomposition-based methods factorize

the prespecified base kernels in various fashions to filter the

noisy information while extracting the shared discriminative

structure [18], [19], [21]. Given their inherent antinoise capa-

bility, kernel decomposition-based MKC algorithms tend to

provide more robust and promising performance in various

applications [2], [16], [17] and thus remain a hotspot of

research activity in the field. Our proposed algorithm in this

paper belongs to this category.

The goal of kernel decomposition-based MKC is to find an

effective method of kernel factorization that can best eliminate

the adverse effect of noise and outliers among base kernels and

extract complementary discriminative information for cluster-

ing. Under the guidance of this roadmap, the work in [2]

models this problem as a multiple undirected graph mining

task. They propose a novel linked matrix factorization (LMF)

algorithm to extract common information from multiple graphs

and filter out irrelevant information. In [17] and [21], the base

kernels are reconstructed as a combination of a shared low-

rank matrix and different sparse matrices. In this formulation,

the low-rank matrix stands for the common cluster structure,

while sparse matrices stand for different noises within base

kernels. To more appropriately model the kernel noise and

add better regularization to kernel decomposition, an `2,1-norm

and a positive semidefinite (PSD) constraint are introduced to

the objective function for the noise matrices and the low-rank

matrix in [19].

The aforementioned methods share a common assumption

that samples are approximately drawn from a common low-

dimensional space. However, in practical applications, it is

not uncommon that a given data set cannot be appropriately

represented by a single subspace. A more reasonable remedy
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is to assume that samples are polluted observations drawn

from a mixture of several independent subspaces [25]. To this

end, based on the multisubspace hypothesis, the work in [20]

proposed a subspace segmentation-based MKC algorithm.

In this method, a common consensus sparse reconstruction

matrix was optimized to reveal the intrinsic subspaces shared

by base kernels. To encourage the reconstruction matrix to

integrate more diverse information from the base kernels,

the Hilbert Schmidt independence criterion (HSIC) is utilized

as a diversity measuring term to encourage exploring the

complementarity of multiple representations in [18]. These

methods launched another substantial step to improve the

performance of MKC algorithms. However, the mentioned

models are designed globally, which implies all relationships

between any of the two components should be finely and

equally considered. Nevertheless, this setting neglects a well-

established problem in which the similarity evaluated for two

distant samples in a high-dimensional space is less reliable due

to the presence of the underlying manifold structure [26]–[31].

Furthermore, as pointed out in [32], for unsupervised tasks,

preserving the local geometric structure of data is much more

effective than preserving pairwise similarity. To this end,

several algorithms have been proposed. The work in [18]

introduces graph regularization to encourage local geometry

preservation in MKC subspace clustering methods. However,

the resultant extra hyperparameter that balances the impor-

tance of this term is not preferable in unsupervised learning

scenarios. A novel local kernel alignment-based method that

only focuses on aligning the local elements within base kernels

is proposed in [33]. However, since the base kernels can be

noisy [9], the lack of a noise elimination mechanism limits the

performance of this algorithm. In [20], by minimizing both

the `1-norm and the `2-norm of the reconstruction matrix,

the proposed formulation intrinsically enforces the method to

represent samples with nearby counterparts. However, in this

paper, the authors drew help from human experts and set the

weights of kernels manually, which limits the applicability of

the proposed algorithm.

To solve the aforementioned issues, we propose a novel

neighbor-kernel-based MKC algorithm in the framework of

subspace segmentation. Although preserving the neighborhood

relation among samples may have been presented in solving

other tasks, our work is distinguished by the following.

1) Identifying an important issue for the first time, which

has been overlooked in multiple kernel subspace seg-

mentation, and proposing an effective solution.

2) Designing a novel neighbor-kernel algorithm to solve

the resultant optimization problem and theoretically ana-

lyzing its convergence and computational complexity.

Through careful mathematical analysis, we discover

that our solution to the exact-rank-constrained least-

square regression problem is identical to the optimal

solution in [24], thus also finds the global minimizer.

The result also sheds light on the intrinsic mechanism

of exact-rank-constrained ridge regression by revealing

its relationship with the unconstrained counterpart.

3) Performing extensive experiments on both synthetic and

popular benchmark data sets that validate our identifica-

tion of the issues and the effectiveness of our solution.

Moreover, experimental results also proved the effective-

ness of our proposed neighbor kernels on improving the

performance of the existing state-of-the-art methods.

4) The proposed algorithm is readily extended to other

related multiview topics, such as multiview clustering

and subspace learning.

II. METHOD

A. Construction of the Neighbor Kernel

It is common for existing kernel-based methods to reveal

the underlying structure of data by calculating the pair-

wise similarity between samples. However, in many suc-

cessful machine learning algorithms, such as dimensionality

reduction [34], [35], clustering [16], [36], and recent feature

selection algorithms [32], [37], [38], researchers find that it

is beneficial to preserve only the reliable local geometry as a

representation of the data structure. There are two main under-

lying reasons. On the one hand, since the global nonlinear

high-dimensional structure can be finely reserved by hooking

the local geometry patches, preserving only the local similarity

among data will not degrade the capacity of the corresponding

algorithms to reveal the global data structure [34]. On the other

hand, as pointed out in [26], the similarity estimation between

relatively long-distance samples may be inaccurate since the

ambient geometry in the high-dimensional input space may be

highly folded, twisted, or curved. Moreover, even worse are the

disturbances caused by noise and outliers within data, which

can further undermine the structure of the underlying manifold,

making the long-distance similarity more unreliable. As a

consequence, in the unsupervised kernel learning scenario,

without the discriminative guidance of labels, it is a reasonable

and practical strategy to preserve only the high-confidence

local similarities for learning the intrinsic global manifold of

data.

Based on the idea of representing the global intrinsic

manifold in kernels with local structure patches, we first show

how to construct the neighbor kernel. Its construction includes

three steps, i.e., neighbor searching, kernel construction, and

normalization. In the first step, the neighbors of samples are

searched by finding the nearest k samples in the average

kernel space. It is worth noting that this operation only

requires that most of the base kernels are informative and

are complementary to each other, and it is much weaker than

the requirement of the cotraining-based methods that require

all the base kernels to be informative for clustering [4], [8].

By taking this approach, we integrate complementary infor-

mation from different base kernels to help robustly reveal the

correct neighborhood relationships among samples. Denote the

neighbor indicating matrix for a sample j as N( j ) ∈ {0, 1}S×S,

where S is the sample number of the data set, N( j )(a, b) = 1

if sample a, b are both neighbors of sample j according

to the average kernel space metric, and N( j )(a, b) = 0 if

not. Then, given a set of base kernels {Ko
i }(i = 1, · · · , p),
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Fig. 1. Illustration of (a)–(c) original base kernels and (d)–(f) corresponding
neighbor kernels on UCI-Digit data set.

the corresponding neighbor kernel Ki of a base kernel Ko
i can

be formulated as

Ki =

S
∑

j=1

N( j ) ◦ Ko
i

where ◦ is the Hadamard product. Through the formulation,

we can see that a neighbor kernel is constructed by extract-

ing and summing the neighbor elements of each sample in

the original kernel space. It is easy to ascertain that for

each index j , the neighbor indexing matrix N( j ) is PSD,

so the matrix
∑S

j=1 N( j ) is also PSD. As a consequence,

the constructed matrix Ki is also a kernel matrix. Finally,

we normalize the generated neighbor kernels to unit trace.

In Fig. 1, we illustrate original base kernels and the cor-

responding neighbor kernels on the UCI-Digit data, which is

a widely used benchmark in MKC. For the neighbor kernels,

the number of neighbors is fixed as 0.01∗S. For better illustra-

tion, we permute the order of the matrices to illustrate assem-

bling samples from the same category. As seen from Fig. 1,

the constructed neighbor kernels are more discriminative (with

a better block diagonal structure). Additionally, the noise

within kernels is largely suppressed. This phenomenon is more

obvious in the third kernel [see Fig. 1(c) and (f)]. Two reasons

contribute to the merits of neighbor kernels. First, since the

neighbor samples are more likely to lie in the same cluster with

each other, keeping only the neighborhood similarities may

help to maintain the essential connection while cutting off the

weak ones. Second, the complementary information extracted

from different views remedies the missing information of each

other. Since the neighbor kernels can better reveal the intrinsic

cluster structure of data sets, they can well meet the subspace

independent assumption and are thus appealing inputs to the

subspace segmentation algorithms.

B. Subspace Segmentation

Subspace segmentation, also known as subspace clustering,

is a family of methods that models a collection of data points

as the integration of noise and a union of subspaces. The goal

of these methods is to group data into clusters, with each

cluster corresponding to a subspace. In the literature of this

field, a commonly adopted formulation is

min
Z,E

‖Z‖† + λ‖E‖‡, s.t. X = XZ + E (1)

where X, E ∈ R
d×S , and Z ∈ R

S×S are the data matrix,

the noise representation matrix, and the reconstruction matrix,

respectively. Here, d is the dimensionality of the input feature

space. ‖ · ‖† and ‖ · ‖‡ indicate different norms, such as

the `1-norm, `2-norm, nuclear norm, and so on. Specifically,

in [39], the `1-norm of both the reconstruction matrix and

the noise representation matrix are minimized to extract a

sparse representation and filter noise within samples. In [40],

researchers efficiently seek the block diagonal structure of data

by minimizing the Frobenius norm of both matrices under

the assumption of subspace independence. In [41], ‖Z‖∗ and

‖E‖2,1 are minimized to categorize samples to their respective

subspaces and remove the possible outliers.

Generally, in many of the popular methods in this branch,

a common target is to filter noise and reveal the intrinsic block

diagonal structure of data [40]. Since the neighbor kernel

introduced in Section II-A possesses better block diagonal

structure and robustness against noise and outliers, using these

kernels as input largely decreases the difficulty of data recon-

struction and noise modeling. In turn, with the optimization of

subspace segmentation, the remaining noise within neighbor

kernels can be further filtered, and the cluster structure can be

refined. To make full use of the two techniques to better serve

MKC, in Section II-C, we combine them into one framework

and propose a multiple neighbor-kernel subspace segmentation

algorithm.

C. Multiple Neighbor-Kernel Subspace Segmentation

In this section, we integrate multiple neighbor-kernels

Ki (i = 1, · · · , p) with exact low-rank subspace segmen-

tation to extract complementary information from different

base kernels and achieve better clustering performance. The

formulation of our algorithm is as follows:

min
Z,µ

‖Kµ − KµZ‖2
F + α‖Z‖2

F + βµ
⊤Mµ

s.t. rank(Z) = l, Kµ =

p
∑

i=1

µi Ki ,

µ ≥ 0, ‖µ‖1 = 1 (2)

where p is the number of base kernels, l is the expected rank

of Z, M ∈ R
p×p is the centered kernel alignment-based kernel

correlation matrix [42], and µ ∈ R
p is the weight vector for

linear kernel combination. The definition of M is: Ma,b =

Tr(Ka, Kb)/(‖Ka‖F‖Kb‖F). Here, Tr(K⊤
a Kb) calculates the

trace of K⊤
a Kb. ‖Ka‖F is the Frobenius norm of Ka .

Specifically, in (2), the first term of the target function indi-

cates the self-reconstruction error of the combined kernel Kµ.

In this setting, each column of Kµ is treated as a sample.

The second term is a noise simulation term. It is utilized

to improve the robustness of Z against Gaussian noise [43].
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It can also improve the quality of the condition number for

better calculation of the matrix inverse. The third term is

the diversity-inducing term. As discussed in [12], imposing

smaller weights on the redundant kernels and improving

the variety of information sources are crucial for MKC.

To achieve this intuition, we model the kernel correlation

through matrix M and encourage the formulation to impose

higher weights on the kernels that have a smaller correlation

with others and impose smaller weights on the highly corre-

lated ones. Moreover, to enforce the samples from the same

clusters to reconstruct themselves, an exact-rank constraint is

introduced (the first constraint). As a consequence, the kernel

reconstruction matrix Z, which has integrated the information

from multiple base kernels, is forced to be block diagonal.

The unit constraint on the kernel combination coefficient µ

is introduced to discard trivial solutions. α and β are the

hyperparameters that balance the importance of the kernel

reconstruction term and the two generalization terms. In sum-

mary, through this formulation, we: 1) extract and fine-tune

the intrinsic cluster structure by calculating a common block

diagonal kernel reconstruction matrix Z through an exact-rank-

constrained subspace segmentation and 2) find the optimal

linear combination by minimizing the sample reconstruction

error and the kernel correlation.

D. Optimization Algorithm

Because the rank constraint is nonconvex and discrete,

the optimization of our proposed algorithm is difficult. In many

of the existing algorithms, for the sake of optimization sim-

plicity, a nuclear norm [44] is adopted to replace the rank

constraint as an approximation. However, as discussed in [45],

the performance will be adversely influenced due to the

inaccurate estimation. In this section, to solve the difficult

optimization problem, we design a two-step iterative optimiza-

tion algorithm with proven convergence to solve the resulting

problem in (2). In each iteration, an exact-rank-constrained

ridge regression problem and a quadratic programming (QP)

problem is solved in turn.

Update Z With Fixed µ: With µ fixed, the optimization

problem can be simplified as

min
Z

‖Kµ − KµZ‖2
F + α‖Z‖2

F, s.t. rank(Z) = l. (3)

Equation (3) can be written as

min
Z

Tr
(

AZZ⊤ − 2K2
µZ

)

, s.t. rank(Z) = l (4)

where A = Kµ
2 + αIS and IS is an S-order identity matrix.

To eliminate the discrete and nonconvex rank constraint,

we take advantage of the exact-rank constraint and introduce

two matrices, i.e., G, H ∈ R
S×l , to replace Z as GH⊤.

In these matrices, H is an orthogonal matrix, i.e., H⊤H = I.

Then, substituting Z in (4) with GH⊤, we eliminate the rank

constraint and obtain the following formulation:

min
G,H

Tr(AGG⊤ − 2Kµ
2GH⊤)

s.t.G, H ∈ R
S×l, H⊤H = I. (5)

Algorithm 1 MKC With Neighbor-Kernel Subspace

Segmentation

Input:

Base kernel set {Ko
i }

p
i=1. Hyperparameters α, β. The num-

ber of nearest neighbors and the expected rank of Z.

Output:

Kernel combination weight µ and the reconstruction matrix

Z;

1: Generate the corresponding neighbor-kernel set {Ki }
p
i=1

and set t = 1;

2: repeat

3: Calculate K(t) =
∑p

i=1 µ
(t)
i Ki

4: Calculate H(t) by optimizing Eq. (6);

5: Calculate Z(t) = A−1K(t)2
H(t)H(t)⊤;

6: Calculate µ
(t) by solving the QP problem in Eq. (9);

7: t = t + 1.

8: until |Obj(t) − Obj(t−1)| < 10−4 × |Obj(t)|.

Setting the derivation of formula (5) on G to zero, we have

G∗ = A−1K2
µH. Substituting G∗ into (5), we have

max
H

Tr(H⊤K2
µA−1K2

µH)

s.t.H ∈ R
S×l, H⊤H = I. (6)

To calculate the optimal H, denoted as H∗, we perform KPCA

on K2
µA−1K2

µ and extract the eigenvectors according to the

largest l eigenvalues of the matrix. Then, substituting G∗

and H∗ back into Z, the solution of (4) can be obtained by

calculating

Z∗ = G∗H⊤
∗ = A−1K2

µH∗H⊤
∗ . (7)

Update µ With Fixed Z: Given Z, the original optimization

problem in (2) can be simplified as

min
µ

‖Kµ − KµZ‖2
F + βµ

⊤Mµ

s.t.µ ≥ 0, ‖µ‖1 = 1, Kµ =

p
∑

i=1

Ki · µi . (8)

Equation (8) can be rewritten as

min
µ

µ
⊤(βM + M∗)µ, s.t. µ ≥ 0, ‖µ‖1 = 1 (9)

where M∗
ab = Tr(Ka(Z− IS)(Kb(Z− IS))⊤). This is a typical

QP problem with linear constraints. It can be easily solved

with the optimization toolbox in MATLAB.

We summarize our optimization algorithm for (2) in

Algorithm 1. Generally, in each iteration, the reconstruction

matrix Z and the kernel weights µ are iteratively optimized.

The algorithm stops when the variation of the objective value

of (2) (denoted as Obj) reaches a preset threshold (10−4).

E. Discussion

In this section, we first compare the solution of ridge

regression with and without the exact-rank constraint and shed

light on the intrinsic meaning of the rank constraint in the

formulation. Then, we analyze the optimality of our proposed
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solution for the exact-rank-constrained ridge regression prob-

lem. Finally, we further analyze the convergence and com-

putational complexity of the proposed iterative optimization

algorithm.

1) Insight Into the Solution of Exact-Rank-Constrained

Ridge Regression: We reveal the essence of the exact-rank

constraint in ridge regression by comparing the solution with

and without the constraint. Without the rank constraint, the

formulation of (3) is simple

min
Z

‖Kµ − KµZ‖2
F + α‖Z‖2

F . (10)

Its global optimal solution can be quickly obtained by cal-

culating Z = (K2
µ + αIS)−1K2

µ = A−1K2
µ. When the rank

constraint is added, as discussed in Section II-D, the solution

of (3) becomes Z∗ = A−1K2
µH∗H⊤

∗ . The only difference

between these two solutions is the matrix H∗H⊤
∗ . In this term,

the multiplication of H∗ first projects the solution of ridge

regression to the informative directions to keep the discrimi-

native information for clustering and discard the within-cluster

details that might confuse the algorithm during clustering.

Then, since H∗ is orthogonal, its transpose matrix inversely

maps the samples back to its original feature space. For more

detailed information about the mechanism of backprojection,

please refer to [4]. In summary, the exact-rank constraint

in ridge regression forces the unconstrained formulation to

project its solution onto the more discriminative directions and

then back-project it to the original feature space.

2) Solution Optimality: In this section, we prove that our

solution for the exact-rank-constrained rigid regression prob-

lem is equivalent to the global minimizer of [45]. The deduc-

tion is straightforward. We simply compare the equivalence

of these two solutions by subtracting one from the other.

For the convenience of the following proof, we denote the

solution of our proposed algorithm and the solution proposed

in [45] as Z1 and Z2, respectively. Additionally, we decom-

pose the symmetric positive definite matrix A as CC⊤ =

(UAD
1/2
A )(UAD

1/2
A )⊤, where UA is an orthogonal matrix that

contains the eigenvectors of A, and DA is a diagonal matrix

whose diagonal values are the eigenvalues of A. With these

definitions, (4) can be rewritten as

min
Z

∥

∥C⊤Z − C−1K2
µ

∥

∥

2

F
, s.t. rank(Z) = l. (11)

Denoting B = C−1K2
µ, according to the conclusion in [45],

the global minimizer of (11) is: Z2 = C−1⊤
UDlV

⊤, where Dl

consists of the largest l singular values of B given the SVD

of B = UDV⊤. Then, subtracting Z1 [defined in (7)] from Z2,

we have

Z1 − Z2 = C−1⊤
C−1K2

µH∗H⊤
∗ − C−1⊤

UDlV
⊤. (12)

According to (6), H∗ is the matrix that consists of the

eigenvectors corresponding to the largest l eigenvalues of

matrix K2
µA−1K2

µ = B⊤B. As a consequence, according to the

definition of V and H∗, we have Vl = H∗. Here, Vl ∈ R
S×l

is composed of the right singular vectors that correspond to

the largest l singular values of B. Denoting Vl
∗ ∈ R

S×S as

the concatenation of Vl and a zero-matrix: [Vl⊤; 0(S−l)×S],

Z1 − Z2 can be transformed as

Z1 − Z2 = C−1⊤
UDV⊤H∗H⊤

∗ − C−1⊤
UDlV⊤

= C−1⊤
UDVl

∗

⊤
− C−1⊤

UDlV⊤ = 0S×S.

Since the solutions of the two methods are equal, our proposed

algorithm can also achieve the global optimal solution for (3).

3) Convergence Analysis: In this section, we prove the

convergence of the proposed optimization algorithm. To clar-

ify this point, we first define the objective function of the

optimization problem as

J (Z,µ) =

{

min
Z,µ

‖Kµ − KµZ‖2
F + α‖Z‖2

F + βµ
⊤Mµ,

s.t .rank(Z) = l, µ ≥ 0, ‖µ‖1 = 1
}

. (13)

As seen from (13), jointly optimizing Z and µ is difficult.

Instead, in Section II-D, we developed a two-step alterna-

tive algorithm to solve it. During the optimization, we fix

one variable and optimize the other one. Specifically, in the

tth iteration, when µ is fixed as µ
(t), we have proven in

Section II-E2 that our algorithm can achieve the global mini-

mizer of J (Z,µ(t)). As a consequence, we have

J (Z(t),µ(t)) ≥ J (Z(t+1),µ(t)). (14)

With fixed Z(t+1), the optimization problem J (Z(t+1),µ) is a

typical QP problem with a convex constraint [see (9)]. We can

prove the convexity of this problem by proving that M + M∗

is PSD. The PSD property of the kernel correlation matrix

M is proven in [42]. In Proposition 1, we will prove that the

matrix M∗ is also PSD.

Proposition 1: The symmetric matrix M∗ in (9) is PSD.

Proof: For any vector x ∈ R
p

x⊤M∗x =

p
∑

a,b=1

xaxbM∗
ab

= Tr

⎛

⎝

p
∑

a,b=1

xaxbKa(Z − IS)(Z − IS)⊤Kb

⎞

⎠

= Tr

⎛

⎝

(

p
∑

a=1

xaKa(Z − IS)

) (

p
∑

b=1

xbKb(Z − IS)

)⊤
⎞

⎠

=

∥

∥

∥

∥

∥

p
∑

a=1

xaKa(Z − IS)

∥

∥

∥

∥

∥

2

F

≥ 0.

�

Since matrix M + M∗ is PSD, the corresponding QP

problem is convex and has a global optimal solution. Denoting

this solution as µ
(t+1), we have

J (Z(t+1),µ(t)) ≥ J (Z(t+1),µ(t+1)). (15)

By combining (14) and (15), we have

J (Z(t),µ(t)) ≥ J (Z(t+1),µ(t+1)) (16)

which indicates that the objective function of our algorithm

in (13) monotonically decreases with the increase of iterations.
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Moreover, the objective function in (13) is lower bounded by

zero. Therefore, we conclude that the proposed algorithm is

theoretically guaranteed to converge to a local minimum.

4) Computational Complexity Analysis: In this section,

we provide the computational complexity analysis of our

proposed optimization algorithm. In each iteration, the cost

of updating H∗ with SVD is O(S3). Calculating Z with

(7) also has a complexity cost of O(S3). To update µ,

the time consumption of a convex linear-constrained QP

problem is O(Lp3), where L is the size of the problem

encoded as binary and p is the number of base kernels [46].

In summary, because, in each iteration, a quadratic program,

an SVD, a matrix inverse, and six matrix multiplication

operations are conducted, the total computational complexity

of our algorithm is O(t (Lp3 + S3)), where t is the number of

iterations. Through our empirical trials, we find that this value

is usually smaller than 15 in most circumstances. Compared

with kernel clustering algorithms with a single kernel or fixed

kernel weights, the proposed algorithm is less efficient due to

the extra time consumed to find appropriate kernel weights

and to perform noise filtering. However, for the sake of

the proposed simple optimization algorithm, it is still more

efficient than other local sample adaptive MKC algorithms,

such as localized multiple kernel k-means (LMKKM) [10],

and comparable to those fast algorithms, such as robust

multiple kernel k-means (RMKKM) (with a time complexity

of O(S2 dp+(S3+S2+S)pt) [11]) and robust MKC (RMKC)

[with a time complexity of O((S2 p + S3)t)]. Here, d is the

feature dimension in the original feature space.

III. EXPERIMENTS

In this section, to evaluate the effectiveness of our proposed

MKC algorithm, especially the efficacy of the neighbor ker-

nels, four experiments are designed. In the first experiment,

we construct a synthetic data set to test the robustness against

noise and outliers of the proposed neighbor kernel. Second,

we compare our proposed algorithm with nine state-of-the-

art MKC algorithms on real-world data sets to evaluate its

performance. Then, we test the sensitivity of the algorithm

against the main hyperparameters. Finally, we apply neighbor

kernels to the existing MKC algorithms and test the capacity

of the proposed kernel on enhancing the performance of these

methods.

Following the settings in [42], we centralize each base

kernel and then normalize it to keep the diagonal elements

of these kernels as one. In our experiments, three widely

used criteria, i.e., accuracy (ACC), normalized mutual infor-

mation (NMI), and purity, are adopted to evaluate the perfor-

mance of the compared MKC methods. For the methods that

output a unified kernel matrix, we conduct kernel k-means

to evaluate their performance. For the methods that output an

affinity matrix or a reconstruction matrix Z, spectral clustering

with the input of (|Z| + |Z⊤|)/2 will be adopted to conduct

clustering. For all algorithms, we repeat each experiment

50 times with random initialization to reduce the effect of

randomness caused by k-means and report the best result.

A. Evaluation of the Effectiveness of Neighbor Kernels

In this section, a synthetic data set is constructed to evaluate

the robustness of the proposed neighbor kernels against noise

and outliers. The main idea of the experiment is to compare

the performance variation of the original kernels and the

corresponding neighbor kernels when noise within the data

increases. The synthetic data are generated by three steps.

First, we generate 600 unit samples evenly with the standard

normal distribution from three independent subspaces, each

of which is extended by four independent components. As a

consequence, the original synthetic data set is a 12-D data set

with 600 samples and three categories. We repeat the same

operation three times to simulate three different views of the

samples. After that, we randomly add white Gaussian noise

N(0, 1) to 40% of randomly selected samples in each view.

The energy level of the noise is increased from 0.05 to 0.5 to

simulate both noise and outliers within data. Finally, we gen-

erate two kernels for each view. One is a linear kernel and

the other is a Gaussian kernel with the bandwidth equal to

the average distance among samples in the corresponding

view. As a consequence, there are six original kernels in

each data set. The synthetic neighbor kernels are constructed

according to the description in Section II-A.

To compare the discriminative capacity and the robustness

of original kernels and neighbor kernels, we report the perfor-

mance of the single best kernels and the average kernels for

comparison. Specifically, in the single best kernel selection

mechanism, we conduct kernel k-means on each kernel alone

and report the best performance. In the average kernel combi-

nation mechanism, the base kernels are combined linearly with

equal weights to integrate information from different views for

clustering. We repeat the experiment ten times to alleviate the

influence of randomness, and the average result is reported in

the experiment.

Fig. 2 shows the performance of the compared algorithms.

From the variation curves, we can clearly find several consis-

tent observations as follows.

1) The performance of all the compared methods decreases

with the increase of noise magnitude. However, compar-

atively, methods using neighbor kernels perform consis-

tently better than those using original kernels in both the

single best kernel and the average kernel methods.

2) In the front part of the curves, which corresponds

to experimental results with relatively low-level noise,

the performance of the average neighbor kernel main-

tains a 20% advantage over the second-best method,

indicating good robustness against noise.

3) In the latter part of the curves, the gaps between

different methods decrease since the noise in samples

gradually dominates the distribution, making some of

them become outliers in the data set.

Nevertheless, even in this circumstance, the neighbor-kernel-

based methods still outperform the original kernel counter-

parts, indicating good robustness against outliers.

In general, the proposed neighbor kernels are robust against

noise and outliers because of the intrinsic weighting mecha-

nism of the kernels. By keeping the more reliable similarities
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Fig. 2. Clustering performance comparison between original kernels and neighbor kernels against the variation of the noise level. In this figure, the yellow,
orange, brown, and blue dotted lines indicate the performance of the average neighbor kernel, best single neighbor kernel, average original kernel, and best
single original kernel, respectively.

Fig. 3. Illustration of the variation of average kernels (first row) and average
neighbor kernels (second row) against different magnitudes of noise. The noise
level increases from 0.1 to 0.5.

TABLE I

BENCHMARK DATA SETS

among neighbors and abandoning those that go beyond the

observation of samples (because of the sample distribution

or noise, and so on), the neighbor kernels are able to keep

the most reliable information and filter the less confident

portion. To better illustrate this point of view, we further

record the variation of the synthetic average kernel and the

average neighbor kernel against the increase of the noise level.

As seen from Fig. 3, the added noise quickly undermined the

standard average kernel and corrupted the cluster structure of

those kernels (starting from noise level 0.1). Comparatively,

the proposed average neighbor kernel performs more robustly

against the injected noise information, with a higher robustness

bar and smaller influence.

B. Comparison With the State-of-the-Art Algorithms

In this section, to verify the effectiveness of our pro-

posed algorithm on real-world data, we compare it with nine

Fig. 4. Visualization of the revealed cluster structure of the compared algo-
rithms with t-SNE [51] on the BBCSport data set. (a) SB-KKM. (b) MKKM.
(c) RMKKM. (d) LMKKM. (e) RMSC. (f) RMKC. (g) MKKM-MR.
(h) LAMKC. (i) Proposed.

state-of-the-art MKC algorithms on 11 popular benchmark

data sets. These data sets are collected from various appli-

cations, including natural language processing (BBCSports2)1

protein function prediction (ProteinFold and PsortPos)2 image

recognition (Flower1023 Caltech101mit)4 and video analy-

sis (CCV).5 The sample, kernel, and cluster numbers of the

data sets range from 554 to 8189, 2 to 69, and 3 to 102,

respectively. All these data sets form abundant and compre-

hensive testing environments for the compared algorithms. It is

worth noting that, in this paper, we even try to utilize our

proposed algorithm to fuse the features generated by different

1http://mlg.ucd.ie/datasets/bbc.html
2http://www.raetschlab.org/suppl/protsubloc
3http://www.robots.ox.ac.uk/ṽgg/data/flowers/102/
4http://www.vision.caltech.edu/Image_Datasets/Caltech101/
5http://www.ee.columbia.edu/ln/dvmm/CCV/
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TABLE II

ACC, NMI, AND PURITY COMPARISON OF DIFFERENT CLUSTERING ALGORITHMS ON 11 BENCHMARK DATA SETS. BOLDFACE:
BEST PERFORMANCE AMONG ALL COMPARED ALGORITHMS. ITALICS: SECOND-BEST PERFORMANCE

deep learning architectures to serve for clustering. In the

experiment, we choose Flower 17 as a representative. Specifi-

cally, we extract the final fully connected layers of three pre-

trained deep convolutional neural networks, i.e., AlexNet [47],

VGG [48], and GoogLeNet [49], and construct three linear

kernels. The detailed information of all the data sets is listed

in Table I.

The compared algorithms include average multiple

kernel k-means (A-MKKM), single best kernel k-means

(SB-KKM), multiple kernel k-means (MKKM) [50],

RMKKM [11], LMKKM [10], robust multiview spectral

clustering (RMSC) [17], RMKC [19], multiple kernel

k-means clustering with matrix-induced regularization

(MKKM-KR) [12], and MKC with local kernel alignment

maximization (MKC-LKAM) [33]. All the MATLAB

implementations of the compared algorithms are downloaded

from web pages or acquired from the corresponding authors.

The parameter settings of these algorithms also follow the

suggestion of the corresponding literature. Regarding our

method, the constrained rank value and the importance of

the Frobenius term are fixed as 0.1S and 10(−4)‖K∗
avg‖F in

all the experiments, respectively. Here, Kavg is the average

neighbor kernel. The other two parameters, i.e., the kernel

TABLE III

AVERAGE COMPUTATIONAL TIME CONSUMPTION

OF THE COMPARED ALGORITHMS

diversity balancing term and the number of neighbors are

set with grid search in a small range of {2−8, 2−2, 22, 26},

and {0.01, 0.03, 0.09, 0.11}, respectively. Note that the

memory consumption of the LMKKM algorithm is directly

proportional to (S × p)2 [10], where S and p are the sample

number and the base kernel number, respectively. It is easy

to run out of memory when the data possess a large number

of samples and base kernels. As a consequence, the result of

LMKKM is not provided on the Nonpl data set.

Results and Analysis: We summarize the clustering perfor-

mance of the compared methods in items of three metrics,

i.e., ACC, NMI, and purity, on the 11 data sets in Table II. For

the computational time comparison, in Table III, we report the

average time consumption of the compared algorithms of ten

data sets on which the results of all algorithms are available.
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Fig. 5. Sensitivity testing. The sensitivity of the kernel diversity balancing term β (left three columns) and the neighbor number k (right three columns) are
tested. The first and the second row correspond to the results on MultiFeature and UCI-Digit, respectively. The unit of k is S, i.e., the total sample number
of a data set. (a) and (g) ACCU. (b) and (h) NMI. (c) and (i) Purity. (d) and (j) ACCU. (e) and (k) NMI. (f) and (l) Purity.

This testing is based on the Ubuntu 16.04 operating system

with i7 8700K CPUs, 64-Gb memory, and the MATLAB

2018a environment. Moreover, to provide a more direct and

concrete evaluation of the clustering results of different meth-

ods, we adopt t-SNE [51] to visualize the sample distribution

generated by the compared algorithms on a representative data

set (BBCSports). From the table and the figures, we have the

following observations.

First, although many compared algorithms perform reason-

ably well, in most of the data sets, our proposed algorithm still

outperforms the other state-of-the-art algorithms. It reflects

the superior performance of the proposed algorithm in a

variety of applications. Moreover, the good performance of

MKKM-MR [12] and RMSC [17] indicates the importance

of increasing the information diversity and enhancing the

shared cluster structure with the low-rank constraint in MKC,

respectively. Comparatively, generating sample-specific kernel

weights tends to be more memory-consuming but has a

limited performance improvement in the compared data sets.

Second, in the proposed algorithm, the learned affinity matrix

performs comparable to, if not better than, the learned kernel

in most of the circumstances. This phenomenon indicates the

effectiveness of the integrated subspace segmentation on fine-

tuning the cluster structure of the linearly combined kernel.

Third, the average kernel and the single best kernel provide

two strong benchmark methods and they perform even better

than many of the well-designed MKC algorithms in many

data sets. This supports our intuition of selecting the average

kernel as the metric to determine the neighbors of samples.

Fourth, the trial of constructing base kernels with a deep neural

network generated features that achieved a large performance

enhancement against the competitors using manually designed

base kernels (approximately 10% improvement on average on

ACC against the results reported in [33]).

Regarding the computational consumption, the results

reported in Table III are consistent with the analysis in

Section II-E4. As can be seen, in addition to significantly

improving the clustering performance of existing state-of-the-

art algorithms, such as RMKKM [11], LMKKM [10],

RMSC [17], RMKC [19], MKKM-MR [12], and

LAMKC [33], the proposed algorithm does not significantly

increase the computational cost. In Fig. 4, by observing the

cluster structure revealed by different algorithms, we can

find that the clusters generated by our algorithm are more

compact and separable than those of the others. RMSC also

provides a good performance, which is consistent with the

result in Table II.

C. Convergence and Sensitivity

To test the sensitivity of our proposed algorithm against the

hyperparameters, in this section, we report the performance

variation curves of two parameters, i.e., the kernel diversity

balancing term β and the number of neighbors k. The ACCU,

NMI, and purity variational curves of these two parameters

are compared with the second-best performance on the corre-

sponding data sets. As seen in Fig. 5, our proposed algorithm

is stable against the variation of parameters and remains better

than the second-best algorithm in a large range, indicating the

effectiveness and stability of our proposed algorithm.

In Fig. 5, two different tendencies are witnessed regard-

ing the performance variation against the neighbor numbers.

Specifically, equivalent or better performance was achieved

when larger k is adopted on the MultiFeature data set. How-

ever, this tendency reverses on the UCI-Digit data set. Differ-

ent properties of data sets cause this phenomenon. Generally,

if including more neighbors can provide more useful informa-

tion than indiscriminative information, the performance will

increase. However, if more noise is included, the performance

will decrease.

Fig. 6 shows the convergence of the proposed algorithm by

plotting the objective value in each iteration. As observed, this

value is monotonically decreased, and the algorithm usually

converges in less than 15 iterations.

D. Applying Neighbor Kernels on Other Methods

Previous experiments have verified that the proposed neigh-

bor kernel preserves a better block diagonal structure and is

more robust to noise and outliers. In this section, we show
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Fig. 6. Objective value of our algorithm at each iteration. The results on
(a) UCI-Digit, (b) MultiFeature, and (c) Flower102 data sets are reported.

Fig. 7. Illustration of performance enhancement when neighbor kernels are
applied to the existing state-of-the-art MKC algorithms.

that this kernel can be easily utilized as a plug-in compo-

nent to help enhance the performance of the existing state-

of-the-art methods. Specifically, to conduct the experiment,

we simply compare the performance of the state-of-the-art

MKC algorithms with original base kernels and with neighbor

kernels as base kernels. In Fig. 7, the bar chart illustrates the

average NMI of eight representative data sets, i.e., BBCSport,

Caltech101-MIT, Flower17-DL, UCI MultiFeatures, Plant,

ProteinFold, PsortPos, and UCI-Digit. From the figure, we can

clearly observe a large performance boost on the state-of-the-

art algorithms when the original kernels are replaced with the

neighbor kernel. It is worth noting that many of the listed

algorithms are designed with powerful noise eliminating and

block diagonal structure extraction mechanisms. For example,

in RMKKM [11], the introduced `2,1-norm is effective in

reducing the adverse effect of outliers; in RMKC, the low-

rank and sparse decomposition setting can effectively extract

the discriminative structure from multiple kernels [17], and

so on. However, the proposed neighbor kernel still improves

the performance of these algorithms to a preferable extent,

indicating strong complementarity between the state-of-the-art

algorithms and the neighbor kernels.

IV. CONCLUSION

In this paper, we proposed a neighbor-kernel-based sub-

space segmentation algorithm to better reveal the intrinsic

cluster structure shared by the base kernels and eliminate

the adverse effect of noise and outliers in MKC. Specifically,

we first introduced a novel kernel denoted as neighbor kernel,

which possesses a better block diagonal structure preservation

capacity and robustness against noise and outliers. Based on

the neighbor kernel, we utilized an exact-rank-constrained

subspace segmentation algorithm to further refine the hidden

clustering structure among samples. An iterative algorithm

with proven convergence was proposed to solve the corre-

sponding optimization problem. After that, we theoretically

revealed the intrinsic effect of the exact-rank constraint in

ridge regression, i.e., it back-projects the solution of the uncon-

strained problem to its principal components. Experiments on

both synthetic and real-world data sets verified the superior

performance of our proposed algorithm against other state-of-

the-art MKC methods. The experimental results also indicated

that the proposed neighbor kernels could be easily applied to

enhance the performance of the existing MKC algorithms in a

plug-and-play manner. In the future, we plan to integrate the

process of neighbor extraction into the pipeline of MKC and

find the most reasonable neighbors according to the optimal

kernel combination.
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