
Journal of Machine Learning Research 12 (2011) 2211-2268 Submitted 12/09; Revised 9/10; Published 7/11

Multiple Kernel Learning Algorithms

Mehmet Gönen GONEN@BOUN.EDU.TR

Ethem Alpaydın ALPAYDIN @BOUN.EDU.TR

Department of Computer Engineering
Boğaziçi University
TR-34342 Bebek,̇Istanbul, Turkey

Editor: Francis Bach

Abstract
In recent years, several methods have been proposed to combine multiple kernels instead of using a
single one. These different kernels may correspond to usingdifferent notions of similarity or may
be using information coming from multiple sources (different representations or different feature
subsets). In trying to organize and highlight the similarities and differences between them, we give
a taxonomy of and review several multiple kernel learning algorithms. We perform experiments on
real data sets for better illustration and comparison of existing algorithms. We see that though there
may not be large differences in terms of accuracy, there is difference between them in complexity as
given by the number of stored support vectors, the sparsity of the solution as given by the number of
used kernels, and training time complexity. We see that overall, using multiple kernels instead of a
single one is useful and believe that combining kernels in a nonlinear or data-dependent way seems
more promising than linear combination in fusing information provided by simple linear kernels,
whereas linear methods are more reasonable when combining complex Gaussian kernels.
Keywords: support vector machines, kernel machines, multiple kernellearning

1. Introduction

The support vector machine (SVM) is a discriminative classifier proposedfor binary classifica-
tion problems and is based on the theory of structural risk minimization (Vapnik,1998). Given
a sample ofN independent and identically distributed training instances{(xi ,yi)}N

i=1 wherexi is
the D-dimensional input vector andyi ∈ {−1,+1} is its class label, SVM basically finds the lin-
ear discriminant with the maximum margin in the feature space induced by the mapping function
Φ : RD → R

S. The resulting discriminant function is

f (x) = 〈w,Φ(x)〉+b.

The classifier can be trained by solving the following quadratic optimization problem:

minimize
1
2
‖w‖2

2+C
N

∑
i=1

ξi

with respect tow ∈ R
S, ξ ∈ R

N
+, b∈ R

subject toyi(〈w,Φ(xi)〉+b)≥ 1−ξi ∀i

wherew is the vector of weight coefficients,C is a predefined positive trade-off parameter between
model simplicity and classification error,ξ is the vector of slack variables, andb is the bias term

c©2011 Mehmet G̈onen and Ethem Alpaydın.

GÖNEN AND ALPAYDIN

of the separating hyperplane. Instead of solving this optimization problem directly, the Lagrangian
dual function enables us to obtain the following dual formulation:

maximize
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j 〈Φ(xi),Φ(x j)〉
︸ ︷︷ ︸

k(xi ,x j)

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i

wherek: RD ×R
D → R is named thekernel functionandα is the vector of dual variables corre-

sponding to each separation constraint. Solving this, we getw=∑N
i=1 αiyiΦ(xi) and the discriminant

function can be rewritten as

f (x) =
N

∑
i=1

αiyik(xi ,x)+b.

There are several kernel functions successfully used in the literature, such as the linear kernel
(kLIN), the polynomial kernel (kPOL), and the Gaussian kernel (kGAU):

kLIN(xi ,x j) = 〈xi ,x j〉
kPOL(xi ,x j) = (〈xi ,x j〉+1)q, q∈ N

kGAU(xi ,x j) = exp
(
−‖xi −x j‖2

2/s2) , s∈ R++.

There are also kernel functions proposed for particular applications,such as natural language pro-
cessing (Lodhi et al., 2002) and bioinformatics (Schölkopf et al., 2004).

Selecting the kernel functionk(·, ·) and its parameters (e.g.,q or s) is an important issue in train-
ing. Generally, a cross-validation procedure is used to choose the bestperforming kernel function
among a set of kernel functions on a separate validation set different from the training set. In recent
years, multiple kernel learning (MKL) methods have been proposed, where we use multiple kernels
instead of selecting one specific kernel function and its corresponding parameters:

kη(xi ,x j) = fη({km(xm
i ,x

m
j)}P

m=1)

where the combination function,fη : RP →R, can be a linear or a nonlinear function. Kernel func-
tions,{km: RDm ×R

Dm → R}P
m=1, takeP feature representations (not necessarily different) of data

instances:xi = {xm
i }P

m=1 wherexm
i ∈R

Dm, andDm is the dimensionality of the corresponding feature
representation.η parameterizes the combination function and the more common implementation is

kη(xi ,x j) = fη({km(xm
i ,x

m
j)}P

m=1|η)

where the parameters are used to combine a set of predefined kernels (i.e., we know the kernel
functions and corresponding kernel parameters before training). Itis also possible to view this as

kη(xi ,x j) = fη({km(xm
i ,x

m
j |η)}P

m=1)

2212

MULTIPLE KERNEL LEARNING ALGORITHMS

where the parameters integrated into the kernel functions are optimized during training. Most of
the existing MKL algorithms fall into the first category and try to combine predefined kernels in an
optimal way. We will discuss the algorithms in terms of the first formulation but give the details of
the algorithms that use the second formulation where appropriate.

The reasoning is similar to combining different classifiers: Instead of choosing a single kernel
function and putting all our eggs in the same basket, it is better to have a set and let an algorithm
do the picking or combination. There can be two uses of MKL: (a) Different kernels correspond to
different notions of similarity and instead of trying to find which works best, alearning method does
the picking for us, or may use a combination of them. Using a specific kernel may be a source of
bias, and in allowing a learner to choose among a set of kernels, a better solution can be found. (b)
Different kernels may be using inputs coming from different representations possibly from different
sources or modalities. Since these are different representations, they have different measures of
similarity corresponding to different kernels. In such a case, combining kernels is one possible way
to combine multiple information sources. Noble (2004) calls this method of combining kernels
intermediate combinationand contrasts this withearly combination(where features from different
sources are concatenated and fed to a single learner) andlate combination(where different features
are fed to different classifiers whose decisions are then combined by a fixed or trained combiner).

There is significant amount of work in the literature for combining multiple kernels. Section 2
identifies the key properties of the existing MKL algorithms in order to construct a taxonomy,
highlighting similarities and differences between them. Section 3 categorizes and discusses the
existing MKL algorithms with respect to this taxonomy. We give experimental results in Section 4
and conclude in Section 5. The lists of acronyms and notation used in this paper are given in
Appendices A and B, respectively.

2. Key Properties of Multiple Kernel Learning

We identify and explain six key properties of the existing MKL algorithms in order to obtain a
meaningful categorization. We can think of these six dimensions (though notnecessarily orthogo-
nal) defining a space in which we can situate the existing MKL algorithms and search for structure
(i.e., groups) to better see the similarities and differences between them. These properties are the
learning method, the functional form, the target function, the training method,the base learner, and
the computational complexity.

2.1 The Learning Method

The existing MKL algorithms use different learning methods for determining thekernel combina-
tion function. We basically divide them into five major categories:

1. Fixed rulesare functions without any parameters (e.g., summation or multiplication of the
kernels) and do not need any training.

2. Heuristic approachesuse a parameterized combination function and find the parameters of
this function generally by looking at some measure obtained from each kernel function sepa-
rately. These measures can be calculated from the kernel matrices or taken as the performance
values of the single kernel-based learners trained separately using each kernel.

2213

GÖNEN AND ALPAYDIN

3. Optimization approachesalso use a parametrized combination function and learn the parame-
ters by solving an optimization problem. This optimization can be integrated to a kernel-based
learner or formulated as a different mathematical model for obtaining only the combination
parameters.

4. Bayesian approachesinterpret the kernel combination parameters as random variables, put
priors on these parameters, and perform inference for learning them and the base learner
parameters.

5. Boosting approaches, inspired from ensemble and boosting methods, iteratively add a new
kernel until the performance stops improving.

2.2 The Functional Form

There are different ways in which the combination can be done and each has its own combination
parameter characteristics. We group functional forms of the existing MKL algorithms into three
basic categories:

1. Linear combinationmethods are the most popular and have two basic categories: unweighted
sum (i.e., using sum or mean of the kernels as the combined kernel) and weighted sum. In the
weighted sum case, we can linearly parameterize the combination function:

kη(xi ,x j) = fη({km(xm
i ,x

m
j)}P

m=1|η) =
P

∑
m=1

ηmkm(xm
i ,x

m
j)

whereη denotes the kernel weights. Different versions of this approach differ in the way
they put restrictions onη: the linear sum (i.e.,η ∈ R

P), the conic sum (i.e.,η ∈ R
P
+), or

the convex sum (i.e.,η ∈ R
P
+ and∑P

m=1 ηm = 1). As can be seen, the conic sum is a special
case of the linear sum and the convex sum is a special case of the conic sum. The conic
and convex sums have two advantages over the linear sum in terms of interpretability. First,
when we have positive kernel weights, we can extract the relative importance of the combined
kernels by looking at them. Second, when we restrict the kernel weights tobe nonnegative,
this corresponds to scaling the feature spaces and using the concatenation of them as the
combined feature representation:

Φη(x) =

√
η1Φ1(x1)√
η2Φ2(x2)

...√
ηPΦP(xP)

and the dot product in the combined feature space gives the combined kernel:

〈Φη(xi),Φη(x j)〉=

√
η1Φ1(x1

i)√
η2Φ2(x2

i)
...√

ηPΦP(xP
i)

⊤

√
η1Φ1(x1

j)√
η2Φ2(x2

j)
...√

ηPΦP(xP
j)

=
P

∑
m=1

ηmkm(xm
i ,x

m
j).

2214

MULTIPLE KERNEL LEARNING ALGORITHMS

The combination parameters can also be restricted using extra constraints, such as theℓp-
norm on the kernel weights or trace restriction on the combined kernel matrix, in addition
to their domain definitions. For example, theℓ1-norm promotes sparsity on the kernel level,
which can be interpreted as feature selection when the kernels use different feature subsets.

2. Nonlinear combinationmethods use nonlinear functions of kernels, namely, multiplication,
power, and exponentiation.

3. Data-dependent combinationmethods assign specific kernel weights for each data instance.
By doing this, they can identify local distributions in the data and learn properkernel combi-
nation rules for each region.

2.3 The Target Function

We can optimize different target functions when selecting the combination function parameters. We
group the existing target functions into three basic categories:

1. Similarity-based functionscalculate a similarity metric between the combined kernel matrix
and an optimum kernel matrix calculated from the training data and select the combination
function parameters that maximize the similarity. The similarity between two kernel ma-
trices can be calculated using kernel alignment, Euclidean distance, Kullback-Leibler (KL)
divergence, or any other similarity measure.

2. Structural risk functionsfollow the structural risk minimization framework and try to mini-
mize the sum of a regularization term that corresponds to the model complexity and an error
term that corresponds to the system performance. The restrictions on kernel weights can be
integrated into the regularization term. For example, structural risk function can use theℓ1-
norm, theℓ2-norm, or a mixed-norm on the kernel weights or feature spaces to pick themodel
parameters.

3. Bayesian functionsmeasure the quality of the resulting kernel function constructed from can-
didate kernels using a Bayesian formulation. We generally use the likelihood or the posterior
as the target function and find the maximum likelihood estimate or the maximum a posteriori
estimate to select the model parameters.

2.4 The Training Method

We can divide the existing MKL algorithms into two main groups in terms of their training method-
ology:

1. One-step methodscalculate both the combination function parameters and the parameters
of the combined base learner in a single pass. One can use a sequential approach or a si-
multaneous approach. In the sequential approach, the combination function parameters are
determined first, and then a kernel-based learner is trained using the combined kernel. In the
simultaneous approach, both set of parameters are learned together.

2. Two-step methodsuse an iterative approach where each iteration, first we update the combi-
nation function parameters while fixing the base learner parameters, and then we update the
base learner parameters while fixing the combination function parameters. These two steps
are repeated until convergence.

2215

GÖNEN AND ALPAYDIN

2.5 The Base Learner

There are many kernel-based learning algorithms proposed in the literatureand all of them can be
transformed into an MKL algorithm, in one way or another.

The most commonly used base learners are SVM and support vector regression (SVR), due
to their empirical success, their ease of applicability as a building block in two-step methods, and
their ease of transformation to other optimization problems as a one-step trainingmethod using the
simultaneous approach. Kernel Fisher discriminant analysis (KFDA), regularized kernel discrimi-
nant analysis (RKDA), and kernel ridge regression (KRR) are threeother popular methods used in
MKL.

Multinomial probit and Gaussian process (GP) are generally used in Bayesian approaches. New
inference algorithms are developed for modified probabilistic models in orderto learn both the
combination function parameters and the base learner parameters.

2.6 The Computational Complexity

The computational complexity of an MKL algorithm mainly depends on its training method (i.e.,
whether it is one-step or two-step) and the computational complexity of its baselearner.

One-step methods using fixed rules and heuristics generally do not spendmuch time to find the
combination function parameters, and the overall complexity is determined by thecomplexity of the
base learner to a large extent. One-step methods that use optimization approaches to learn combina-
tion parameters have high computational complexity, due to the fact that they are generally modeled
as a semidefinite programming (SDP) problem, a quadratically constrained quadratic programming
(QCQP) problem, or a second-order cone programming (SOCP) problem.These problems are
much harder to solve than a quadratic programming (QP) problem used in the case of the canonical
SVM.

Two-step methods update the combination function parameters and the base learner parameters
in an alternating manner. The combination function parameters are generally updated by solving
an optimization problem or using a closed-form update rule. Updating the base learner parameters
usually requires training a kernel-based learner using the combined kernel. For example, they can
be modeled as a semi-infinite linear programming (SILP) problem, which uses a generic linear
programming (LP) solver and a canonical SVM solver in the inner loop.

3. Multiple Kernel Learning Algorithms

In this section, we categorize the existing MKL algorithms in the literature into 12 groups de-
pending on the six key properties discussed in Section 2. We first give a summarizing table (see
Tables 1 and 2) containing 49 representative references and then give a more detailed discussion of
each group in a separate section reviewing a total of 96 references.

3.1 Fixed Rules

Fixed rules obtainkη(·, ·) using fη(·) and then train a canonical kernel machine with the kernel
matrix calculated usingkη(·, ·). For example, we can obtain a valid kernel by taking thesummation

2216

MULTIPLE KERNEL LEARNING ALGORITHMS

or multiplicationof two valid kernels (Cristianini and Shawe-Taylor, 2000):

kη(xi ,x j) = k1(x1
i ,x

1
j)+k2(x2

i ,x
2
j)

kη(xi ,x j) = k1(x1
i ,x

1
j)k2(x2

i ,x
2
j). (1)

We know that a matrixK is positive semidefinite if and only ifυ⊤Kυ ≥ 0, for all υ ∈R
N. Trivially,

we can see thatk1(x1
i ,x

1
j)+k2(x2

i ,x
2
j) gives a positive semidefinite kernel matrix:

υ⊤Kηυ = υ⊤(K1+K2)υ = υ⊤K1υ+υ⊤K2υ ≥ 0

andk1(x1
i ,x

1
j)k2(x2

i ,x
2
j) also gives a positive semidefinite kernel due to the fact that the element-wise

product between two positive semidefinite matrices results in another positivesemidefinite matrix:

υ⊤Kηυ = υ⊤(K1⊙K2)υ ≥ 0.

We can apply the rules in (1) recursively to obtain the rules for more than two kernels. For
example, the summation or multiplication ofP kernels is also a valid kernel:

kη(xi ,x j) =
P

∑
m=1

km(xm
i ,x

m
j)

kη(xi ,x j) =
P

∏
m=1

km(xm
i ,x

m
j).

Pavlidis et al. (2001) report that on a gene functional classification task, training an SVM with
an unweighted sum of heterogeneous kernels gives better results than the combination of multiple
SVMs each trained with one of these kernels.

We need to calculate the similarity between pairs of objects such as genes or proteins especially
in bioinformatics applications.Pairwise kernelsare proposed to express the similarity between pairs
in terms of similarities between individual objects. Two pairs are said to be similar when each object
in one pair is similar to one object in the other pair. This approach can be encoded as a pairwise
kernel using a kernel function between individual objects, called thegenomic kernel(Ben-Hur and
Noble, 2005), as follows:

kP({xa
i ,x

a
j},{xb

i ,x
b
j}) = k(xa

i ,x
b
i)k(x

a
j ,x

b
j)+k(xa

i ,x
b
j)k(x

a
j ,x

b
i).

Ben-Hur and Noble (2005) combine pairwise kernels in two different ways: (a) using an unweighted
sum of different pairwise kernels:

kP
η({xa

i ,x
a
j},{xb

i ,x
b
j}) =

P

∑
m=1

kP
m({xa

i ,x
a
j},{xb

i ,x
b
j})

and (b) using an unweighted sum of different genomic kernels in the pairwise kernel:

kP
η({xa

i ,x
a
j},{xb

i ,x
b
j})

=

(
P

∑
m=1

km(xa
i ,x

b
i)

)(
P

∑
m=1

km(xa
j ,x

b
j)

)

+

(
P

∑
m=1

km(xa
i ,x

b
j)

)(
P

∑
m=1

km(xa
j ,x

b
i)

)

= kη(xa
i ,x

b
i)kη(xa

j ,x
b
j)+kη(xa

i ,x
b
j)kη(xa

j ,x
b
i).

The combined pairwise kernels improve the classification performance for protein-protein interac-
tion prediction task.

2217

GÖNEN AND ALPAYDIN

R
epresentative

Learning
F

unctional
Target

T
raining

B
ase

C
om

putationa
l

S
ec.

R
eferences

M
ethod

F
orm

F
unction

M
ethod

Learner
C

om
plexity

3.1
P

avlidis
etal.(2001)

F
ixed

Lin.
(unw

ei.)
N

one
1-step

(seq.)
S

V
M

Q
P

B
en-H

ur
and

N
oble

(2005)
F

ixed
Lin.

(unw
ei.)

N
one

1-step
(seq.)

S
V

M
Q

P
3.2

de
D

iego
etal.(2004,2010a)

H
euristic

N
onlinear

Val.
error

2-step
S

V
M

Q
P

M
oguerza

etal.(2004);de
D

iego
etal.(2010a)

H
euristic

D
ata-dep.

N
one

1-step
(seq.)

S
V

M
Q

P
Tanabe

etal.(2008)
H

euristic
Lin.

(convex)
N

one
1-step

(seq.)
S

V
M

Q
P

Q
iu

and
Lane

(2009)
H

euristic
Lin.

(convex)
N

one
1-step

(seq.)
S

V
R

Q
P

Q
iu

and
Lane

(2009)
H

euristic
Lin.

(convex)
N

one
1-step

(seq.)
S

V
M

Q
P

3.3
Lanckrietetal.(2004a)

O
ptim

.
Lin.

(linear)
S

im
ilarity

1-step
(seq.)

S
V

M
S

D
P

+
Q

P
Igeletal.(2007)

O
ptim

.
Lin.

(linear)
S

im
ilarity

1-step
(seq.)

S
V

M
G

rad.+
Q

P
C

ortes
etal.(2010a)

O
ptim

.
Lin.

(linear)
S

im
ilarity

1-step
(seq.)

S
V

M
M

at.
Inv

.+
Q

P
3.4

Lanckrietetal.(2004a)
O

ptim
.

Lin.
(conic)

S
im

ilarity
1-step

(seq.)
S

V
M

Q
C

Q
P

+
Q

P
K

andola
etal.(2002)

O
ptim

.
Lin.

(conic)
S

im
ilarity

1-step
(seq.)

S
V

M
Q

P
+

Q
P

C
ortes

etal.(2010a)
O

ptim
.

Lin.
(conic)

S
im

ilarity
1-step

(seq.)
S

V
M

Q
P

+
Q

P
3.5

H
e

etal.(2008)
O

ptim
.

Lin.
(convex)

S
im

ilarity
1-step

(seq.)
S

V
M

Q
P

+
Q

P
Tanabe

etal.(2008)
O

ptim
.

Lin.
(convex)

S
im

ilarity
1-step

(seq.)
S

V
M

Q
P

+
Q

P
Y

ing
etal.(2009)

O
ptim

.
Lin.

(convex)
S

im
ilarity

1-step
(seq.)

S
V

M
G

rad.+
Q

P
3.6

Lanckrietetal.(2002)
O

ptim
.

Lin.
(linear)

S
tr.

risk
1-step

(seq.)
S

V
M

S
D

P
+

Q
P

Q
iu

and
Lane

(2005)
O

ptim
.

Lin.
(linear)

S
tr.

risk
1-step

(seq.)
S

V
R

S
D

P
+

Q
P

C
onfortiand

G
uido

(2010)
O

ptim
.

Lin.
(linear)

S
tr.

risk
1-step

(seq.)
S

V
M

S
D

P
+

Q
P

3.7
Lanckrietetal.(2004a)

O
ptim

.
Lin.

(conic)
S

tr.
risk

1-step
(seq.)

S
V

M
Q

C
Q

P
+

Q
P

F
ung

etal.(2004)
O

ptim
.

Lin.
(conic)

S
tr.

risk
2-step

K
F

D
A

Q
P

+
M

at.
Inv.

T
suda

etal.(2004)
O

ptim
.

Lin.
(conic)

S
tr.

risk
2-step

K
F

D
A

G
rad.+

M
at.

I
nv.

Q
iu

and
Lane

(2005)
O

ptim
.

Lin.
(conic)

S
tr.

risk
1-step

(seq.)
S

V
R

Q
C

Q
P

+
Q

P
Varm

a
and

R
ay

(2007)
O

ptim
.

Lin.
(conic)

S
tr.

risk
1-step

(sim
.)

S
V

M
S

O
C

P
Varm

a
and

R
ay

(2007)
O

ptim
.

Lin.
(conic)

S
tr.

risk
2-step

S
V

M
G

rad.+
Q

P
C

ortes
etal.(2009)

O
ptim

.
Lin.

(conic)
S

tr.
risk

2-step
K

R
R

G
rad.+

M
at.

In
v.

K
loftetal.(2010a)

O
ptim

.
Lin.

(conic)
S

tr.
risk

2-step
S

V
M

N
ew

ton+
Q

P
X

u
etal.(2010b)

O
ptim

.
Lin.

(conic)
S

tr.
risk

1-step
(sim

.)
S

V
M

G
rad.

K
loftetal.(2010b);X

u
etal.(2010a)

O
ptim

.
Lin.

(conic)
S

tr.
risk

2-ste
p

S
V

M
A

nalytical+
Q

P
C

onfortiand
G

uido
(2010)

O
ptim

.
Lin.

(conic)
S

tr.
risk

1-step
(seq.)

S
V

M
Q

C
Q

P
+

Q
P

Table
1:

R
epresentative

M
K

L
algorithm

s.

2218

MULTIPLE KERNEL LEARNING ALGORITHMS

R
ep

re
se

nt
at

iv
e

Le
ar

ni
ng

F
un

ct
io

na
l

Ta
rg

et
T

ra
in

in
g

B
as

e
C

om
pu

ta
tio

na
l

S
ec

.
R

ef
er

en
ce

s
M

et
ho

d
F

or
m

F
un

ct
io

n
M

et
ho

d
Le

ar
ne

r
C

om
pl

ex
ity

3.
8

B
ou

sq
ue

ta
nd

H
er

rm
an

n
(2

00
3)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

2-
st

ep
S

V
M

G
ra

d.
+

Q
P

B
ac

h
et

al
.(

20
04

)
O

pt
im

.
Li

n.
(c

on
ve

x)
S

tr.
ris

k
1-

st
ep

(s
im

.)
S

V
M

S
O

C
P

S
on

ne
nb

ur
g

et
al

.(
20

06
a,

b)
O

pt
im

.
Li

n.
(c

on
ve

x)
S

tr.
ris

k
2-

st
ep

S
V

M
L

P
+

Q
P

K
im

et
al

.(
20

06
)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

1-
st

ep
(s

eq
.)

K
F

D
A

S
D

P
+

M
at

.
In

v.
Y

e
et

al
.(

20
07

a)
O

pt
im

.
Li

n.
(c

on
ve

x)
S

tr.
ris

k
1-

st
ep

(s
eq

.)
R

K
D

A
S

D
P

+
M

at
.

In
v.

Y
e

et
al

.(
20

07
b)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

1-
st

ep
(s

eq
.)

R
K

D
A

Q
C

Q
P

+
M

at
.

In
v.

Y
e

et
al

.(
20

08
)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

1-
st

ep
(s

eq
.)

R
K

D
A

S
IL

P
+

M
at

.
In

v.
R

ak
ot

om
am

on
jy

et
al

.(
20

07
,2

00
8)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

2-
st

ep
S

V
M

G
ra

d.
+

Q
P

C
ha

pe
lle

an
d

R
ak

ot
om

am
on

jy
(2

00
8)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

2-
st

ep
S

V
M

Q
P

+
Q

P
K

lo
ft

et
al

.(
20

10
b)

;X
u

et
al

.(
20

10
a)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

2-
st

ep
S

V
M

A
na

ly
tic

al
+

Q
P

C
on

fo
rt

ia
nd

G
ui

do
(2

01
0)

O
pt

im
.

Li
n.

(c
on

ve
x)

S
tr.

ris
k

1-
st

ep
(s

eq
.)

S
V

M
Q

C
Q

P
+

Q
P

3.
9

Le
e

et
al

.(
20

07
)

O
pt

im
.

N
on

lin
ea

r
S

tr.
ris

k
1-

st
ep

(s
im

.)
S

V
M

Q
P

Va
rm

a
an

d
B

ab
u

(2
00

9)
O

pt
im

.
N

on
lin

ea
r

S
tr.

ris
k

2-
st

ep
S

V
M

G
ra

d.
+

Q
P

C
or

te
s

et
al

.(
20

10
b)

O
pt

im
.

N
on

lin
ea

r
S

tr.
ris

k
2-

st
ep

K
R

R
G

ra
d.

+
M

at
.

In
v

.
3.

10
Le

w
is

et
al

.(
20

06
b)

O
pt

im
.

D
at

a-
de

p.
S

tr.
ris

k
1-

st
ep

(s
im

.)
S

V
M

Q
P

G
ön

en
an

d
A

lp
ay

dı
n

(2
00

8)
O

pt
im

.
D

at
a-

de
p.

S
tr.

ris
k

2-
st

ep
S

V
M

G
ra

d.
+

Q
P

Y
an

g
et

al
.(

20
09

a)
O

pt
im

.
D

at
a-

de
p.

S
tr.

ris
k

2-
st

ep
S

V
M

G
ra

d.
+

Q
P

Y
an

g
et

al
.(

20
09

b,
20

10
)

O
pt

im
.

D
at

a-
de

p.
S

tr.
ris

k
2-

st
ep

S
V

M
S

IL
P

+
Q

P
3.

11
G

iro
la

m
ia

nd
R

og
er

s
(2

00
5)

B
ay

es
ia

n
Li

n.
(c

on
ic

)
Li

ke
lih

oo
d

In
fe

r
en

ce
K

R
R

A
pp

ro
xi

m
at

io
n

G
iro

la
m

ia
nd

Z
ho

ng
(2

00
7)

B
ay

es
ia

n
Li

n.
(c

on
ic

)
Li

ke
lih

oo
d

In
fe

re
nc

e
G

P
A

pp
ro

xi
m

at
io

n
C

hr
is

to
ud

ia
s

et
al

.(
20

09
)

B
ay

es
ia

n
D

at
a-

de
p.

Li
ke

lih
oo

d
In

fe
re

nc
e

G
P

A
pp

ro
xi

m
at

io
n

3.
12

B
en

ne
tt

et
al

.(
20

02
)

B
oo

st
in

g
D

at
a-

de
p.

S
tr.

ris
k

P
×

1-
st

ep
K

R
R

M
at

.
In

v.
C

ra
m

m
er

et
al

.(
20

03
)

B
oo

st
in

g
Li

n.
(c

on
ic

)
S

tr.
ris

k
P
×

1-
st

ep
P

er
ce

pt
.

E
ig

en
va

lu
e

P
ro

b.
B

ie
ta

l.
(2

00
4)

B
oo

st
in

g
Li

n.
(li

ne
ar

)
S

tr.
ris

k
P
×

1-
st

ep
S

V
M

Q
P

Ta
bl

e
2:

R
ep

re
se

nt
at

iv
e

M
K

L
al

go
rit

hm
s

(c
on

tin
ue

d)
.

2219

GÖNEN AND ALPAYDIN

3.2 Heuristic Approaches

de Diego et al. (2004, 2010a) define a functional form of combining two kernels:

Kη =
1
2
(K1+K2)+ f (K1−K2)

where the termf (K1−K2) represents the difference of information between whatK1 andK2 pro-
vide for classification. They investigate three different functions:

kη(xi ,x j) =
1
2
(k1(x1

i ,x
1
j)+k2(x2

i ,x
2
j))+ τyiy j |k1(x1

i ,x
1
j)−k2(x2

i ,x
2
j)|

kη(xi ,x j) =
1
2
(k1(x1

i ,x
1
j)+k2(x2

i ,x
2
j))+ τyiy j(k1(x1

i ,x
1
j)−k2(x2

i ,x
2
j))

Kη =
1
2
(K1+K2)+ τ(K1−K2)(K1−K2)

whereτ ∈R+ is the parameter that represents the weight assigned to the termf (K1−K2) (selected
through cross-validation) and the first two functions do not ensure having positive semidefinite
kernel matrices. It is also possible to combine more than two kernel functionsby applying these
rules recursively.

Moguerza et al. (2004) and de Diego et al. (2010a) propose a matrix functional form of com-
bining kernels:

kη(xi ,x j) =
P

∑
m=1

ηm(xi ,x j)km(xm
i ,x

m
j)

whereηm(·, ·) assigns a weight tokm(·, ·) according toxi andx j . They propose different heuris-
tics to estimate the weighing function values using conditional class probabilities,Pr(yi = y j |xi)
and Pr(y j = yi |x j), calculated with a nearest-neighbor approach. However, each kernel function
corresponds to a different neighborhood andηm(·, ·) is calculated on the neighborhood induced by
km(·, ·). For an unlabeled data instancex, they take its class label once as+1 and once as−1, calcu-
late the discriminant valuesf (x|y= +1) and f (x|y= −1), and assign it to the class that has more
confidence in its decision (i.e., by selecting the class label with greatery f(x|y) value). de Diego
et al. (2010b) use this method to fuse information from several feature representations for face veri-
fication. Combining kernels in a data-dependent manner outperforms the classical fusion techniques
such as feature-level and score-level methods in their experiments.

We can also use a linear combination instead of a data-dependent combinationand formulate
the combined kernel function as follows:

kη(xi ,x j) =
P

∑
m=1

ηmkm(xm
i ,x

m
j)

where we select the kernel weights by looking at the performance valuesobtained by each kernel
separately. For example, Tanabe et al. (2008) propose the following rule in order to choose the
kernel weights for classification problems:

ηm =
πm−δ

P
∑

h=1
(πh−δ)

2220

MULTIPLE KERNEL LEARNING ALGORITHMS

whereπm is the accuracy obtained using onlyKm, andδ is the threshold that should be less than or
equal to the minimum of the accuracies obtained from single-kernel learners. Qiu and Lane (2009)
propose two simple heuristics to select the kernel weights for regression problems:

ηm =
Rm
P
∑

h=1
Rh

∀m

ηm =

P
∑

h=1
Mh−Mm

(P−1)
P
∑

h=1
Mh

∀m

whereRm is the Pearson correlation coefficient between the true outputs and the predicted labels
generated by the regressor using the kernel matrixKm, andMm is the mean square error generated
by the regressor using the kernel matrixKm. These three heuristics find a convex combination of
the input kernels as the combined kernel.

Cristianini et al. (2002) define a notion of similarity between two kernels calledkernel align-
ment. The empirical alignment of two kernels is calculated as follows:

A(K1,K2) =
〈K1,K2〉F

√

〈K1,K1〉F〈K2,K2〉F

where〈K1,K2〉F =∑N
i=1 ∑N

j=1k1(x1
i ,x

1
j)k2(x2

i ,x
2
j). This similarity measure can be seen as the cosine

of the angle betweenK1 andK2. yy⊤ can be defined asideal kernelfor a binary classification task,
and the alignment between a kernel and the ideal kernel becomes

A(K ,yy⊤) =
〈K ,yy⊤〉F

√

〈K ,K〉F〈yy⊤,yy⊤〉F
=

〈K ,yy⊤〉F

N
√

〈K ,K〉F
.

Kernel alignment has one key property due to concentration (i.e., the probability of deviation from
the mean decays exponentially), which enables us to keep high alignment on atest set when we
optimize it on a training set.

Qiu and Lane (2009) propose the following simple heuristic for classificationproblems to select
the kernel weights using kernel alignment:

ηm =
A(Km,yy⊤)
P
∑

h=1
A(Kh,yy⊤)

∀m (2)

where we obtain the combined kernel as a convex combination of the input kernels.

2221

GÖNEN AND ALPAYDIN

3.3 Similarity Optimizing Linear Approaches with Arbitrary Kernel Weight s

Lanckriet et al. (2004a) propose to optimize the kernel alignment as follows:

maximize A(K tra
η ,yy⊤)

with respect toKη ∈ S
N

subject to tr
(
Kη
)
= 1

Kη � 0

where the trace of the combined kernel matrix is arbitrarily set to 1. This problem can be converted
into the following SDP problem using arbitrary kernel weights in the combination:

maximize

〈
P

∑
m=1

ηmK tra
m ,yy⊤

〉

F

with respect toη ∈ R
P, A ∈ S

N

subject to tr(A)≤ 1

A
P
∑

m=1
ηmK⊤

m

P
∑

m=1
ηmKm I

� 0

P

∑
m=1

ηmKm � 0.

Igel et al. (2007) propose maximizing the kernel alignment using gradient-based optimization.
They calculate the gradients with respect to the kernel parameters as

∂A(Kη,yy⊤)
∂ηm

=

〈
∂Kη
∂ηm

,yy⊤
〉

F
〈Kη,Kη〉F −〈Kη,yy⊤〉F

〈
∂Kη
∂ηm

,Kη
〉

F

N
√

〈Kη,Kη〉3
F

.

In a transcription initiation site detection task for bacterial genes, they obtain better results by opti-
mizing the kernel weights of the combined kernel function that is composed ofsix sequence kernels,
using the gradient above.

Cortes et al. (2010a) give a different kernel alignment definition, which they callcentered-kernel
alignment. The empirical centered-alignment of two kernels is calculated as follows:

CA(K1,K2) =
〈K c

1,K
c
2〉F

√
〈K c

1,K
c
1〉F〈K c

2,K
c
2〉F

whereK c is the centered version ofK and can be calculated as

K c = K − 1
N

11⊤K − 1
N

K11⊤+
1

N2(1
⊤K1)11⊤

2222

MULTIPLE KERNEL LEARNING ALGORITHMS

where1 is the vector of ones with proper dimension. Cortes et al. (2010a) also propose to optimize
the centered-kernel alignment as follows:

maximize CA(Kη,yy⊤)

with respect toη ∈M (3)

whereM = {η : ‖η‖2 = 1}. This optimization problem (3) has an analytical solution:

η =
M−1a

‖M−1a‖2
(4)

whereM = {〈K c
m,K

c
h〉F}P

m,h=1 anda= {〈K c
m,yy⊤〉F}P

m=1.

3.4 Similarity Optimizing Linear Approaches with Nonnegative Kernel Weights

Kandola et al. (2002) propose to maximize the alignment between a nonnegative linear combination
of kernels and the ideal kernel. The alignment can be calculated as follows:

A(Kη,yy⊤) =

P
∑

m=1
ηm〈Km,yy⊤〉F

N

√

P
∑

m=1

P
∑

h=1
ηmηh〈Km,Kh〉F

.

We should choose the kernel weights that maximize the alignment and this idea can be cast into the
following optimization problem:

maximize A(Kη,yy⊤)

with respect toη ∈ R
P
+

and this problem is equivalent to

maximize
P

∑
m=1

ηm〈Km,yy⊤〉F

with respect toη ∈ R
P
+

subject to
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F = c.

Using the Lagrangian function, we can convert it into the following unconstrained optimization
problem:

maximize
P

∑
m=1

ηm〈Km,yy⊤〉F −µ

(
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F −c

)

with respect toη ∈ R
P
+.

2223

GÖNEN AND ALPAYDIN

Kandola et al. (2002) takeµ= 1 arbitrarily and add a regularization term to the objective func-
tion in order to prevent overfitting. The resulting QP is very similar to the hard margin SVM
optimization problem and is expected to give sparse kernel combination weights:

maximize
P

∑
m=1

ηm〈Km,yy⊤〉F −
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F −λ
P

∑
m=1

η2
m

with respect toη ∈ R
P
+

where we only learn the kernel combination weights.
Lanckriet et al. (2004a) restrict the kernel weights to be nonnegativeand their SDP formulation

reduces to the following QCQP problem:

maximize
P

∑
m=1

ηm〈K tra
m ,yy⊤〉F

with respect toη ∈ R
P
+

subject to
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F ≤ 1. (5)

Cortes et al. (2010a) also restrict the kernel weights to be nonnegativeby changing the definition
of M in (3) to{η : ‖η‖2 = 1, η ∈ R

P
+} and obtain the following QP:

minimize v⊤Mv −2v⊤a

with respect tov ∈ R
P
+ (6)

where the kernel weights are given byη = v/‖v‖2.

3.5 Similarity Optimizing Linear Approaches with Kernel Weights on a Simplex

He et al. (2008) choose to optimize the distance between the combined kernelmatrix and the ideal
kernel, instead of optimizing the kernel alignment measure, using the followingoptimization prob-
lem:

minimize 〈Kη−yy⊤,Kη−yy⊤〉2
F

with respect toη ∈ R
P
+

subject to
P

∑
m=1

ηm = 1.

This problem is equivalent to

minimize
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F −2
P

∑
m=1

ηm〈Km,yy⊤〉F

with respect toη ∈ R
P
+

subject to
P

∑
m=1

ηm = 1. (7)

2224

MULTIPLE KERNEL LEARNING ALGORITHMS

Nguyen and Ho (2008) propose another quality measure called feature space-based kernel ma-
trix evaluation measure (FSM) defined as

FSM(K ,y) =
s++s−

‖m+−m−‖2

where{s+,s−} are the standard deviations of the positive and negative classes, and{m+,m−} are
the class centers in the feature space. Tanabe et al. (2008) optimize the kernel weights for the convex
combination of kernels by minimizing this measure:

minimize FSM(Kη,y)
with respect toη ∈ R

P
+

subject to
P

∑
m=1

ηm = 1.

This method gives similar performance results when compared to the SMO-like algorithm of Bach
et al. (2004) for a protein-protein interaction prediction problem using muchless time and memory.

Ying et al. (2009) follow an information-theoretic approach based on the KL divergence be-
tween the combined kernel matrix and the optimal kernel matrix:

minimize KL(N (0,Kη)‖N (0,yy⊤))

with respect toη ∈ R
P
+

subject to
P

∑
m=1

ηm = 1

where0 is the vector of zeros with proper dimension. The kernel combinations weights can be
optimized using a projected gradient-descent method.

3.6 Structural Risk Optimizing Linear Approaches with Arbitrary Kern el Weights

Lanckriet et al. (2002) follow a direct approach in order to optimize the unrestricted kernel com-
bination weights. Theimplausibilityof a kernel matrix,ω(K), is defined as the objective function
value obtained after solving a canonical SVM optimization problem (Here we only consider the
soft margin formulation, which uses theℓ1-norm on slack variables):

maximize ω(K) =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jk(xi ,x j)

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i.

The combined kernel matrix is selected from the following set:

KL =

{

K : K =
P

∑
m=1

ηmKm, K � 0, tr(K)≤ c

}

2225

GÖNEN AND ALPAYDIN

where the selected kernel matrix is forced to be positive semidefinite.

The resulting optimization problem that minimizes the implausibility of the combined kernel
matrix (the objective function value of the corresponding soft margin SVM optimization problem)
is formulated as

minimize ω(K tra
η)

with respect toKη ∈KL

subject to tr
(
Kη
)
= c

whereK tra
η is the kernel matrix calculated only over the training set and this problem can be cast

into the following SDP formulation:

minimize t

with respect toη ∈ R
P, t ∈ R, λ ∈ R, ν ∈ R

N
+, δ ∈ R

N
+

subject to tr
(
Kη
)
= c

(

(yy⊤)⊙K tra
η 1+ν−δ+λy

(1+ν−δ+λy)⊤ t −2Cδ⊤1

)

� 0

Kη � 0.

This optimization problem is defined for a transductive learning setting and weneed to be able to
calculate the kernel function values for the test instances as well as the training instances.

Lanckriet et al. (2004a,c) consider predicting function classifications associated with yeast pro-
teins. Different kernels calculated on heterogeneous genomic data, namely, amino acid sequences,
protein-protein interactions, genetic interactions, protein complex data, andexpression data, are
combined using an SDP formulation. This gives better results than SVMs trained with each kernel
in nine out of 13 experiments. Qiu and Lane (2005) extendsε-tube SVR to a QCQP formulation
for regression problems. Conforti and Guido (2010) propose another SDP formulation that removes
trace restriction on the combined kernel matrix and introduces constraints over the kernel weights
for an inductive setting.

3.7 Structural Risk Optimizing Linear Approaches with Nonnegative Kernel Weights

Lanckriet et al. (2004a) restrict the combination weights to have nonnegative values by selecting the
combined kernel matrix from

KP =

{

K : K =
P

∑
m=1

ηmKm, η ≥ 0, K � 0, tr(K)≤ c

}

2226

MULTIPLE KERNEL LEARNING ALGORITHMS

and reduce the SDP formulation to the following QCQP problem by selecting the combined kernel
matrix fromKP instead ofKL:

minimize
1
2

ct−
N

∑
i=1

αi

with respect toα ∈ R
N
+, t ∈ R

subject to tr(Km) t ≥ α⊤((yy⊤)⊙K tra
m)α ∀m

N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i

where we can jointly find the support vector coefficients and the kernel combination weights. This
optimization problem is also developed for a transductive setting, but we cansimply take the number
of test instances as zero and find the kernel combination weights for an inductive setting. The
interior-point methods used to solve this QCQP formulation also return the optimalvalues of the
dual variables that correspond to the optimal kernel weights. Qiu and Lane (2005) give also a
QCQP formulation of regression usingε-tube SVR. The QCQP formulation is used for predicting
siRNA efficacy by combining kernels over heterogeneous data sources(Qiu and Lane, 2009). Zhao
et al. (2009) develop a multiple kernel learning method for clustering problems using the maximum
margin clustering idea of Xu et al. (2005) and a nonnegative linear combination of kernels.

Lanckriet et al. (2004a) combine two different kernels obtained from heterogeneous informa-
tion sources, namely, bag-of-words and graphical representations,on the Reuters-21578 data set.
Combining these two kernels with positive weights outperforms the single-kernel results obtained
with SVM on four tasks out of five. Lanckriet et al. (2004b) use a QCQPformulation to integrate
multiple kernel functions calculated on heterogeneous views of the genome data obtained through
different experimental procedures. These views include amino acid sequences, hydropathy profiles,
gene expression data and known protein-protein interactions. The prediction task is to recognize the
particular classes of proteins, namely, membrane proteins and ribosomal proteins. The QCQP ap-
proach gives significantly better results than any single kernel and the unweighted sum of kernels.
The assigned kernel weights also enable us to extract the relative importance of the data sources
feeding the separate kernels. This approach assigns near zero weights to random kernels added
to the candidate set of kernels before training. Dehak et al. (2008) combine three different ker-
nels obtained on the same features and get better results than score fusionfor speaker verification
problem.

A similar result about unweighted and weighted linear kernel combinations is also obtained by
Lewis et al. (2006a). They compare the performances of unweighted and weighted sums of kernels
on a gene functional classification task. Their results can be summarized withtwo guidelines: (a)
When all kernels or data sources are informative, we should use the unweighted sum rule. (b)
When some of the kernels or the data sources are noisy or irrelevant, we should optimize the kernel
weights.

Fung et al. (2004) propose an iterative algorithm using the kernel Fisher discriminant analysis as
the base learner to combine heterogeneous kernels in a linear manner with nonnegative weights. The
proposed method requires solving a simple nonsingular system of linear equations of size(N+1)
and a QP problem havingP decision variables at each iteration. On a colorectal cancer diagnosis

2227

GÖNEN AND ALPAYDIN

task, this method obtains similar results using much less computation time compared to selecting a
kernel for standard kernel Fisher discriminant analysis.

Tsuda et al. (2004) learn the kernel combination weights by minimizing an approximation of
the cross-validation error for kernel Fisher discriminant analysis. In order to update the kernel com-
bination weights, cross-validation error should be approximated with a differentiable error function.
They use the sigmoid function for error approximation and derive the update rules of the kernel
weights. This procedure requires inverting aN×N matrix and calculating the gradients at each
step. They combine heterogeneous data sources using kernels, which are mixed linearly and non-
linearly, for bacteria classification and gene function prediction tasks. Fisher discriminant analysis
with the combined kernel matrix that is optimized using the cross-validation errorapproximation,
gives significantly better results than single kernels for both tasks.

In order to consider the capacity of the resulting classifier, Tan and Wang(2004) optimize the
nonnegative combination coefficients using the minimal upper bound of the Vapnik-Chervonenkis
dimension as the target function.

Varma and Ray (2007) propose a formulation for combining kernels using alinear combination
with regularized nonnegative weights. The regularization on the kernel combination weights is
achieved by adding a term to the objective function and integrating a set of constraints. The primal
optimization problem with these two modifications can be given as

minimize
1
2
‖wη‖2

2+C
N

∑
i=1

ξi +
P

∑
m=1

σmηm

with respect towη ∈ R
Sη , ξ ∈ R

N
+, b∈ R, η ∈ R

P
+

subject toyi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i

Aη ≥ p

whereΦη(·) corresponds to the feature space that implicitly constructs the combined kernel func-
tion kη(xi ,x j) = ∑P

m=1 ηmkm(xm
i ,x

m
j) andwη is the vector of weight coefficients assigned toΦη(·).

The parametersA ∈ R
R×P, p ∈ R

R, andσ ∈ R
P encode our prior information about the kernel

weights. For example, assigning higherσi values to some of the kernels effectively eliminates them
by assigning zero weights to them. The corresponding dual formulation is derived as the following
SOCP problem:

maximize
N

∑
i=1

αi −p⊤δ

with respect toα ∈ R
N
+, δ ∈ R

P
+

subject toσm−δ⊤A(:,k)≥ 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j) ∀m

N

∑
i=1

αiyi = 0 ∀m

C≥ αi ≥ 0 ∀i.

Instead of solving this SOCP problem directly, Varma and Ray (2007) also propose an alternating
optimization problem that performs projected gradient updates for kernelweights and solves a QP

2228

MULTIPLE KERNEL LEARNING ALGORITHMS

problem to find the support vector coefficients at each iteration. The primal optimization problem
for givenη is written as

minimize J(η) =
1
2
‖wη‖2

2+C
N

∑
i=1

ξi +
P

∑
m=1

σmηm

with respect towη ∈ R
Sη , ξ ∈ R

N
+, b∈ R

subject toyi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i

and the corresponding dual optimization problem is

maximize J(η) =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j

(
P

∑
m=1

ηmkm(xm
i ,x

m
j)

)

︸ ︷︷ ︸

kη(xi ,x j)

+
P

∑
m=1

σmηm

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0 ∀m

C≥ αi ≥ 0 ∀i.

The gradients with respect to the kernel weights are calculated as

∂J(η)
∂ηm

= σm− 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xi ,x j)

∂ηm
= σm− 1

2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j) ∀m

and these gradients are used to update the kernel weights while considering nonnegativity and other
constraints.

Usually, the kernel weights are constrained by a trace or theℓ1-norm regularization. Cortes
et al. (2009) discuss the suitability of theℓ2-norm for MKL. They combine kernels with ridge
regression using theℓ2-norm regularization over the kernel weights. They conclude that usingthe
ℓ1-norm improves the performance for a small number of kernels, but degrades the performance
when combining a large number of kernels. However, theℓ2-norm never decreases the performance
and increases it significantly for larger sets of candidate kernels. Yan et al. (2009) compare the
ℓ1-norm and theℓ2-norm for image and video classification tasks, and conclude that theℓ2-norm
should be used when the combined kernels carry complementary information.

Kloft et al. (2010a) generalize the MKL formulation for arbitraryℓp-norms withp≥ 1 by regu-
larizing over the kernel coefficients (done by addingµ‖η‖p

p to the objective function) or equivalently,

2229

GÖNEN AND ALPAYDIN

constraining them (‖η‖p
p ≤ 1). The resulting optimization problem is

maximize
N

∑
i=1

αi −
1
2

P

∑
m=1

(
N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j)

)
p−1

p

p
p−1

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i

and they solve this problem using alternative optimization strategies based on Newton-descent and
cutting planes. Xu et al. (2010b) add an entropy regularization term instead of constraining the
norm of the kernel weights and derive an efficient and smooth optimization framework based on
Nesterov’s method.

Kloft et al. (2010b) and Xu et al. (2010a) propose an efficient optimization method for arbitrary
ℓp-norms withp ≥ 1. Although they approach the problem from different perspectives,they find
the same closed-form solution for updating the kernel weights at each iteration. Kloft et al. (2010b)
use a block coordinate-descent method and Xu et al. (2010a) use the equivalence between group
Lasso and MKL, as shown by Bach (2008) to derive the update equation. Both studies formulate an
alternating optimization method that solves an SVM at each iteration and update thekernel weights
as follows:

ηm =
‖wm‖

2
p+1
2

(
P
∑

h=1
‖wh‖

2p
p+1
2

) 1
p

(8)

where‖wm‖2
2 = η2

m∑N
i=1 ∑N

j=1 αiα jyiy jkm(xm
i ,x

m
j) from the duality conditions.

When we restrict the kernel weights to be nonnegative, the SDP formulationof Conforti and
Guido (2010) reduces to a QCQP problem.

Lin et al. (2009) propose a dimensionality reduction method that uses multiple kernels to embed
data instances from different feature spaces to a unified feature space. The method is derived from
a graph embedding framework using kernel matrices instead of data matrices. The learning phase
is performed using a two-step alternate optimization procedure that updates the dimensionality re-
duction coefficients and the kernel weights in turn. McFee and Lanckriet(2009) propose a method
for learning a unified space from multiple kernels calculated over heterogeneous data sources. This
method uses a partial order over pairwise distances as the input and produces an embedding us-
ing graph-theoretic tools. The kernel (data source) combination rule is learned by solving an SDP
problem and all input instances are mapped to the constructed common embedding space.

Another possibility is to allow only binaryηm for kernel selection. We get rid of kernels whose
ηm= 0 and use the kernels whoseηm= 1. Xu et al. (2009b) define a combined kernel over the set of
kernels calculated on each feature independently and perform featureselection using this definition.

2230

MULTIPLE KERNEL LEARNING ALGORITHMS

The defined kernel function can be expressed as

kη(xi ,x j) =
D

∑
m=1

ηmk(xi [m],x j [m])

where[·] indexes the elements of a vector andη ∈ {0,1}D. For efficient learning,η is relaxed into
the continuous domain (i.e., 1≥ η ≥ 0). Following Lanckriet et al. (2004a), an SDP formulation is
derived and this formulation is cast into a QCQP problem to reduce the time complexity.

3.8 Structural Risk Optimizing Linear Approaches with Kernel Weights on a Simplex

We can think of kernel combination as a weighted average of kernels and considerη ∈ R
P
+ and

∑P
m=1 ηm = 1. Joachims et al. (2001) show that combining two kernels is beneficial if both of them

achieve approximately the same performance and use different data instances as support vectors.
This makes sense because in combination, we want kernels to be useful bythemselves and com-
plementary. In a web page classification experiment, they show that combiningthe word and the
hyperlink representations through the convex combination of two kernels (i.e., η2 = 1−η1) can
achieve better classification accuracy than each of the kernels.

Chapelle et al. (2002) calculate the derivative of the margin and the derivative of the radius (of
the smallest sphere enclosing the training points) with respect to a kernel parameter,θ:

∂‖w‖2
2

∂θ
=−

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂k(xi ,x j)

∂θ

∂R2

∂θ
=

N

∑
i=1

βi
∂k(xi ,xi)

∂θ
−

N

∑
i=1

N

∑
j=1

βiβ j
∂k(xi ,x j)

∂θ

whereα is obtained by solving the canonical SVM optimization problem andβ is obtained by
solving the QP problem defined by Vapnik (1998). These derivatives can be used to optimize the
individual parameters (e.g., scaling coefficient) on each feature using an alternating optimization
procedure (Weston et al., 2001; Chapelle et al., 2002; Grandvalet andCanu, 2003). This strategy
is also a multiple kernel learning approach, because the optimized parameterscan be interpreted as
the kernel parameters and we combine these kernel values over all features.

Bousquet and Herrmann (2003) rewrite the gradient of the margin by replacingK with Kη and
taking the derivative with respect to the kernel weights gives

∂‖wη‖2
2

∂ηm
=−

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xi ,x j)

∂ηm
=−

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j) ∀m

wherewη is the weight vector obtained usingKη in training. In an iterative manner, an SVM is
trained to obtainα, thenη is updated using the calculated gradient while considering nonnegativity
(i.e.,η ∈ R

P
+) and normalization (i.e.,∑P

m=1 ηm = 1). This procedure considers the performance (in
terms of margin maximization) of the resulting classifier, which uses the combined kernel matrix.

2231

GÖNEN AND ALPAYDIN

Bach et al. (2004) propose a modified primal formulation that uses the weighted ℓ1-norm on
feature spaces and theℓ2-norm within each feature space. The modified primal formulation is

minimize
1
2

(
P

∑
m=1

dm‖wm‖2

)2

+C
N

∑
i=1

ξi

with respect towm ∈ R
Sm, ξ ∈ R

N
+, b∈ R

subject toyi

(
P

∑
m=1

〈wm,Φm(xm
i)〉+b

)

≥ 1−ξi ∀i

where the feature space constructed usingΦm(·) has the dimensionalitySm and the weightdm.
When we consider this optimization problem as an SOCP problem, we obtain the following dual
formulation:

minimize
1
2

γ2−
N

∑
i=1

αi

with respect toγ ∈ R, α ∈ R
N
+

subject toγ2d2
m ≥

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j) ∀m

N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i (9)

where we again get the optimal kernel weights from the optimal dual variables and the weights
satisfy∑P

m=1d2
mηm= 1. The dual problem is exactly equivalent to the QCQP formulation of Lanck-

riet et al. (2004a) when we takedm =
√

tr(Km)/c. The advantage of the SOCP formulation is
that Bach et al. (2004) devise an SMO-like algorithm by adding a Moreau-Yosida regularization
term, 1/2∑P

m=1a2
m‖wm‖2

2, to the primal objective function and deriving the corresponding dual for-
mulation. Using theℓ1-norm on feature spaces, Yamanishi et al. (2007) combine tree kernelsfor
identifying human glycans into four blood components: leukemia cells, erythrocytes, plasma, and
serum. Except on plasma task, representing glycans as rooted trees andcombining kernels improve
performance in terms of the area under the ROC curve.Özen et al. (2009) use the formulation of
Bach et al. (2004) to combine different feature subsets for protein stability prediction problem and
extract information about the importance of these subsets by looking at the learned kernel weights.

Bach (2009) develops a method for learning linear combinations of an exponential number of
kernels, which can be expressed as product of sums. The method is applied to nonlinear variable
selection and efficiently explores the large feature spaces in polynomial time.

2232

MULTIPLE KERNEL LEARNING ALGORITHMS

Sonnenburg et al. (2006a,b) rewrite the QCQP formulation of Bach et al. (2004):

minimize γ
with respect toγ ∈ R, α ∈ R

N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i

γ ≥ 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j)−

N

∑
i=1

αi

︸ ︷︷ ︸

Sm(α)

∀m

and convert this problem into the following SILP problem:

maximize θ
with respect toθ ∈ R, η ∈ R

P
+

subject to
P

∑
m=1

ηm = 1

P

∑
m=1

ηmSm(α)≥ θ ∀α ∈ {α : α ∈ R
N, α⊤y = 0, C≥ α ≥ 0}

where the problem has infinitely many constraints due to the possible values ofα.
The SILP formulation has lower computational complexity compared to the SDP and QCQP

formulations. Sonnenburg et al. (2006a,b) use a column generation approach to solve the resulting
SILPs using a generic LP solver and a canonical SVM solver in the inner loop. Both the LP solver
and the SVM solver can use the previous optimal values for hot-start to obtain the new optimal
values faster. These allow us to use the SILP formulation to learn the kernelcombination weights
for hundreds of kernels on hundreds of thousands of training instances efficiently. For example,
they perform training on a real-world splice data set with millions of instances from computational
biology with string kernels. They also generalize the idea to regression, one-class classification, and
strictly convex and differentiable loss functions.

Kim et al. (2006) show that selecting the optimal kernel from the set of convex combinations
over the candidate kernels can be formulated as a convex optimization problem. This formulation
is more efficient than the iterative approach of Fung et al. (2004). Ye etal. (2007a) formulate an
SDP problem inspired by Kim et al. (2006) for learning an optimal kernel over a convex set of
candidate kernels for RKDA. The SDP formulation can be modified so that it can jointly optimize
the kernel weights and the regularization parameter. Ye et al. (2007b, 2008) derive QCQP and SILP
formulations equivalent to the previous SDP problem in order to reduce thetime complexity. These
three formulations are directly applicable to multiclass classification because it uses RKDA as the
base learner.

De Bie et al. (2007) derive a QCQP formulation of one-class classificationusing a convex
combination of multiple kernels. In order to prevent the combined kernel from overfitting, they also
propose a modified mathematical model that defines lower limits for the kernel weights. Hence,

2233

GÖNEN AND ALPAYDIN

each kernel in the set of candidate kernels is used in the combined kerneland we obtain a more
regularized solution.

Zien and Ong (2007) develop a QCQP formulation and convert this formulation in two differ-
ent SILP problems for multiclass classification. They show that their formulation is the multiclass
generalization of the previously developed binary classification methods ofBach et al. (2004) and
Sonnenburg et al. (2006b). The proposed multiclass formulation is tested on different bioinfor-
matics applications such as bacterial protein location prediction (Zien and Ong, 2007) and protein
subcellular location prediction (Zien and Ong, 2007, 2008), and outperforms individual kernels and
unweighted sum of kernels. Hu et al. (2009) combine the MKL formulation ofZien and Ong (2007)
and the sparse kernel learning method of Wu et al. (2006). This hybrid approach learns the optimal
kernel weights and also obtains a sparse solution.

Rakotomamonjy et al. (2007, 2008) propose a different primal problem for MKL and use a
projected gradient method to solve this optimization problem. The proposed primal formulation is

minimize
1
2

P

∑
m=1

1
ηm

‖wm‖2
2+C

N

∑
i=1

ξi

with respect towm ∈ R
Sm, ξ ∈ R

N
+, b∈ R, η ∈ R

P
+

subject toyi

(
P

∑
m=1

〈wm,Φm(xm
i)〉+b

)

≥ 1−ξi ∀i

P

∑
m=1

ηm = 1

and they define the optimal SVM objective function value givenη asJ(η):

minimize J(η) =
1
2

P

∑
m=1

1
ηm

‖wm‖2
2+C

N

∑
i=1

ξi

with respect towm ∈ R
Sm, ξ ∈ R

N
+, b∈ R

subject toyi

(
P

∑
m=1

〈wm,Φm(xm
i)〉+b

)

≥ 1−ξi ∀i.

Due to strong duality, one can also calculateJ(η) using the dual formulation:

maximize J(η) =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j

(
P

∑
m=1

ηmkm(xm
i ,x

m
j)

)

︸ ︷︷ ︸

kη(xi ,x j)

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i.

2234

MULTIPLE KERNEL LEARNING ALGORITHMS

The primal formulation can be seen as the following constrained optimization problem:

minimize J(η)
with respect toη ∈ R

P
+

subject to
P

∑
m=1

ηm = 1. (10)

The overall procedure to solve this problem, called SIMPLEMKL, consists of two main steps: (a)
solving a canonical SVM optimization problem with givenη and (b) updatingη using the following
gradient calculated withα found in the first step:

∂J(η)
∂ηm

=−1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xm

i ,x
m
j)

∂ηm
=−1

2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xm
i ,x

m
j) ∀m.

The gradient update procedure must consider the nonnegativity and normalization properties of the
kernel weights. The derivative with respect to the kernel weights is exactly equivalent (up to a
multiplicative constant) to the gradient of the margin calculated by Bousquet and Herrmann (2003).
The overall algorithm is very similar to the algorithm used by Sonnenburg et al. (2006a,b) to solve
an SILP formulation. Both algorithms use a canonical SVM solver in order to calculateα at
each step. The difference is that they use different updating procedures forη, namely, a projected
gradient update and solving an LP. Rakotomamonjy et al. (2007, 2008) show that SIMPLEMKL
is more stable than solving the SILP formulation. SIMPLEMKL can be generalized to regression,
one-class and multiclass classification (Rakotomamonjy et al., 2008).

Chapelle and Rakotomamonjy (2008) propose a second order method, calledHESSIANMKL,
extending SIMPLEMKL. H ESSIANMKL updates kernel weights at each iteration using a con-
strained Newton step found by solving a QP problem. Chapelle and Rakotomamonjy (2008) show
that HESSIANMKL converges faster than SIMPLEMKL.

Xu et al. (2009a) propose a hybrid method that combines the SILP formulation of Sonnenburg
et al. (2006b) and SIMPLEMKL of Rakotomamonjy et al. (2008). The SILP formulation does not
regularize the kernel weights obtained from the cutting plane method and SIMPLEMKL uses the
gradient calculated only in the last iteration. The proposed model overcomes both disadvantages
and finds the kernel weights for the next iteration by solving a small QP problem; this regularizes
the solution and uses the past information.

The alternating optimization method proposed by Kloft et al. (2010b) and Xu et al. (2010a)
learns a convex combination of kernels when we use theℓ1-norm for regularizing the kernel weights.
When we takep= 1, the update equation in (8) becomes

ηm =
‖wm‖2
P
∑

h=1
‖wh‖2

. (11)

The SDP formulation of Conforti and Guido (2010) reduces to a QCQP problem when we use
a convex combination of the base kernels.

Longworth and Gales (2008, 2009) introduce an extra regularization term to the objective func-
tion of SIMPLEMKL (Rakotomamonjy et al., 2008). This modification allows changing the level

2235

GÖNEN AND ALPAYDIN

of sparsity of the combined kernels. The extra regularization term is

λ
P

∑
m=1

(

ηm− 1
P

)2

= λ
P

∑
m=1

η2
m− λ

P
=+ λ

P

∑
m=1

η2
m

whereλ is regularization parameter that determines the solution sparsity. For example,large values
of λ force the mathematical model to use all the kernels with a uniform weight, whereas small values
produce sparse combinations.

Micchelli and Pontil (2005) try to learn the optimal kernel over the convex hull of predefined
basic kernels by minimizing a regularization functional. Their analysis shows that any optimizing
kernel can be expressed as the convex combination of basic kernels. Argyriou et al. (2005, 2006)
build practical algorithms for learning a suboptimal kernel when the basic kernels are continuously
parameterized by a compact set. This continuous parameterization allows selecting kernels from
basically an infinite set, instead of a finite number of basic kernels.

Instead of selecting kernels from a predefined finite set, we can increase the number of candi-
date kernels in an iterative manner. We can basically select kernels from an uncountably infinite
set constructed by considering base kernels with different kernel parameters (̈Ozöğür-Akyüz and
Weber, 2008; Gehler and Nowozin, 2008). Gehler and Nowozin (2008) propose a forward selection
algorithm that finds the kernel weights for a fixed size of candidate kernels using one of the methods
described above, then adds a new kernel to the set of candidate kernels, until convergence.

Most MKL methods do not consider the group structure between the kernels combined. For
example, a group of kernels may be calculated on the same set of features and even if we assign
a nonzero weight to only one of them, we have to extract the features in the testing phase. When
kernels have such a group structure, it is reasonable to pick all or noneof them in the combined
kernel. Szafranski et al. (2008, 2010) follow this idea and derive anMKL method by changing the
mathematical model used by Rakotomamonjy et al. (2007). Saketha Nath et al. (2010) propose an-
other MKL method that considers the group structure between the kernels and this method assumes
that every kernel group carries important information. The proposed formulation enforces theℓ∞-
norm at the group level and theℓ1-norm within each group. By doing this, each group is used in the
final learner, but sparsity is promoted among kernels in each group. They formulate the problem
as an SCOP problem and give a highly efficient optimization algorithm that uses a mirror-descent
approach.

Subrahmanya and Shin (2010) generalize group-feature selection to kernel selection by intro-
ducing a log-based concave penalty term for obtaining extra sparsity; thisis called sparse multiple
kernel learning (SMKL). The reason for adding this concave penalty term is explained as the lack
of ability of convex MKL methods to obtain sparse formulations. They show that SMKL obtains
more sparse solutions than convex formulations for signal processing applications.

Most of the structural risk optimizing linear approaches can be casted into ageneral framework
(Kloft et al., 2010a,b). The unified optimization problem with the Tikhonov regularization can be
written as

minimize
1
2

P

∑
m=1

‖wm‖2
2

ηm
+C

N

∑
i=1

L

(
P

∑
m=1

〈wm,Φm(xm
i)〉+b,yi

)

+µ‖η‖p
p

with respect towm ∈ R
Sm, b∈ R, η ∈ R

P
+

2236

MULTIPLE KERNEL LEARNING ALGORITHMS

whereL(·, ·) is the loss function used. Alternatively, we can use the Ivanov regularization instead of
the Tikhonov regularization by integrating an additional constraint into the optimization problem:

minimize
1
2

P

∑
m=1

‖wm‖2
2

ηm
+C

N

∑
i=1

L

(
P

∑
m=1

〈wm,Φm(xm
i)〉+b,yi

)

with respect towm ∈ R
Sm, b∈ R, η ∈ R

P
+

subject to‖η‖p
p ≤ 1.

Figure 1 lists the MKL algorithms that can be casted into the general frameworkdescribed
above. Zien and Ong (2007) show that their formulation is equivalent to those of Bach et al. (2004)
and Sonnenburg et al. (2006a,b). Using unified optimization problems given above and the results
of Zien and Ong (2007), Kloft et al. (2010a,b) show that the formulations with p = 1 in Figure 1
fall into the same equivalence class and introduce a new formulation withp≥ 1. The formulation
of Xu et al. (2010a) is also equivalent to those of Kloft et al. (2010a,b).

Tikhonov Regularization Ivanov Regularization
︷ ︸︸ ︷ ︷ ︸︸ ︷

p= 1

︷
︸
︸

︷

Varma and Ray (2007)

Bach et al. (2004)
Sonnenburg et al. (2006a,b)
Rakotomamonjy et al. (2007, 2008)
Zien and Ong (2007)

p≥ 1

︷
︸
︸
︷ Kloft et al. (2010a,b)

Xu et al. (2010a)

Figure 1: MKL algorithms that can be casted into the general framework described.

3.9 Structural Risk Optimizing Nonlinear Approaches

Ong et al. (2003) propose to learn a kernel function instead of a kernel matrix. They define a kernel
function in the space of kernels called ahyperkernel. Their construction includes convex combi-
nations of an infinite number of pointwise nonnegative kernels. Hyperkernels are generalized to
different machine learning problems such as binary classification, regression, and one-class classi-
fication (Ong and Smola, 2003; Ong et al., 2005). When they use the regularized risk functional
as the empirical quality functional to be optimized, the learning phase can be performed by solving
an SDP problem. Tsang and Kwok (2006) convert the resulting optimization problems into SOCP
problems in order to reduce the time complexity of the training phase.

Varma and Babu (2009) propose a generalized formulation called generalized multiple kernel
learning (GMKL) that contains two regularization terms and a loss function in the objective func-
tion. This formulation regularizes both the hyperplane weights and the kernel combination weights.
The loss function can be one of the classical loss functions, such as, hinge loss for classification,
or ε-loss for regression. The proposed primal formulation applied to binary classification problem

2237

GÖNEN AND ALPAYDIN

with hinge loss and the regularization function,r(·), can be written as

minimize
1
2
‖wη‖2

2+C
N

∑
i=1

ξi + r(η)

with respect towη ∈ R
Sη , ξ ∈ R

N
+, b∈ R, η ∈ R

P
+

subject toyi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i

whereΦη(·) corresponds to the feature space that implicitly constructs the combined kernel func-
tion kη(·, ·) andwη is the vector of weight coefficients assigned toΦη(·). This problem, different
from the primal problem of SIMPLEMKL, is not convex, but the solution strategy is the same. The
objective function value of the primal formulation givenη is used as the target function:

minimize J(η) =
1
2
‖wη‖2

2+C
N

∑
i=1

ξi + r(η)

with respect towη ∈ R
Sη , ξ ∈ R

N
+, b∈ R

subject toyi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i

and the following dual formulation is used for the gradient step:

maximize J(η) =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jkη(xi ,x j)+ r(η)

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i.

The regularization functionr(·) andkη(·, ·) can be any differentiable function ofη with continuous
derivative. The gradient with respect to the kernel weights is calculatedas

∂J(η)
∂ηm

=
∂r(η)
∂ηm

− 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xi ,x j)

∂ηm
∀m.

Varma and Babu (2009) perform gender identification experiments on a face image data set by
combining kernels calculated on each individual feature, and hence, for kernels whoseηm goes to
0, they perform feature selection. SIMPLEMKL and GMKL are trained with the kernel functions
kS
η(·, ·) andkP

η(·, ·), respectively:

kS
η(xi ,x j) =

D

∑
m=1

ηmexp
(

−γm(xi [m]−x j [m])2
)

kP
η(xi ,x j) =

D

∏
m=1

exp
(

−ηm(xi [m]−x j [m])2
)

= exp

(
D

∑
m=1

−ηm(xi [m]−x j [m])2

)

.

They show that GMKL withkP
η(·, ·) performs significantly better than SIMPLEMKL with kS

η(·, ·).
We see that usingkP

η(·, ·) as the combined kernel function is equivalent to using different scaling

2238

MULTIPLE KERNEL LEARNING ALGORITHMS

parameters on each feature and using an RBF kernel over these scaledfeatures with unit radius, as
done by Grandvalet and Canu (2003).

Cortes et al. (2010b) develop a nonlinear kernel combination method based on KRR and poly-
nomial combination of kernels. They propose to combine kernels as follows:

kη(xi ,x j) = ∑
q∈Q

ηq1q2...qPk1(x1
i ,x

1
j)

q1k2(x2
i ,x

2
j)

q2 . . .kP(xP
i ,x

P
j)

qP

whereQ = {q : q ∈ Z
P
+, ∑P

m=1qm ≤ d} andηq1q2...qP ≥ 0. The number of parameters to be learned
is too large and the combined kernel is simplified in order to reduce the learningcomplexity:

kη(xi ,x j) = ∑
q∈R

ηq1
1 ηq2

2 . . .ηqP
P k1(x1

i ,x
1
j)

q1k2(x2
i ,x

2
j)

q2 . . .kP(xP
i ,x

P
j)

qP

whereR = {q : q∈Z
P
+, ∑P

m=1qm= d} andη ∈R
P. For example, whend= 2, the combined kernel

function becomes

kη(xi ,x j) =
P

∑
m=1

P

∑
h=1

ηmηhkm(xm
i ,x

m
j)kh(xh

i ,x
h
j). (12)

The combination weights are optimized using the following min-max optimization problem:

minimize
η∈M

maximize
α∈RN

−α⊤(Kη+λI)α+2y⊤α

whereM is a positive, bounded, and convex set. Two possible choices for the setM are theℓ1-norm
andℓ2-norm bounded sets defined as

M1 = {η : η ∈ R
P
+, ‖η−η0‖1 ≤ Λ} (13)

M2 = {η : η ∈ R
P
+, ‖η−η0‖2 ≤ Λ} (14)

whereη0 andΛ are two model parameters. A projection-based gradient-descent algorithm can be
used to solve this min-max optimization problem. At each iteration,α is obtained by solving a KRR
problem with the current kernel matrix andη is updated with the gradients calculated usingα while
considering the bound constraints onη due toM1 orM2.

Lee et al. (2007) follow a different approach and combine kernels using a compositional method
that constructs a(P×N)× (P×N) compositional kernel matrix. This matrix and the training
instances replicatedP times are used to train a canonical SVM.

3.10 Structural Risk Optimizing Data-Dependent Approaches

Lewis et al. (2006b) use a latent variable generative model using the maximum entropy discrim-
ination to learn data-dependent kernel combination weights. This method combines a generative
probabilistic model with a discriminative large margin method.

Gönen and Alpaydın (2008) propose a data-dependent formulation calledlocalized multiple
kernel learning (LMKL) that combines kernels using weights calculated from a gating model. The

2239

GÖNEN AND ALPAYDIN

proposed primal optimization problem is

minimize
1
2

P

∑
m=1

‖wm‖2
2+C

N

∑
i=1

ξi

with respect towm ∈ R
Sm, ξ ∈ R

N
+, b∈ R, V ∈ R

P×(DG+1)

subject toyi

(
P

∑
m=1

ηm(xi |V)〈wm,Φm(xm
i)〉+b

)

≥ 1−ξi ∀i

where the gating modelηm(·|·), parameterized byV, assigns a weight to the feature space obtained
with Φm(·). This optimization problem is not convex and a two-step alternate optimization proce-
dure is used to find the classifier parameters and the gating model parameters. When we fix the
gating model parameters, the problem becomes convex and we obtain the following dual problem:

maximize J(V) =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jkη(xi ,x j)

with respect toα ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C≥ αi ≥ 0 ∀i

where the combined kernel matrix is represented as

kη(xi ,x j) =
P

∑
m=1

ηm(xi |V)km(xm
i ,x

m
j)ηm(x j |V).

Assuming that the regions of expertise of kernels are linearly separable,we can express the gating
model using softmax function:

ηm(x|V) =
exp(〈vm,xG 〉+vm0)
P
∑

h=1
exp(〈vh,xG 〉+vh0)

∀m (15)

whereV = {vm,vm0}P
m=1, xG ∈R

DG is the representation of the input instance in the feature space in
which we learn the gating model and there areP×(DG +1) parameters whereDG is the dimension-
ality of the gating feature space. The softmax gating model uses kernels in a competitive manner
and generally a single kernel is active for each input. We may also use the sigmoid function instead
of softmax and thereby allow multiple kernels to be used in a cooperative manner:

ηm(x|V) =
1

exp(−〈vm,xG 〉−vm0)
∀m. (16)

The gating model parameters are updated at each iteration by calculating∂J(V)/∂V and performing
a gradient-descent step (Gönen and Alpaydın, 2008).

Inspired from LMKL, two methods that learn a data-dependent kernel function are used for
image recognition applications (Yang et al., 2009a,b, 2010); they differ in their gating models that

2240

MULTIPLE KERNEL LEARNING ALGORITHMS

are constants rather than functions of the input. Yang et al. (2009a) divide the training set into clus-
ters as a preprocessing step, and then cluster-specific kernel weightsare learned using alternating
optimization. The combined kernel function can be written as

kη(xi ,x j) =
P

∑
m=1

ηm
ci

km(xm
i ,x

m
j)η

m
c j

whereηm
ci

corresponds to the weight of kernelkm(·, ·) in the clusterxi belongs to. The kernel weights
of the cluster that the test instance is assigned to are used in the testing phase. Yang et al. (2009b,
2010) use instance-specific kernel weights instead of cluster-specificweights. The corresponding
combined kernel function is

kη(xi ,x j) =
P

∑
m=1

ηm
i km(xm

i ,x
m
j)η

m
j

whereηm
i corresponds to the weight of kernelkm(·, ·) for xi and these instance-specific weights

are optimized using alternating optimization over the training set. In the testing phase, the kernel
weights for a test instance are all taken to be equal.

3.11 Bayesian Approaches

Girolami and Rogers (2005) formulate a Bayesian hierarchical model andderive variational Bayes
estimators for classification and regression problems. The proposed decision function can be for-
mulated as

f (x) =
N

∑
i=0

αi

P

∑
m=1

ηmkm(xm
i ,x

m)

whereη is modeled with a Dirichlet prior andα is modeled with a zero-mean Gaussian with an
inverse gamma variance prior. Damoulas and Girolami (2009b) extend this method by adding aux-
iliary variables and developing a Gibbs sampler. Multinomial probit likelihood is used to obtain an
efficient sampling procedure. Damoulas and Girolami (2008, 2009a) apply these methods to differ-
ent bioinformatics problems, such as protein fold recognition and remote homology problems, and
improve the prediction performances for these tasks.

Girolami and Zhong (2007) use the kernel combination idea for the covariance matrices in GPs.
Instead of using a single covariance matrix, they define a weighted sum of covariance matrices
calculated over different data sources. A joint inference is performedfor both the GP coefficients
and the kernel combination weights.

Similar to LMKL, Christoudias et al. (2009) develop a Bayesian approach for combining dif-
ferent feature representations in a data-dependent way under the GPframework. A common co-
variance function is obtained by combining the covariances of feature representations in a nonlinear
manner. This formulation can identify the noisy data instances for each feature representation and
prevent them from being used. Classification is performed using the standard GP approach with the
common covariance function.

2241

GÖNEN AND ALPAYDIN

3.12 Boosting Approaches

Inspired from ensemble and boosting methods, Bennett et al. (2002) modify the decision function
in order to use multiple kernels:

f (x) =
N

∑
i=1

P

∑
m=1

αm
i km(xm

i ,x
m)+b.

The parameters{αm}P
m=1 andb of the KRR model are learned using gradient-descent in the function

space. The columns of the combined kernel matrix are generated on the fly from the heterogeneous
kernels. Bi et al. (2004) develop column generation boosting methods for binary classification and
regression problems. At each iteration, the proposed methods solve an LP or a QP on a working set
depending on the regularization term used.

Crammer et al. (2003) modify the boosting methodology to work with kernels by rewriting two
loss functions for a pair of data instances by considering the pair as a single instance:

ExpLoss(k(xi ,x j),yiy j) = exp(−yiy jk(xi ,x j))

LogLoss(k(xi ,x j),yiy j) = log(1+exp(−yiy jk(xi ,x j))).

We iteratively update the combined kernel matrix using one of these two loss functions.

4. Experiments

In order to compare several MKL algorithms, we perform 10 different experiments on four data
sets that are composed of different feature representations. We use both the linear kernel and the
Gaussian kernel in our experiments; we will give our results with the linear kernel first and then
compare them with the results of the Gaussian kernel. The kernel matrices are normalized to unit
diagonal before training.

4.1 Compared Algorithms

We implement two single-kernel SVM and 16 representative MKL algorithms in MATLAB1 and
solve the optimization problems with the MOSEK optimization software (Mosek, 2011).

We train SVMs on each feature representation singly and report the results of the one with the
highest average validation accuracy, which will be referred asSVM (best). We also train an SVM
on the concatenation of all feature representations, which will be referred asSVM (all).

RBMKL denotes rule-based MKL algorithms discussed in Section 3.1.RBMKL (mean) trains an
SVM with the mean of the combined kernels.RBMKL (product) trains an SVM with the product of
the combined kernels.

ABMKL denotes alignment-based MKL algorithms. For determining the kernel weights,ABMKL
(ratio) uses the heuristic in (2) of Section 3.2 (Qiu and Lane, 2009),ABMKL (conic) solves the QCQP
problem in (5) of Section 3.4 (Lanckriet et al., 2004a), andABMKL (convex) solves the QP problem
in (7) of Section 3.5 (He et al., 2008). In the second step, all methods train an SVM with the kernel
calculated with these weights.

CABMKL denotes centered-alignment-based MKL algorithms. In the first step,CABMKL (linear)
uses the analytical solution in (4) of Section 3.3 (Cortes et al., 2010a) andCABMKL (conic) solves

1. Implementations are available athttp://www.cmpe.boun.edu.tr/ ~gonen/mkl .

2242

MULTIPLE KERNEL LEARNING ALGORITHMS

the QP problem in (6) of Section 3.4 (Cortes et al., 2010a) for determining thekernel weights. In
the second step, both methods train an SVM with the kernel calculated with theseweights.

MKL is the original MKL algorithm of Bach et al. (2004) that is formulated as the SOCP
problem in (9) of Section 3.8.SimpleMKL is the iterative algorithm of Rakotomamonjy et al. (2008)
that uses projected gradient updates and trains SVMs at each iteration to solve the optimization
problem in (10) of Section 3.8.

GMKL is the generalized MKL algorithm of Varma and Babu (2009) discussed in Section 3.9. In
our implementation,kη(·, ·) is the convex combination of base kernels andr(·) is taken as 1/2(η−
1/P)⊤(η−1/P).

GLMKL denotes the group Lasso-based MKL algorithms proposed by Kloft et al.(2010b) and
Xu et al. (2010a).GLMKL (p= 1) updates the kernel weights using (11) of Section 3.8 and learns a
convex combination of the kernels.GLMKL (p= 2) updates the kernel weights settingp= 2 in (8)
of Section 3.7 and learns a conic combination of the kernels.

NLMKL denotes the nonlinear MKL algorithm of Cortes et al. (2010b) discussed inSection 3.9
with the exception of replacing the KRR in the inner loop with an SVM as the base learner.NLMKL
uses the quadratic kernel given in (12).NLMKL (p= 1) andNLMKL (p= 2) select the kernel weights
from the setsM1 in (13) andM2 in (14), respectively. In our implementation,η0 is taken as0 and
Λ is assigned to 1 arbitrarily.

LMKL denotes the localized MKL algorithm of G̈onen and Alpaydın (2008) discussed in Sec-
tion 3.10.LMKL (softmax) uses the softmax gating model in (15), whereasLMKL (sigmoid) uses the
sigmoid gating model in (16). Both methods use the concatenation of all featurerepresentations in
the gating model.

4.2 Experimental Methodology

Our experimental methodology is as follows: Given a data set, if learning andtest sets are not
supplied separately, a random one-third is reserved as the test set andthe remaining two-thirds is
used as the learning set. If the learning set has more than 1000 data instances, it is resampled using
5×2 cross-validation to generate 10 training and validation sets, with stratification, otherwise, we
use 30-fold cross-validation. The validation sets of all folds are used to optimize the common
hyperparameterC (trying values 0.01, 0.1, 1, 10, and 100). The best hyperparameter configuration
(the one that has the highest average accuracy on the validation folds) isused to train the final
learners on the training folds. Their test accuracies, support vector percentages, active kernel2

counts, and numbers of calls to the optimization toolbox for solving an SVM optimization problem
or a more complex optimization problem3 are measured; we report their averages and standard
deviations. The active kernel count and the number of calls to the optimizationtoolbox for SVM
(best) are taken as 1 andP, respectively, because it uses only one of the feature representations
but needs to train the individual SVMs on all feature representations before choosing the best.
Similarly, the active kernel count and the number of calls to the optimization toolbox for SVM (all)
are taken asP and 1, respectively, because it uses all of the feature representations but trains a single
SVM.

2. A kernel isactive, if it needs to be calculated to make a prediction for an unseen test instance.
3. All algorithms except the MKL formulation of Bach et al. (2004),MKL, solve QP problems when they call the

optimization toolbox, whereasMKL solves an SOCP problem.

2243

GÖNEN AND ALPAYDIN

The test accuracies and support vector percentages are compared using the 5×2 cv pairedF test
(Alpaydın, 1999) or the pairedt test according to the resampling scheme used. The active kernel
counts and the number of calls to the optimization toolbox are compared using the Wilcoxon’s
signed-rank test (Wilcoxon, 1945). For all statistical tests, the significance level,α, is taken as 0.05.
We want to test if by combining kernels, we get accuracy higher than any of the single kernels. In the
result tables, a superscripta denotes that the performance values ofSVM (best) and the compared
algorithm are statistically significantly different, wherea anda denote that the compared algorithm
has statistically significantly higher and lower average thanSVM (best), respectively. Similarly,
we want to test if an algorithm is better than a straightforward concatenation of the input features,
SVM (all), and if it is better than fixed combination, namely,RBMKL (mean); for those, we use the
superscriptsb andc , respectively.

4.3 Protein Fold Prediction Experiments

We perform experiments on the Protein Fold (PROTEIN) prediction data set4 from the MKL Repos-
itory, composed of 10 different feature representations and two kernels for 694 instances (311 for
training and 383 for testing). The properties of these feature representations are summarized in Ta-
ble 3. We construct a binary classification problem by combining the major structural classes{α,β}
into one class and{α/β,α+β} into another class. Due to the small size of this data set, we use
30-fold cross-validation and the pairedt test. We do three experiments on this data set using three
different subsets of kernels.

Name Dimension Data Source

COM 20 Amino-acid composition
SEC 21 Predicted secondary structure
HYD 21 Hydrophobicity
VOL 21 Van der Waals volume
POL 21 Polarity
PLZ 21 Polarizability
L1 22 Pseudo amino-acid composition at interval 1
L4 28 Pseudo amino-acid composition at interval 4
L14 48 Pseudo amino-acid composition at interval 14
L30 80 Pseudo amino-acid composition at interval 30
BLO 311 Smith-Waterman scores with the BLOSUM 62 matrix
PAM 311 Smith-Waterman scores with the PAM 50 matrix

Table 3: Multiple feature representations in the PROTEIN data set.

Table 4 lists the performance values of all algorithms on the PROTEIN data set with (COM-SEC-
HYD-VOL-POL-PLZ). All combination algorithms exceptRBMKL (product) andGMKL outperform
SVM (best) by more than four per cent in terms of average test accuracy.NLMKL (p= 1), NLMKL
(p= 2), LMKL (softmax), andLMKL (sigmoid) are the only four algorithms that obtain more than 80
per cent average test accuracy and are statistically significantly more accurate thanSVM (best), SVM
(all), andRBMKL (mean). Nonlinear combination algorithms, namely,RBMKL (product), NLMKL
(p = 1), andNLMKL (p = 2), have the disadvantage that they store statistically significantly more

4. Available athttp://mkl.ucsd.edu/dataset/protein-fold-prediction .

2244

MULTIPLE KERNEL LEARNING ALGORITHMS

support vectors than all other algorithms.ABMKL (conic) andCABMKL (conic) are the two MKL al-
gorithms that perform kernel selection and use less than five kernels on the average, while the others
use all six kernels, exceptCABMKL (linear) which uses five kernels in one of 30 folds. The two-step
algorithms, exceptGMKL, LMKL (softmax), andLMKL (sigmoid), need to solve fewer than 20 SVM
problems on the average.GLMKL (p= 1) andGLMKL (p= 2) solve statistically significantly fewer
optimization problems than all the other two-step algorithms.LMKL (softmax) andLMKL (sigmoid)
solve many SVM problems; the large standard deviations for this performancevalue are mainly
due to the random initialization of the gating model parameters and it takes longerfor some folds to
converge.

Table 5 summarizes the performance values of all algorithms on the PROTEIN data set with
(COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30). All combination algorithms exceptRBMKL
(product) outperformSVM (best) by more than two per cent in terms of average test accuracy.
NLMKL (p= 1) andNLMKL (p= 2) are the only two algorithm that obtain more than 85 per cent av-
erage test accuracy and are statistically significantly more accurate thanSVM (best), SVM (all), and
RBMKL (mean). When the number of kernels combined becomes large as in this experiment, asa
result of multiplication,RBMKL (product) starts to have very small kernel values at the off-diagonal
entries of the combined kernel matrix. This causes the classifier to behave like a nearest-neighbor
classifier by storing many support vectors and to perform badly in terms ofaverage test accuracy.
As observed in the previous experiment, the nonlinear combination algorithms,namely,RBMKL
(product), NLMKL (p= 1), andNLMKL (p= 2), store statistically significantly more support vectors
than all other algorithms.ABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic),
MKL, SimpleMKL, andGMKL are the seven MKL algorithms that perform kernel selection and use
fewer than 10 kernels on the average, while others use all 10 kernels. Similar to the results of the
previous experiment,GLMKL (p= 1) andGLMKL (p= 2) solve statistically significantly fewer op-
timization problems than all the other two-step algorithms and the very high standard deviations for
LMKL (softmax) andLMKL (sigmoid) are also observed in this experiment.

Table 6 gives the performance values of all algorithms on the PROTEIN data set with a larger
set of kernels, namely, (COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30-BLO-PAM). All combi-
nation algorithms exceptRBMKL (product) outperformSVM (best) by more than three per cent in
terms of average test accuracy.NLMKL (p = 1) andNLMKL (p = 2) are the only two algorithms
that obtain more than 87 per cent average test accuracy. In this experiment, ABMKL (ratio), GMKL,
GLMKL (p = 1), GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), andLMKL (sigmoid) are sta-
tistically significantly more accurate thanSVM (best), SVM (all), andRBMKL (mean). As noted
in the two previous experiments, the nonlinear combination algorithms, namely,RBMKL (product),
NLMKL (p = 1), andNLMKL (p = 2), store statistically significantly more support vectors than all
other algorithms.ABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic), MKL, Sim-
pleMKL, andGMKL are the seven MKL algorithms that perform kernel selection and use fewer than
12 kernels on the average, while others use all 12 kernels, except GLMKL (p= 1) which uses 11
kernels in one of 30 folds. Similar to the results of the two previous experiments, GLMKL (p= 1)
andGLMKL (p= 2) solve statistically significantly fewer optimization problems than all the other
two-step algorithms, but the very high standard deviations forLMKL (softmax) andLMKL (sigmoid)
are not observed in this experiment.

2245

GÖNEN AND ALPAYDIN

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 72.06±0.74 bc 58.29±1.00 bc 1.00±0.00 bc 6.00± 0.00 bc

SVM (all) 79.13±0.45a c 62.14±1.04a c 6.00±0.00 1.00± 0.00
RBMKL (mean) 78.01±0.63 60.89±1.02 6.00±0.00 1.00± 0.00
RBMKL (product) 72.35±0.95 bc 100.00±0.00abc 6.00±0.00 1.00± 0.00
ABMKL (conic) 79.03±0.92a c 49.96±1.01abc 4.60±0.50abc 1.00± 0.00
ABMKL (convex) 76.90±1.17abc 29.54±0.89abc 6.00±0.00 1.00± 0.00
ABMKL (ratio) 78.06±0.62 56.95±1.07abc 6.00±0.00 1.00± 0.00
CABMKL (linear) 79.51±0.78abc 49.81±0.82abc 5.97±0.18abc 1.00± 0.00
CABMKL (conic) 79.28±0.97a c 49.84±0.77abc 4.73±0.52abc 1.00± 0.00
MKL 76.38±1.19abc 29.65±1.02abc 6.00±0.00 1.00± 0.00
SimpleMKL 76.34±1.24abc 29.62±1.08abc 6.00±0.00 18.83± 4.27abc

GMKL 74.96±0.50abc 79.85±0.70abc 2.37±0.56abc 37.10± 3.23abc

GLMKL (p= 1) 77.71±0.96 55.80±0.95abc 6.00±0.00 6.10± 0.31abc

GLMKL (p= 2) 77.20±0.42abc 75.34±0.70abc 6.00±0.00 5.00± 0.00abc

NLMKL (p= 1) 83.49±0.76abc 85.67±0.86abc 6.00±0.00 17.50± 0.51abc

NLMKL (p= 2) 82.30±0.62abc 89.57±0.77abc 6.00±0.00 13.40± 4.41abc

LMKL (softmax) 80.24±1.37abc 27.24±1.76abc 6.00±0.00 85.27±41.77abc

LMKL (sigmoid) 81.91±0.92abc 30.95±2.74abc 6.00±0.00 103.90±62.69abc

Table 4: Performances of single-kernel SVM and representative MKLalgorithms on the PROTEIN

data set with (COM-SEC-HYD-VOL-POL-PLZ) using the linear kernel.

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 72.15±0.68 bc 47.50±1.25 bc 1.00±0.00 bc 10.00± 0.00 bc

SVM (all) 79.63±0.74a c 43.45±1.00a c 10.00±0.00 1.00± 0.00
RBMKL (mean) 81.32±0.74 61.67±1.31 10.00±0.00 1.00± 0.00
RBMKL (product) 53.04±0.21abc 100.00±0.00abc 10.00±0.00 1.00± 0.00
ABMKL (conic) 80.45±0.68abc 48.16±1.08abc 6.90±0.66abc 1.00± 0.00
ABMKL (convex) 77.47±0.62abc 87.86±0.76abc 9.03±0.61abc 1.00± 0.00
ABMKL (ratio) 76.22±1.14abc 35.54±1.01abc 10.00±0.00 1.00± 0.00
CABMKL (linear) 77.15±0.63abc 73.84±0.80abc 9.90±0.31abc 1.00± 0.00
CABMKL (conic) 81.02±0.67 48.32±0.86abc 6.93±0.74abc 1.00± 0.00
MKL 79.74±1.02a c 56.00±0.85abc 8.73±0.52abc 1.00± 0.00
SimpleMKL 74.53±0.90abc 80.22±1.05abc 4.73±1.14abc 23.83± 7.46abc

GMKL 74.68±0.68abc 80.36±0.83abc 5.73±0.91abc 29.10± 8.47abc

GLMKL (p= 1) 79.77±0.86a c 55.94±0.93abc 10.00±0.00 6.87± 0.57abc

GLMKL (p= 2) 78.00±0.43abc 72.49±1.00abc 10.00±0.00 5.03± 0.18abc

NLMKL (p= 1) 85.38±0.70abc 93.84±0.51abc 10.00±0.00 14.77± 0.43abc

NLMKL (p= 2) 85.40±0.69abc 93.86±0.51abc 10.00±0.00 18.00± 0.00abc

LMKL (softmax) 81.11±1.82 36.00±3.61abc 10.00±0.00 34.40±23.12abc

LMKL (sigmoid) 81.90±2.01 51.94±2.14abc 10.00±0.00 31.63±13.17abc

Table 5: Performances of single-kernel SVM and representative MKLalgorithms on the PROTEIN

data set with (COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30) using the linear kernel.

2246

MULTIPLE KERNEL LEARNING ALGORITHMS

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 78.37±1.08 bc 93.09±0.73 bc 1.00±0.00 bc 12.00± 0.00 bc

SVM (all) 82.01±0.76a c 89.32±0.99a c 12.00±0.00 1.00± 0.00
RBMKL (mean) 83.57±0.59 65.94±0.93 12.00±0.00 1.00± 0.00
RBMKL (product) 53.04±0.21abc 100.00±0.00abc 12.00±0.00 1.00± 0.00
ABMKL (conic) 83.52±0.94 63.07±1.35abc 7.30±0.88abc 1.00± 0.00
ABMKL (convex) 83.76±1.02 64.36±1.56abc 6.87±0.94abc 1.00± 0.00
ABMKL (ratio) 85.65±0.67abc 57.87±1.24abc 12.00±0.00 1.00± 0.00
CABMKL (linear) 83.48±0.92 68.00±1.48abc 11.87±0.35abc 1.00± 0.00
CABMKL (conic) 83.43±0.95 62.12±1.63abc 8.43±0.73abc 1.00± 0.00
MKL 83.55±1.25 81.75±1.06abc 7.67±0.76abc 1.00± 0.00
SimpleMKL 83.96±1.20 86.41±0.98abc 9.83±0.91abc 54.53± 9.92abc

GMKL 85.67±0.91abc 79.53±2.71abc 9.93±0.74abc 47.40±10.81abc

GLMKL (p= 1) 85.96±0.96abc 79.06±1.04abc 11.97±0.18abc 14.77± 0.57abc

GLMKL (p= 2) 85.02±1.20abc 62.06±1.02abc 12.00±0.00 5.60± 0.67abc

NLMKL (p= 1) 87.00±0.66abc 96.78±0.32abc 12.00±0.00 4.83± 0.38abc

NLMKL (p= 2) 87.28±0.65abc 96.64±0.32abc 12.00±0.00 17.77± 0.43abc

LMKL (softmax) 83.72±1.35 37.55±2.54abc 12.00±0.00 25.97± 5.75abc

LMKL (sigmoid) 85.06±0.83abc 48.99±1.59abc 12.00±0.00 25.40± 9.36abc

Table 6: Performances of single-kernel SVM and representative MKLalgorithms on the PROTEIN

data set with (COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30-BLO-PAM) using the lin-
ear kernel.

4.4 Pendigits Digit Recognition Experiments

We perform experiments on the Pendigits (PENDIGITS) digit recognition data set5 from the MKL
Repository, composed of four different feature representations for10,992 instances (7,494 for train-
ing and 3,498 for testing). The properties of these feature representations are summarized in Table 7.
Two binary classification problems are generated from the PENDIGITS data set: In the PENDIGITS-
EO data set, we separate even digits from odd digits; in the PENDIGITS-SL data set, we separate
small (‘0’ - ‘4’) digits from large (‘5’ - ‘9’) digits.

Name Dimension Data Source

DYN 16 8 successive pen points on two-dimensional coordinate system
STA4 16 4×4 image bitmap representation
STA8 64 8×8 image bitmap representation
STA16 256 16×16 image bitmap representation

Table 7: Multiple feature representations in the PENDIGITS data set.

Table 8 summarizes the performance values of all algorithms on the PENDIGITS-EO data set.
We see thatSVM (best) is outperformed (by more than three per cent) by all other algorithms in

5. Available athttp://mkl.ucsd.edu/dataset/pendigits .

2247

GÖNEN AND ALPAYDIN

terms of average test accuracy, which implies that integrating different information sources helps.
RBMKL (product), NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid) achieve
statistically significantly higher average test accuracies than the other MKL algorithms. NLMKL
(p = 1) and NLMKL (p = 2) are the only two algorithms that get more than 99 percent average
test accuracy and improve the average test accuracy ofRBMKL (mean) statistically significantly,
by nearly six per cent. When we look at the percentages of support vectors stored, we see that
RBMKL (product) stores statistically significantly more support vectors than the other algorithms,
whereasLMKL (softmax) andLMKL (sigmoid) store statistically significantly fewer support vectors.
All combination algorithms exceptABMKL (convex) use four kernels in all folds. All two-step
algorithms exceptLMKL (softmax) andLMKL (sigmoid) need to solve less than 15 SVM optimization
problems on the average. As observed before,LMKL (softmax) andLMKL (sigmoid) have very high
standard deviations in the number of SVM optimization calls due to the random initialization of the
gating model parameters; note that convergence may be slow at times, but thestandard deviations
of the test accuracy are small.

Table 9 lists the performance values of all algorithms on the PENDIGITS-SL data set. We again
see thatSVM (best) is outperformed (more than five per cent) by all other algorithms in terms of av-
erage test accuracy.RBMKL (product), NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), andLMKL
(sigmoid) achieve statistically significantly higher average test accuracies than the other MKL algo-
rithms. Similar to the results on the PENDIGITS-EO data set,NLMKL (p= 1) andNLMKL (p= 2)
are the only two algorithms that get more than 99 percent average test accuracy by improving the av-
erage test accuracy ofRBMKL (mean) nearly eight per cent for this experiment. As observed on the
PENDIGITS-EO data set, we see thatRBMKL (product) stores statistically significantly more support
vectors than the other algorithms, whereasLMKL (softmax) andLMKL (sigmoid) store fewer support
vectors. All combination algorithms exceptABMKL (convex) use four kernels in all folds, whereas
this latter uses exactly three kernels in all folds by eliminating STA8 representation. All two-step
algorithms exceptLMKL (softmax) andLMKL (sigmoid) need to solve less than 20 SVM optimiza-
tion problems on the average.GLMKL (p= 1) andGLMKL (p= 2) solve statistically significantly
fewer SVM problems than the other two-step algorithms.

4.5 Multiple Features Digit Recognition Experiments

We perform experiments on the Multiple Features (MULTI FEAT) digit recognition data set6 from
the UCI Machine Learning Repository, composed of six different feature representations for 2,000
handwritten numerals. The properties of these feature representations are summarized in Table 10.
Two binary classification problems are generated from the MULTI FEAT data set: In the MULTI FEAT-
EO data set, we separate even digits from odd digits; in the MULTI FEAT-SL data set, we separate
small (‘0’ - ‘4’) digits from large (‘5’ - ‘9’) digits. We do two experiments on these data set using
two different subsets of feature representations.

Table 11 gives the performance values of all algorithms on the MULTI FEAT-EO data set with
(FOU-KAR-PIX -ZER). Though all algorithms exceptCABMKL (linear) have higher average test ac-
curacies thanSVM (best); only LMKL (sigmoid) is statistically significantly more accurate thanSVM
(best), SVM (all), andRBMKL (mean). Note that even thoughRBMKL (product) is not more accu-
rate thanSVM (all) or RBMKL (mean), nonlinear and data-dependent algorithms, namely,NLMKL
(p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid), are more accurate than these two

6. Available athttp://archive.ics.uci.edu/ml/datasets/Multiple+Fea tures .

2248

MULTIPLE KERNEL LEARNING ALGORITHMS

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 88.93±0.28 bc 20.90±1.22 c 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 92.12±0.42a c 22.22±0.72 c 4.00±0.00 1.00± 0.00
RBMKL (mean) 93.34±0.28 18.91±0.67 4.00±0.00 1.00± 0.00
RBMKL (product) 98.46±0.16abc 51.08±0.48abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 93.40±0.15 17.52±0.73abc 4.00±0.00 1.00± 0.00
ABMKL (convex) 93.53±0.26 13.83±0.75abc 3.90±0.32abc 1.00± 0.00
ABMKL (ratio) 93.35±0.20 18.89±0.68 4.00±0.00 1.00± 0.00
CABMKL (linear) 93.42±0.16 17.48±0.74abc 4.00±0.00 1.00± 0.00
CABMKL (conic) 93.42±0.16 17.48±0.74abc 4.00±0.00 1.00± 0.00
MKL 93.28±0.29 19.20±0.67 bc 4.00±0.00 1.00± 0.00
SimpleMKL 93.29±0.27 19.04±0.71 4.00±0.00 8.70± 3.92abc

GMKL 93.28±0.26 19.08±0.72 4.00±0.00 8.60± 3.66abc

GLMKL (p= 1) 93.34±0.27 19.02±0.73 4.00±0.00 3.20± 0.63abc

GLMKL (p= 2) 93.32±0.25 16.91±0.61abc 4.00±0.00 3.80± 0.42abc

NLMKL (p= 1) 99.36±0.08abc 19.55±0.48 4.00±0.00 11.60± 6.26abc

NLMKL (p= 2) 99.38±0.07abc 19.79±0.52 4.00±0.00 10.90± 4.31abc

LMKL (softmax) 97.14±0.39abc 7.25±0.65abc 4.00±0.00 97.70±55.48abc

LMKL (sigmoid) 97.80±0.20abc 11.71±0.71abc 4.00±0.00 87.70±47.30abc

Table 8: Performances of single-kernel SVM and representative MKLalgorithms on the
PENDIGITS-EO data set using the linear kernel.

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 84.44±0.49 bc 39.31±0.77 bc 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 89.48±0.67a c 19.55±0.61a c 4.00±0.00 1.00± 0.00
RBMKL (mean) 91.11±0.34 16.22±0.59 4.00±0.00 1.00± 0.00
RBMKL (product) 98.37±0.11abc 60.28±0.69abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 90.97±0.49 20.93±0.46abc 4.00±0.00 1.00± 0.00
ABMKL (convex) 90.85±0.51 24.59±0.69abc 3.00±0.00abc 1.00± 0.00
ABMKL (ratio) 91.12±0.32 16.23±0.57 4.00±0.00 1.00± 0.00
CABMKL (linear) 91.02±0.47 20.89±0.49abc 4.00±0.00 1.00± 0.00
CABMKL (conic) 91.02±0.47 20.90±0.50abc 4.00±0.00 1.00± 0.00
MKL 90.85±0.45 23.59±0.56abc 4.00±0.00 1.00± 0.00
SimpleMKL 90.84±0.50 23.48±0.55abc 4.00±0.00 14.50± 3.92abc

GMKL 90.85±0.47 23.46±0.54abc 4.00±0.00 15.60± 3.34abc

GLMKL (p= 1) 90.90±0.46 23.33±0.57abc 4.00±0.00 4.90± 0.57abc

GLMKL (p= 2) 91.12±0.44 20.40±0.55abc 4.00±0.00 4.00± 0.00 bc

NLMKL (p= 1) 99.11±0.10abc 17.37±0.17 4.00±0.00 18.10± 0.32abc

NLMKL (p= 2) 99.07±0.12abc 17.66±0.23 4.00±0.00 10.90± 3.70abc

LMKL (softmax) 97.77±0.54abc 5.72±0.46abc 4.00±0.00 116.60±73.34abc

LMKL (sigmoid) 97.13±0.40abc 6.69±0.27abc 4.00±0.00 119.00±45.04abc

Table 9: Performances of single-kernel SVM and representative MKLalgorithms on the
PENDIGITS-SL data set using the linear kernel.

2249

GÖNEN AND ALPAYDIN

Name Dimension Data Source

FAC 216 Profile correlations
FOU 76 Fourier coefficients of the shapes
KAR 64 Karhunen-Lòeve coefficients
MOR 6 Morphological features
PIX 240 Pixel averages in 2×3 windows
ZER 47 Zernike moments

Table 10: Multiple feature representations in the MULTI FEAT data set.

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 95.96±0.50 bc 21.37±0.81 c 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 97.79±0.25 21.63±0.73 c 4.00±0.00 1.00± 0.00
RBMKL (mean) 97.94±0.29 23.42±0.79 4.00±0.00 1.00± 0.00
RBMKL (product) 96.43±0.38 bc 92.11±1.18abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 97.85±0.25 19.40±1.02abc 2.00±0.00abc 1.00± 0.00
ABMKL (convex) 95.97±0.57 bc 21.45±0.92 c 1.20±0.42 bc 1.00± 0.00
ABMKL (ratio) 97.82±0.32 22.33±0.57 bc 4.00±0.00 1.00± 0.00
CABMKL (linear) 95.78±0.37 bc 19.25±1.09 bc 4.00±0.00 1.00± 0.00
CABMKL (conic) 97.85±0.25 19.37±1.03abc 2.00±0.00abc 1.00± 0.00
MKL 97.88±0.31 21.01±0.87 c 3.50±0.53abc 1.00± 0.00
SimpleMKL 97.87±0.32 20.90±0.94 c 3.40±0.70abc 22.50± 6.65abc

GMKL 97.88±0.31 21.00±0.88 c 3.50±0.53abc 25.90±10.05abc

GLMKL (p= 1) 97.90±0.25 21.31±0.78 c 4.00±0.00 11.10± 0.74abc

GLMKL (p= 2) 98.01±0.24 19.19±0.61 bc 4.00±0.00 4.90± 0.32abc

NLMKL (p= 1) 98.67±0.22 56.91±1.17abc 4.00±0.00 4.50± 1.84 bc

NLMKL (p= 2) 98.61±0.24 53.61±1.20abc 4.00±0.00 5.60± 3.03 bc

LMKL (softmax) 98.16±0.50 17.40±1.17abc 4.00±0.00 36.70±14.11abc

LMKL (sigmoid) 98.94±0.29abc 15.23±1.08abc 4.00±0.00 88.20±36.00abc

Table 11: Performances of single-kernel SVM and representative MKL algorithms on the
MULTI FEAT-EO data set with (FOU-KAR-PIX -ZER) using the linear kernel.

algorithms. Alignment-based and centered-alignment-based MKL algorithms, namely,ABMKL (ra-
tio), ABMKL (conic), ABMKL (convex), CABMKL (linear) andCABMKL (convex), are not more accu-
rate thanRBMKL (mean). We see thatABMKL (convex) andCABMKL (linear) are statistically signif-
icantly less accurate thanSVM (all) andRBMKL (mean). If we compare the algorithms in terms of
support vector percentages, we note that MKL algorithms that use products of the combined ker-
nels, namely,RBMKL (product), NLMKL (p= 1), andNLMKL (p= 2), store statistically significantly
more support vectors than all other algorithms. If we look at the active kernel counts, 10 out of 16
MKL algorithms use all four kernels. The two-step algorithms solve statistically significantly more
optimization problems than the one-step algorithms.

Table 12 summarizes the performance values of all algorithms on the MULTI FEAT-EO data set
with (FAC-FOU-KAR-MOR-PIX -ZER). We note thatNLMKL (p = 1) andLMKL (sigmoid) are the

2250

MULTIPLE KERNEL LEARNING ALGORITHMS

two MKL algorithms that achieve average test accuracy greater than or equal to 99 per cent, while
NLMKL (p = 1), NLMKL (p = 2), andLMKL (sigmoid) are statistically significantly more accurate
thanRBMKL (mean). All other MKL algorithms exceptRBMKL (product) andCABMKL (linear)
achieve average test accuracies between 98 per cent and 99 per cent. Similar to the results of
the previous experiment,RBMKL (product), NLMKL (p= 1), andNLMKL (p= 2) store statistically
significantly more support vectors than all other algorithms. When we look atthe number of active
kernels,ABMKL (convex) selects only one kernel and this is the same kernel thatSVM (best) picks.
ABMKL (conic) andCABMKL (conic) use three kernels, whereas all other algorithms use more than
five kernels on the average.GLMKL (p= 1), GLMKL (p= 2), NLMKL (p= 1), andNLMKL (p= 2)
solve fewer optimization problems than the other two-step algorithms, namely,SimpleMKL, GMKL,
LMKL (softmax), andLMKL (sigmoid).

Table 13 lists the performance values of all algorithms on the MULTI FEAT-SL data set with
(FOU-KAR-PIX -ZER). SVM (best) is outperformed by the other algorithms on the average and
this shows that, for this data set, combining multiple information sources, independently of the
combination algorithm used, improves the average test accuracy.RBMKL (product), NLMKL (p =
1), NLMKL (p = 2), andLMKL (sigmoid) are the four MKL algorithms that achieve statistically
significantly higher average test accuracies thanRBMKL (best), SVM (all), RBMKL (mean). NLMKL
(p = 1) and NLMKL (p = 2) are the two best algorithms and are statistically significantly more
accurate than all other algorithms, exceptLMKL (sigmoid). However,NLMKL (p = 1) andNLMKL
(p= 2) store statistically significantly more support vectors than all other algorithms, exceptRBMKL
(product). All MKL algorithms use all of the kernels and the two-step algorithms solve statistically
significantly more optimization problems than the one-step algorithms.

Table 14 gives the performance values of all algorithms on the MULTI FEAT-SL data set with
(FAC-FOU-KAR-MOR-PIX -ZER). GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), LMKL (soft-
max), andLMKL (sigmoid) are the five MKL algorithms that achieve higher average test accuracies
thanRBMKL (mean). CABMKL (linear) is the only algorithm that has statistically significantly lower
average test accuracy thanSVM (best). No MKL algorithm achieves statistically significantly higher
average test accuracies thanSVM (best), SVM (all), andRBMKL (mean). MKL algorithms with non-
linear combination rules, namely,RBMKL (product), NLMKL (p= 1) andNLMKL (p= 2), again use
more support vectors than the other algorithms, whereas LMKL with a data-dependent combination
approach stores statistically significantly fewer support vectors.ABMKL (conic), ABMKL (convex),
andCABMKL (conic) are the three MKL algorithms that perform kernel selection and use fewerthan
five kernels on the average, while others use all of the kernels.GLMKL (p= 1) andGLMKL (p= 2)
solve statistically significantly fewer optimization problems than all the other two-step algorithms
and the very high standard deviations forLMKL (softmax) andLMKL (sigmoid) are also observed in
this experiment.

4.6 Internet Advertisements Experiments

We perform experiments on the Internet Advertisements (ADVERT) data set7 from the UCI Machine
Learning Repository, composed of five different feature representations (different bags of words);
there is also some additional geometry information of the images, but we ignore them in our experi-
ments due to missing values. After removing the data instances with missing values,we have a total

7. Available athttp://archive.ics.uci.edu/ml/datasets/Internet+Adv ertisements .

2251

GÖNEN AND ALPAYDIN

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 98.39±0.36 10.30±0.83 bc 1.00±0.00 bc 6.00± 0.00 bc

SVM (all) 98.24±0.40 14.44±0.74 6.00±0.00 1.00± 0.00
RBMKL (mean) 98.09±0.31 15.16±0.83 6.00±0.00 1.00± 0.00
RBMKL (product) 95.87±0.31abc 100.00±0.00abc 6.00±0.00 1.00± 0.00
ABMKL (conic) 98.24±0.38 13.08±0.93 3.00±0.00abc 1.00± 0.00
ABMKL (convex) 98.39±0.36 10.30±0.83 bc 1.00±0.00 bc 1.00± 0.00
ABMKL (ratio) 98.19±0.25 14.11±0.64 6.00±0.00 1.00± 0.00
CABMKL (linear) 96.90±0.34 16.89±0.91abc 5.90±0.32abc 1.00± 0.00
CABMKL (conic) 98.15±0.41 12.54±0.75 3.00±0.00abc 1.00± 0.00
MKL 98.31±0.34 14.88±0.81 5.40±0.70abc 1.00± 0.00
SimpleMKL 98.25±0.37 14.89±0.70 5.60±0.52abc 37.50±12.09abc

GMKL 98.24±0.34 14.33±0.85a c 5.60±0.52abc 31.70±10.79abc

GLMKL (p= 1) 98.28±0.31 14.44±0.87a c 6.00±0.00 9.30± 1.25abc

GLMKL (p= 2) 98.37±0.28 17.04±0.80abc 6.00±0.00 4.90± 0.32abc

NLMKL (p= 1) 99.00±0.16 c 47.50±1.27abc 6.00±0.00 8.30± 2.71abc

NLMKL (p= 2) 98.93±0.18 c 46.78±1.07abc 6.00±0.00 12.00± 3.16abc

LMKL (softmax) 98.34±0.25 11.36±1.83 6.00±0.00 94.90±24.73abc

LMKL (sigmoid) 99.24±0.18 c 17.88±1.06 6.00±0.00 94.90±57.64abc

Table 12: Performances of single-kernel SVM and representative MKL algorithms on the
MULTI FEAT-EO data set with (FAC-FOU-KAR-MOR-PIX -ZER) using the linear kernel.

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 90.54±1.12 bc 28.90±1.69 bc 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 94.45±0.44 40.26±1.28a c 4.00±0.00 1.00± 0.00
RBMKL (mean) 95.00±0.76 24.73±1.19 4.00±0.00 1.00± 0.00
RBMKL (product) 96.51±0.31abc 95.31±0.60abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 95.12±0.36 33.44±1.20abc 4.00±0.00 1.00± 0.00
ABMKL (convex) 94.51±0.59 24.34±1.19 4.00±0.00 1.00± 0.00
ABMKL (ratio) 94.93±0.73 24.88±1.02 4.00±0.00 1.00± 0.00
CABMKL (linear) 95.10±0.38 33.44±1.24abc 4.00±0.00 1.00± 0.00
CABMKL (conic) 95.10±0.38 33.44±1.24abc 4.00±0.00 1.00± 0.00
MKL 94.81±0.67 24.46±1.13 4.00±0.00 1.00± 0.00
SimpleMKL 94.84±0.64 24.40±1.18 4.00±0.00 15.50± 8.11abc

GMKL 94.84±0.64 24.41±1.18 4.00±0.00 15.60± 8.07abc

GLMKL (p= 1) 94.84±0.69 24.34±1.27 4.00±0.00 6.20± 1.03abc

GLMKL (p= 2) 95.18±0.32 32.34±1.36abc 4.00±0.00 4.20± 0.63 bc

NLMKL (p= 1) 98.64±0.25abc 50.17±1.31abc 4.00±0.00 9.20± 4.80abc

NLMKL (p= 2) 98.63±0.28abc 57.02±1.26abc 4.00±0.00 9.10± 3.28abc

LMKL (softmax) 96.24±0.90 24.16±3.29 4.00±0.00 41.70±31.28abc

LMKL (sigmoid) 97.16±0.60abc 20.18±1.06abc 4.00±0.00 75.50±28.38abc

Table 13: Performances of single-kernel SVM and representative MKL algorithms on the
MULTI FEAT-SL data set with (FOU-KAR-PIX -ZER) using the linear kernel.

2252

MULTIPLE KERNEL LEARNING ALGORITHMS

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 94.99±0.85 bc 17.96±0.89 bc 1.00±0.00 bc 6.00± 0.00 bc

SVM (all) 97.69±0.44 23.34±1.13 6.00±0.00 1.00± 0.00
RBMKL (mean) 97.67±0.50 20.98±0.84 6.00±0.00 1.00± 0.00
RBMKL (product) 96.01±0.17 bc 97.58±0.48abc 6.00±0.00 1.00± 0.00
ABMKL (conic) 96.84±0.39 27.49±0.92abc 4.50±0.53abc 1.00± 0.00
ABMKL (convex) 96.46±0.34 33.78±0.90abc 4.60±0.52abc 1.00± 0.00
ABMKL (ratio) 97.66±0.46 20.95±0.88 6.00±0.00 1.00± 0.00
CABMKL (linear) 89.18±0.81abc 57.22±1.47abc 6.00±0.00 1.00± 0.00
CABMKL (conic) 96.84±0.39 27.57±0.95abc 4.50±0.53abc 1.00± 0.00
MKL 97.40±0.37 32.59±0.82abc 6.00±0.00 1.00± 0.00
SimpleMKL 97.51±0.37 32.53±0.94abc 6.00±0.00 14.40± 3.27abc

GMKL 97.51±0.35 32.73±1.01abc 6.00±0.00 14.20± 4.59abc

GLMKL (p= 1) 97.51±0.28 32.49±0.93abc 6.00±0.00 6.70± 0.95 bc

GLMKL (p= 2) 97.81±0.22 25.19±1.06abc 6.00±0.00 5.00± 0.82abc

NLMKL (p= 1) 98.79±0.28 38.44±0.96abc 6.00±0.00 12.10± 3.98abc

NLMKL (p= 2) 98.82±0.20 43.99±0.99abc 6.00±0.00 10.70± 4.62abc

LMKL (softmax) 97.79±0.62 14.71±1.10 bc 6.00±0.00 59.00±31.42abc

LMKL (sigmoid) 98.48±0.70 16.10±2.09 bc 6.00±0.00 107.60±76.90abc

Table 14: Performances of single-kernel SVM and representative MKL algorithms on the
MULTI FEAT-SL data set with (FAC-FOU-KAR-MOR-PIX -ZER) using the linear kernel.

of 3,279 images in the data set. The properties of these feature representations are summarized in
Table 15. The classification task is to predict whether an image is an advertisement or not.

Name Dimension Data Source

URL 457 Phrases occurring in the URL
ORIGURL 495 Phrases occurring in the URL of the image
ANCURL 472 Phrases occurring in the anchor text
ALT 111 Phrases occurring in the alternative text
CAPTION 19 Phrases occurring in the caption terms

Table 15: Multiple feature representations in the ADVERT data set.

Table 16 lists the performance values of all algorithms on the ADVERT data set. We can see that
all MKL algorithms exceptRBMKL (product) achieve similar average test accuracies. However,
no MKL algorithm is statistically significantly more accurate thanRBMKL (mean), andABMKL
(convex) is statistically significantly worse. We see again that algorithms that combine kernels by
multiplying them, namely,RBMKL (product), NLMKL (p= 1), andNLMKL (p= 2), store statistically
significantly more support vectors than other MKL algorithms. 10 out of 16 MKL algorithms use
all five kernels;ABMKL (conic) andABMKL (convex) eliminate two representations, namely, URL
and ORIGURL. GMKL (p= 1) andGMKL (p= 2) solve statistically significantly fewer optimization
problems than the other two-step algorithms.

2253

GÖNEN AND ALPAYDIN

Algorithm Test Accuracy Support Vector Active Kernel Callsto Solver

SVM (best) 95.45±0.31 64.90± 5.41 bc 1.00±0.00 bc 5.00± 0.00 bc

SVM (all) 96.43±0.24 41.99± 1.76 5.00±0.00 1.00± 0.00
RBMKL (mean) 96.53±0.58 34.40± 4.25 5.00±0.00 1.00± 0.00
RBMKL (product) 89.98±0.49abc 96.61± 1.71abc 5.00±0.00 1.00± 0.00
ABMKL (conic) 95.69±0.27 44.16± 2.65a c 3.00±0.00abc 1.00± 0.00
ABMKL (convex) 95.10±0.52 bc 58.07± 2.47 bc 3.00±0.00abc 1.00± 0.00
ABMKL (ratio) 96.23±0.61 35.07± 2.92 5.00±0.00 1.00± 0.00
CABMKL (linear) 95.86±0.19 36.43± 1.50 5.00±0.00 1.00± 0.00
CABMKL (conic) 95.84±0.19 38.06± 2.36 4.40±0.52abc 1.00± 0.00
MKL 96.32±0.50 35.82± 4.35 4.10±0.32abc 1.00± 0.00
SimpleMKL 96.37±0.46 33.78± 4.40 4.60±0.52abc 27.00± 7.39abc

GMKL 96.40±0.49 33.18± 3.49 4.70±0.48abc 27.20± 7.94abc

GLMKL (p= 1) 96.35±0.55 32.81± 3.56 5.00±0.00 5.40± 1.07 bc

GLMKL (p= 2) 96.56±0.32 35.62± 1.55 5.00±0.00 4.90± 0.74 bc

NLMKL (p= 1) 95.96±0.50 67.63± 3.46 bc 5.00±0.00 15.90± 5.38abc

NLMKL (p= 2) 96.13±0.31 65.70± 3.03 bc 5.00±0.00 13.00± 0.00abc

LMKL (softmax) 95.68±0.53 24.18± 5.74 5.00±0.00 38.80±24.11abc

LMKL (sigmoid) 95.49±0.48 18.22±12.16 5.00±0.00 56.60±53.70abc

Table 16: Performances of single-kernel SVM and representative MKL algorithms on the AD-
VERT data set using the linear kernel.

4.7 Overall Comparison

After comparing algorithms for each experiment separately, we give an overall comparison on 10
experiments using the nonparametric Friedman’s test on rankings with the Tukey’s honestly signif-
icant difference criterion as the post-hoc test (Demšar, 2006).

Figure 2 shows the overall comparison between the algorithms in terms of misclassification
error. First of all, we see that combining multiple information sources clearly improves the classifi-
cation performance becauseSVM (best) is worse than all other algorithms.GLMKL (p= 2), NLMKL
(p = 1), NLMKL (p = 2), LMKL (softmax), andLMKL (sigmoid) are statistically significantly more
accurate thanSVM (best). MKL algorithms using a trained, weighted combination on the average
seem a little worse (but not statistically significantly) than the untrained, unweighted sum, namely,
RBMKL (mean). NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), andLMKL (sigmoid) are more ac-
curate (but not statistically significantly) thanRBMKL (mean). These results seem to suggest that if
we want to improve the classification accuracy of MKL algorithms, we should investigate nonlinear
and data-dependent approaches to better exploit information provided by different kernels.

Figure 3 illustrates the overall comparison between the algorithms in terms of the support vec-
tor percentages. We note that algorithms are clustered into three groups: (a) nonlinear MKL al-
gorithms, (b) single-kernel SVM and linear MKL algorithms, and (c) data-dependent MKL al-
gorithms. Nonlinear MKL algorithms, namely,RBMKL (product), NLMKL (p = 1) and NLMKL
(p= 2), store more (but not statistically significantly) support vectors than single-kernel SVM and
linear MKL algorithms, whereas they store statistically significantly more support vectors than

2254

MULTIPLE KERNEL LEARNING ALGORITHMS

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 2: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of misclassification error using the linear kernel.

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 3: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of support vector percentages using the linear kernel.

2255

GÖNEN AND ALPAYDIN

data-dependent MKL algorithms. Data-dependent MKL algorithms, namely,LMKL (softmax) and
LMKL (sigmoid), store fewer (but not statistically significantly) support vectors than single-kernel
SVM and linear MKL algorithms, whereasLMKL (softmax) stores statistically significantly fewer
support vectors thanSVM (best) andSVM (all).

Figure 4 gives the overall comparison between the algorithms in terms of active kernel counts.
We see thatABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic), MKL, SimpleMKL,
andGMKL use fewer kernels (statistically significantly in the case of the first two algorithms) than
other combination algorithms. Even if we optimize the alignment and centered-alignment measures
without any regularization on kernel weights usingABMKL (conic), ABMKL (convex), andCABMKL
(conic), we obtain more sparse (but not statistically significantly) kernel combinations thanMKL
andSimpleMKL, which regularize kernel weights using theℓ1-norm. Trained nonlinear and data-
dependent MKL algorithms, namely,NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), andLMKL
(sigmoid), tend to use all of the kernels without eliminating any of them, whereas data-dependent
algorithms use the kernels in different parts of the feature space with the help of the gating model.

Figure 5 shows the overall comparison between the algorithms in terms of the optimization
toolbox call counts. We clearly see that the two-step algorithms need to solve more optimization
problems than the other combination algorithms.SimpleMKL, GMKL, NLMKL (p= 1), NLMKL (p=
2), LMKL (softmax), andLMKL (sigmoid) require solving statistically significantly more optimization
problems than the one-step algorithms, whereas the differences between the one-step algorithms and
GLMKL (p= 1) andGLMKL (p= 2) are not statistically significant.

4.8 Overall Comparison Using Gaussian Kernel

We also replicate the same set of experiments, except on PENDIGITS data set, using three different
Gaussian kernels for each feature representation. We select the kernel widths as{

√
Dm/2,

√
Dm,

2
√

Dm} whereDm is the dimensionality of the corresponding feature representation.

Figure 6 shows the overall comparison between the algorithms in terms of misclassification
error. We see that no MKL algorithm is statistically significantly better thanRBMKL (mean) and
conclude that combining complex Gaussian kernels does not help much.ABMKL (ratio), MKL,
SimpleMKL, GMKL, GLMKL (p = 1), andGLMKL (p = 2) obtain accuracy results comparable to
RBMKL (mean). As an important result, we see that nonlinear and data-dependent MKL algorithms,
namely,NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), andLMKL (sigmoid), are outperformed
(but not statistically significantly) byRBMKL (mean). If we have highly nonlinear kernels such as
Gaussian kernels, there is no need to combine them in a nonlinear or data-dependent way.

Figure 7 illustrates the overall comparison between the algorithms in terms of the support vec-
tor percentages. Different from the results obtained with simple linear kernels, algorithms do not
exhibit a clear grouping. However, data-dependent MKL algorithms, namely, LMKL (softmax) and
LMKL (sigmoid), tend to use fewer support vectors, whereas nonlinear MKL algorithms,namely,
RBMKL (product), NLMKL (p = 1), andNLMKL (p = 2), tend to store more support vectors than
other algorithms.

Figure 8 gives the overall comparison between the algorithms in terms of active kernel counts.
ABMKL (ratio), GLMKL (p= 2), NLMKL (p= 1), NLMKL (p= 2), andLMKL (sigmoid) do not elim-
inate any of the base kernels even though we have three different kernels for each feature repre-
sentation. When combining complex Gaussian kernels, trained MKL algorithms do not improve
the classification performance statistically significantly, but they can eliminate some of the kernels.

2256

MULTIPLE KERNEL LEARNING ALGORITHMS

−4 −2 0 2 4 6 8 10 12 14 16

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 4: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of active kernel counts using the linear kernel.

0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 5: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of optimization toolbox call counts using the linear kernel.

2257

GÖNEN AND ALPAYDIN

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 6: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of misclassification error using the Gaussian kernel.

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 7: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of support vector percentages using the Gaussian kernel.

2258

MULTIPLE KERNEL LEARNING ALGORITHMS

−5 0 5 10 15 20

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 8: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of active kernel counts using the Gaussian kernel.

0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 9: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of optimization toolbox call counts using the Gaussian kernel.

2259

GÖNEN AND ALPAYDIN

We see thatABMKL (conic), ABMKL (convex), CABMKL (conic), MKL, SimpleMKL, GMKL, GLMKL
(p= 1), andLMKL (softmax) use fewer kernels (statistically significantly in the case of the first three
algorithms) than other combination algorithms.

Figure 9 shows the overall comparison between the algorithms in terms of the optimization
toolbox call counts. Similar to the previous results obtained with simple linear kernels, the two-step
algorithms need to solve more optimization problems than the other combination algorithms.

5. Conclusions

There is a significant amount of work on multiple kernel learning methods. Thisis because in
many applications, one can come up with many possible kernel functions and instead of choosing
one among them, we are interested in an algorithm that can automatically determine which ones
are useful, which ones are not and therefore can be pruned, and combine the useful ones. Or, in
some applications, we may have different sources of information coming from different modalities
or corresponding to results from different experimental methodologies and each has its own (pos-
sibly multiple) kernel(s). In such a case, a good procedure for kernelcombination implies a good
combination of inputs from those multiple sources.

In this paper, we give a taxonomy of multiple kernel learning algorithms to besthighlight the
similarities and differences among the proposed algorithms in the literature, which we then review
in detail. The dimensions we compare the existing MKL algorithms are the learning method, the
functional form, the target function, the training method, the base learner,and the computational
complexity. Then by looking at these dimensions, we form 12 groups of MKLvariants to allow an
organized discussion of the literature.

We also perform 10 experiments on four real data sets with simple linear kernels and eight ex-
periments on three real data sets with complex Gaussian kernels comparing 16MKL algorithms
in practice. When combining simple linear kernels, in terms of accuracy, we see that using multi-
ple kernels is better than using a single one but that in combination, trained linear combination is
not always better than an untrained, unweighted combination and that nonlinear or data-dependent
combination seem more promising. When combining complex Gaussian kernels, trained linear
combination is better than nonlinear and data-dependent combinations but not than unweighted
combination. Some MKL variants may be preferred because they use fewersupport vectors or
fewer kernels or need fewer calls to the optimizer during training. The relative importance of these
criteria depend on the application at hand.

We conclude that multiple kernel learning is useful in practice and that thereis ample evidence
that better MKL algorithms can be devised for improved accuracy, decreased complexity and train-
ing time.

Acknowledgments

The authors would like to thank the editor and the three anonymous reviewersfor their constructive
comments, which significantly improved the presentation of the paper. This work was supported
by the Turkish Academy of Sciences in the framework of the Young ScientistAward Program un-
der EA-TÜBA-GEBİP/2001-1-1, Bŏgaziçi University Scientific Research Project 07HA101 and
the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant EEEAG

2260

MULTIPLE KERNEL LEARNING ALGORITHMS

107E222. The work of M. G̈onen was supported by the Ph.D. scholarship (2211) from TÜBİTAK.
M. Gönen is currently at the Department of Information and Computer Science, Aalto University
School of Science and the Helsinki Institute for Information Technology (HIIT), Finland.

Appendix A. List of Acronyms

GMKL Generalized Multiple Kernel Learning
GP Gaussian Process
KFDA Kernel Fisher Discriminant Analysis
KL Kullback-Leibler
KRR Kernel Ridge Regression
LMKL Localized Multiple Kernel Learning
LP Linear Programming
MKL Multiple Kernel Learning
QCQP Quadratically Constrained Quadratic Programming
QP Quadratic Programming
RKDA Regularized Kernel Discriminant Analysis
SDP Semidefinite Programming
SILP Semi-infinite Linear Programming
SMKL Sparse Multiple Kernel Learning
SOCP Second-order Cone Programming
SVM Support Vector Machine
SVR Support Vector Regression

Appendix B. List of Notation

R Real numbers
R+ Nonnegative real numbers
R++ Positive real numbers
R

N RealN×1 matrices
R

M×N RealM×N matrices
S

N Real symmetricN×N matrices
N Natural numbers
Z Integers
Z+ Nonnegative integers

‖x‖p Theℓp-norm of vectorx
〈x,y〉 Dot product between vectorsx andy
k(x,y) Kernel function betweenx andy

K Kernel matrix
X⊤ Transpose of matrixX
tr(X) Trace of matrixX
‖X‖F Frobenius norm of matrixX
X⊙Y Element-wise product between matricesX andY

References

Ethem Alpaydın. Combined 5×2 cv F test for comparing supervised classification learning algo-
rithms. Neural Computation, 11(8):1885–1892, 1999.

2261

GÖNEN AND ALPAYDIN

Andreas Argyriou, Charles A. Micchelli, and Massimiliano Pontil. Learning convex combinations
of continuously parameterized basic kernels. InProceeding of the 18th Conference on Learning
Theory, 2005.

Andreas Argyriou, Raphael Hauser, Charles A. Micchelli, and Massimiliano Pontil. A DC-
programming algorithm for kernel selection. InProceedings of the 23rd International Conference
on Machine Learning, 2006.

Francis R. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine
Learning Research, 9:1179–1225, 2008.

Francis R. Bach. Exploring large feature spaces with hierarchical multiplekernel learning. In
Advances in Neural Information Processing Systems 21, 2009.

Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiplekernel learning, conic
duality, and the SMO algorithm. InProceedings of the 21st International Conference on Machine
Learning, 2004.

Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting protein-protein interac-
tions. Bioinformatics, 21(Suppl 1):i38–46, 2005.

Kristin P. Bennett, Michinari Momma, and Mark J. Embrechts. MARK: A boosting algorithm for
heterogeneous kernel models. InProceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002.

Jinbo Bi, Tong Zhang, and Kristin P. Bennett. Column-generation boosting methods for mixture
of kernels. InProceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2004.

Olivier Bousquet and Daniel J. L. Herrmann. On the complexity of learningthe kernel matrix. In
Advances in Neural Information Processing Systems 15, 2003.

Olivier Chapelle and Alain Rakotomamonjy. Second order optimization of kernel parameters. In
NIPS Workshop on Automatic Selection of Optimal Kernels, 2008.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing multiple
parameters for support vector machines.Machine Learning, 46(1–3):131–159, 2002.

Mario Christoudias, Raquel Urtasun, and Trevor Darrell. Bayesian localized multiple kernel learn-
ing. Technical Report UCB/EECS-2009-96, University of California at Berkeley, 2009.

Domenico Conforti and Rosita Guido. Kernel based support vector machine via semidefinite pro-
gramming: Application to medical diagnosis.Computers and Operations Research, 37(8):1389–
1394, 2010.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh.L2 regularization for learning kernels.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009.

Corinna Cortes, Mehryar Mohri, and Rostamizadeh Afshin. Two-stage learning kernel algorithms.
In Proceedings of the 27th International Conference on Machine Learning, 2010a.

2262

MULTIPLE KERNEL LEARNING ALGORITHMS

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of
kernels. InAdvances in Neural Information Processing Systems 22, 2010b.

Koby Crammer, Joseph Keshet, and Yoram Singer. Kernel design usingboosting. InAdvances in
Neural Information Processing Systems 15, 2003.

Nello Cristianini and John Shawe-Taylor.An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, 2000.

Nello Cristianini, John Shawe-Taylor, Andree Elisseef, and Jaz Kandola. On kernel-target align-
ment. InAdvances in Neural Information Processing Systems 14, 2002.

Theodoros Damoulas and Mark A. Girolami. Probabilistic multi-class multi-kernellearning: On
protein fold recognition and remote homology detection.Bioinformatics, 24(10):1264–1270,
2008.

Theodoros Damoulas and Mark A. Girolami. Combining feature spaces for classification.Pattern
Recognition, 42(11):2671–2683, 2009a.

Theodoros Damoulas and Mark A. Girolami. Pattern recognition with a Bayesian kernel combina-
tion machine.Pattern Recognition Letters, 30(1):46–54, 2009b.

Tijl De Bie, Leon-Charles Tranchevent, Liesbeth M. M. van Oeffelen, and Yves Moreau. Kernel-
based data fusion for gene prioritization.Bioinformatics, 23(13):i125–132, 2007.

Isaac Mart́ın de Diego, Javier M. Moguerza, and Alberto Muñoz. Combining kernel information
for support vector classification. InProceedings of the 4th International Workshop Multiple
Classifier Systems, 2004.

Isaac Mart́ın de Diego, Alberto Mũnoz, and Javier M. Moguerza. Methods for the combination of
kernel matrices within a support vector framework.Machine Learning, 78(1–2):137–174, 2010a.

Isaac Mart́ın de Diego,Ángel Serrano, Cristina Conde, and Enrique Cabello. Face verificationwith
a kernel fusion method.Pattern Recognition Letters, 31:837–844, 2010b.

Réda Dehak, Najim Dehak, Patrick Kenny, and Pierre Dumouchel. Kernelcombination for SVM
speaker verification. InProceedings of the Speaker and Language Recognition Workshop, 2008.

Janez Dem̌sar. Statistical comparisons of classifiers over multiple data sets.Journal of Machine
Learning Research, 7:1–30, 2006.

Glenn Fung, Murat Dundar, Jinbo Bi, and Bharat Rao. A fast iterativealgorithm for Fisher dis-
criminant using heterogeneous kernels. InProceedings of the 21st International Conference on
Machine Learning, 2004.

Peter Vincent Gehler and Sebastian Nowozin. Infinite kernel learning. Technical report, Max Planck
Institute for Biological Cybernetics, 2008.

Mark Girolami and Simon Rogers. Hierarchic Bayesian models for kernel learning. InProceedings
of the 22nd International Conference on Machine Learning, 2005.

2263

GÖNEN AND ALPAYDIN

Mark Girolami and Mingjun Zhong. Data integration for classification problemsemploying Gaus-
sian process priors. InAdvances in Neural Processing Systems 19, 2007.

Mehmet G̈onen and Ethem Alpaydın. Localized multiple kernel learning. InProceedings of the
25th International Conference on Machine Learning, 2008.

Yves Grandvalet and Stéphane Canu. Adaptive scaling for feature selection in SVMs. InAdvances
in Neural Information Processing Systems 15, 2003.

Junfeng He, Shih-Fu Chang, and Lexing Xie. Fast kernel learning for spatial pyramid matching. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2008.

Mingqing Hu, Yiqiang Chen, and James Tin-Yau Kwok. Building sparse multiple-kernel SVM
classifiers.IEEE Transactions on Neural Networks, 20(5):827–839, 2009.

Christian Igel, Tobias Glasmachers, Britta Mersch, Nico Pfeifer, and Peter Meinicke. Gradient-
based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start
detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(2):216–
226, 2007.

Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. Composite kernels for hypertext
categorisation. InProceedings of the 18th International Conference on Machine Learning, 2001.

Jaz Kandola, John Shawe-Taylor, and Nello Cristianini. Optimizing kernel alignment over combi-
nations of kernels. InProceedings of the 19th International Conference on Machine Learning,
2002.

Seung-Jean Kim, Alessandro Magnani, and Stephen Boyd. Optimal kernel selection in kernel Fisher
discriminant analysis. InProceedings of the 23rd International Conference on Machine Learning,
2006.

Marius Kloft, Ulf Brefeld, S̈oren Sonnenburg, Pavel Laskov, Klaus-Robert Müller, and Alexander
Zien. Efficient and accurateℓp-norm multiple kernel learning. InAdvances in Neural Information
Processing Systems 22, 2010a.

Marius Kloft, Ulf Brefeld, S̈oren Sonnenburg, and Alexander Zien. Non-sparse regularization and
efficient training with multiple kernels. Technical report, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2010b.

Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan.
Learning the kernel matrix with semidefinite programming. InProceedings of the 19th Interna-
tional Conference on Machine Learning, 2002.

Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan.
Learning the kernel matrix with semidefinite programming.Journal of Machine Learning Re-
search, 5:27–72, 2004a.

Gert R. G. Lanckriet, Tijl de Bie, Nello Cristianini, Michael I. Jordan, andWilliam Stafford Noble.
A statistical framework for genomic data fusion.Bioinformatics, 20(16):2626–2635, 2004b.

2264

MULTIPLE KERNEL LEARNING ALGORITHMS

Gert R. G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, and William Stafford
Noble. Kernel-based data fusion and its application to protein function prediction in Yeast. In
Proceedings of the Pacific Symposium on Biocomputing, 2004c.

Wan-Jui Lee, Sergey Verzakov, and Robert P. W. Duin. Kernel combination versus classifier com-
bination. InProceedings of the 7th International Workshop on Multiple Classifier Systems, 2007.

Darrin P. Lewis, Tony Jebara, and William Stafford Noble. Support vector machine learning from
heterogeneous data: An empirical analysis using protein sequence and structure.Bioinformatics,
22(22):2753–2760, 2006a.

Darrin P. Lewis, Tony Jebara, and William Stafford Noble. Nonstationarykernel combination. In
Proceedings of the 23rd International Conference on Machine Learning, 2006b.

Yen-Yu Lin, Tyng-Luh Liu, and Chiou-Shann Fuh. Dimensionality reduction for data in multiple
feature representations. InAdvances in Neural Processing Systems 21, 2009.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text clas-
sification using string kernels.Journal of Machine Learning Research, 2:419–444, 2002.

Chris Longworth and Mark J. F. Gales. Multiple kernel learning for speaker verification. InProceed-
ings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.

Chris Longworth and Mark J. F. Gales. Combining derivative and parametric kernels for speaker
verification. IEEE Transactions on Audio, Speech, and Language Processing, 17(4):748–757,
2009.

Brian McFee and Gert Lanckriet. Partial order embedding with multiple kernels. In Proceedings of
the 26th International Conference on Machine Learning, 2009.

Charles A. Micchelli and Massimiliano Pontil. Learning the kernel function viaregularization.
Journal of Machine Learning Research, 6:1099–1125, 2005.

Javier M. Moguerza, Alberto Mũnoz, and Isaac Martı́n de Diego. Improving support vector classi-
fication via the combination of multiple sources of information. InProceedings of the Structural,
Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshops, 2004.

Mosek. The MOSEK Optimization Tools Manual Version 6.0 (Revision 106). MOSEK ApS, Den-
mark, 2011.

Canh Hao Nguyen and Tu Bao Ho. An efficient kernel matrix evaluation measure.Pattern Recog-
nition, 41(11):3366–3372, 2008.

William Stafford Noble. Support vector machine applications in computational biology. In Bern-
hard Scḧolkopf, Koji Tsuda, and Jean-Philippe Vert, editors,Kernel Methods in Computational
Biology, chapter 3. The MIT Press, 2004.

Cheng Soon Ong and Alexander J. Smola. Machine learning using hyperkernels. InProceedings of
the 20th International Conference on Machine Learning, 2003.

2265

GÖNEN AND ALPAYDIN

Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Hyperkernels. InAdvances in
Neural Information Processing Systems 15, 2003.

Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learningthe kernel with hyper-
kernels.Journal of Machine Learning Research, 6:1043–1071, 2005.

Ayşeg̈ul Özen, Mehmet G̈onen, Ethem Alpaydın, and Türkan Halilŏglu. Machine learning inte-
gration for predicting the effect of single amino acid substitutions on protein stability. BMC
Structural Biology, 9(1):66, 2009.

SüreyyaÖzöğür-Akyüz and Gerhard Wilhelm Weber. Learning with infinitely many kernels via
semi-infinite programming. InProceedings of Euro Mini Conference on Continuous Optimization
and Knowledge-Based Technologies, 2008.

Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy. Genefunctional classifi-
cation from heterogeneous data. InProceedings of the 5th Annual International Conference on
Computational Molecular Biology, 2001.

Shibin Qiu and Terran Lane. Multiple kernel learning for support vectorregression. Technical
report, Computer Science Department, University of New Mexico, 2005.

Shibin Qiu and Terran Lane. A framework for multiple kernel support vector regression and its
applications to siRNA efficacy prediction.IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 6(2):190–199, 2009.

Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. More efficiency in mul-
tiple kernel learning. InProceedings of the 24th International Conference on Machine Learning,
2007.

Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. SimpleMKL.Jour-
nal of Machine Learning Research, 9:2491–2521, 2008.

Jagarlapudi Saketha Nath, Govindaraj Dinesh, Sankaran Raman, Chiranjib Bhattacharya, Aharon
Ben-Tal, and Kalpathi R. Ramakrishnan. On the algorithmics and applicationsof a mixed-norm
based kernel learning formulation. InAdvances in Neural Information Processing Systems 22,
2010.

Bernhard Scḧolkopf, Koji Tsuda, and Jean-Philippe Vert, editors.Kernel Methods in Computational
Biology. The MIT Press, 2004.

Sören Sonnenburg, Gunnar Rätsch, and Christin Schäfer. A general and efficient multiple kernel
learning algorithm. InAdvances in Neural Information Processing Systems 18, 2006a.

Sören Sonnenburg, Gunnar Rätsch, Christin Scḧafer, and Bernhard Schölkopf. Large scale multiple
kernel learning.Journal of Machine Learning Research, 7:1531–1565, 2006b.

Niranjan Subrahmanya and Yung C. Shin. Sparse multiple kernel learning for signal processing
applications.IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):788–798,
2010.

2266

MULTIPLE KERNEL LEARNING ALGORITHMS

Marie Szafranski, Yves Grandvalet, and Alain Rakotomamonjy. Composite kernel learning. In
Proceedings of the 25th International Conference on Machine Learning, 2008.

Marie Szafranski, Yves Grandvalet, and Alain Rakotomamonjy. Composite kernel learning.Ma-
chine Learning, 79(1–2):73–103, 2010.

Ying Tan and Jun Wang. A support vector machine with a hybrid kernel and minimal Vapnik-
Chervonenkis dimension.IEEE Transactions on Knowledge and Data Engineering, 16(4):385–
395, 2004.

Hiroaki Tanabe, Tu Bao Ho, Canh Hao Nguyen, and Saori Kawasaki.Simple but effective methods
for combining kernels in computational biology. InProceedings of IEEE International Confer-
ence on Research, Innovation and Vision for the Future, 2008.

Ivor Wai-Hung Tsang and James Tin-Yau Kwok. Efficient hyperkernel learning using second-order
cone programming.IEEE Transactions on Neural Networks, 17(1):48–58, 2006.

Koji Tsuda, Shinsuke Uda, Taishin Kin, and Kiyoshi Asai. Minimizing the cross validation error to
mix kernel matrices of heterogeneous biological data.Neural Processing Letters, 19(1):63–72,
2004.

Vladimir Vapnik. The Nature of Statistical Learning Theory. John Wiley & Sons, 1998.

Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel learning. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance trade-off. InPro-
ceedings of the International Conference in Computer Vision, 2007.

Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso Poggio, and
Vladimir Vapnik. Feature selection for SVMs. InAdvances in Neural Information Processing
Systems 13, 2001.

Frank Wilcoxon. Individual comparisons by ranking methods.Biometrics Bulletin, 1(6):80–83,
1945.

Mingrui Wu, Bernhard Scḧolkopf, and G̈okhan Bakır. A direct method for building sparse kernel
learning algorithms.Journal of Machine Learning Research, 7:603–624, 2006.

Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin clustering. In
Advances in Neural Processing Systems 17, 2005.

Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. An extended levelmethod for efficient
multiple kernel learning. InAdvances in Neural Information Processing Systems 21, 2009a.

Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, and Irwin King. Non-monotonic feature selec-
tion. In Proceedings of the 26th International Conference on Machine Learning, 2009b.

Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and efficient multiple
kernel learning by group Lasso. InProceedings of the 27th International Conference on Machine
Learning, 2010a.

2267

GÖNEN AND ALPAYDIN

Zenglin Xu, Rong Jin, Shenghuo Zhu, Michael R. Lyu, and Irwin King. Smooth optimization
for effective multiple kernel learning. InProceedings of the 24th AAAI Conference on Artifical
Intelligence, 2010b.

Yoshihiro Yamanishi, Francis Bach, and Jean-Philippe Vert. Glycan classification with tree kernels.
Bioinformatics, 23(10):1211–1216, 2007.

Fei Yan, Krystian Mikolajczyk, Josef Kittler, and Muhammad Tahir. A comparison of ℓ1 norm
andℓ2 norm multiple kernel SVMs in image and video classification. InProceedings of the 7th
International Workshop on Content-Based Multimedia Indexing, 2009.

Jingjing Yang, Yuanning Li, Yonghong Tian, Ling-Yu Duan, and Wen Gao. Group-sensitive mul-
tiple kernel learning for object categorization. InProceedings of the 12th IEEE International
Conference on Computer Vision, 2009a.

Jingjing Yang, Yuanning Li, Yonghong Tian, Ling-Yu Duan, and Wen Gao. A new multiple ker-
nel approach for visual concept learning. InProceedings of the 15th International Multimedia
Modeling Conference, 2009b.

Jingjing Yang, Yuanning Li, Yonghong Tian, Ling-Yu Duan, and Wen Gao. Per-sample multiple
kernel approach for visual concept learning.EURASIP Journal on Image and Video Processing,
2010.

Jieping Ye, Jianhui Chen, and Shuiwang Ji. Discriminant kernel and regularization parameter learn-
ing via semidefinite programming. InProceedings of the 24th International Conference on Ma-
chine Learning, 2007a.

Jieping Ye, Shuiwang Ji, and Jianhui Chen. Learning the kernel matrix in discriminant analysis
via quadratically constrained quadratic programming. InProceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2007b.

Jieping Ye, Shuiwang Ji, and Jianhui Chen. Multi-class discriminant kernel learning via convex
programming.Journal of Machine Learning Research, 9:719–758, 2008.

Yiming Ying, Kaizhu Huang, and Colin Campbell. Enhanced protein fold recognition through a
novel data integration approach.BMC Bioinformatics, 10(1):267, 2009.

Bin Zhao, James T. Kwok, and Changshui Zhang. Multiple kernel clustering. In Proceedings of the
9th SIAM International Conference on Data Mining, 2009.

Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. InProceedings of the
24th International Conference on Machine Learning, 2007.

Alexander Zien and Cheng Soon Ong. An automated combination of kernels for predicting protein
subcellular localization. InProceedings of the 8th International Workshop on Algorithms in
Bioinformatics, 2008.

2268

