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Abstract

Background: Advances in medical technology have allowed for customized prognosis, diagnosis, and treatment

regimens that utilize multiple heterogeneous data sources. Multiple kernel learning (MKL) is well suited for the

integration of multiple high throughput data sources. MKL remains to be under-utilized by genomic researchers

partly due to the lack of unified guidelines for its use, and benchmark genomic datasets.

Results: We provide three implementations of MKL in R. These methods are applied to simulated data to illustrate

that MKL can select appropriate models. We also apply MKL to combine clinical information with miRNA gene

expression data of ovarian cancer study into a single analysis. Lastly, we show that MKL can identify gene sets that are

known to play a role in the prognostic prediction of 15 cancer types using gene expression data from The Cancer

Genome Atlas, as well as, identify new gene sets for the future research.

Conclusion: Multiple kernel learning coupled with modern optimization techniques provides a promising learning

tool for building predictive models based on multi-source genomic data. MKL also provides an automated scheme for

kernel prioritization and parameter tuning. The methods used in the paper are implemented as an R package called

RMKL package, which is freely available for download through CRAN at https://CRAN.R-project.org/package=RMKL.
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Background
Motivation

Data integration is an emerging topic of interest in can-

cer research. Making decisions based upon metabolomic,

genomic, etc. data sources can lead to better progno-

sis or diagnosis than using clinical data alone. Though

data sources may have different background noise levels,

formats, and biological interpretations, a framework for

integrating data of similar and heterogeneous types has

been proposed [1]. Classification or prediction based on

data from a single high throughput source may require

machine learning techniques since the number of genes

or metabolites will inevitably be larger than the number

of samples. Both supervised and unsupervised machine

learning methods have been successfully utilized for clas-

sification [2–4], regression [5, 6], and identification of
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latent batch effects [7, 8]. In this paper, we focus on super-

vised classification of dichotomized survival outcome for

various cancer types, specifically discussing support vec-

tor machines and multiple kernel learning.

Support vector machines

Support vector machines (SVMs) were originally pro-

posed to find a hyperplane such that two classes of data

are on different sides of the hyperplane and have the max-

imal distance between the two classes. There have been

several improvements presented for SVM such as adding

additional constraints to the optimization problem that

allow the problem to be feasible when the two classes are

not perfectly separable. An additional term is added to the

objective function that penalizes misclassified samples,

this resulting formulation is known as soft-margin [9].

A second major improvement to SVM is applying the

kernel trick to allow for a non-linear classification rule.

Kernel functions are used to provide different similarity

measures between samples. The correlation (dot product)

matrix is used to find a linear classifier. Other com-

mon kernels are polynomial kernels and radial kernels
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2992-1&domain=pdf
http://orcid.org/0000-0001-5775-408X
https://CRAN.R-project.org/package=RMKL
mailto: xuefeng.wang@moffitt.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Wilson et al. BMC Bioinformatics          (2019) 20:426 Page 2 of 7

for continuous features [10]. Moreover, kernels have been

proposed for nominal and ordinal data, hence we can

construct kernels based on demographic characteristics

(race, gender, height, age, etc.) [11]. Below are formulas for

different similarities between two samples x and y:

• Linear:K(x, y) =< x, y >= xTy, (1a)

• Polynomial:K(x, y) = (ν < x, y > +offset)a, (1b)

• Radial:K(x, y) = exp(−σ ||x − y||2/2), (1c)

• Clinical nominal:K(x, y) =

{

1, ifx = y,

0, ifx �= y,
(1d)

• Clinical ordinal:K(x, y) =
r − |x − y|

r
, (1e)

where a is the degree and ν is the coefficient of the highest

order term of an a degree polynomial, σ controls smooth-

ness of the decision boundary for a radial kernel, and r

is the range of the ordinal levels. We use the parame-

terization found in the kernlab R package for the linear,

polynomial and radial kernels [12].

Kernel methods are attractive because they do not

make parametric assumptions to construct a model, for

instance, these methods are not sensitive to outliers and

are distribution-free [13]. Unfortunately, the solutions can

be sensitive to the choice of parameter and there is no

universal best set of parameters for a given data type. Typ-

ically, cross-validation is used to identify the parameter

that provides the highest prediction accuracy. Ultimately,

there may not be one single optimal kernel, but a com-

bination of kernels may provide a better classifier than a

single kernel. It can be shown that the sum, product, and

convex combination of kernels yields another kernel [14].

This leads to an opportunity to construct a classifier using

a convex combination of candidate kernels.

Multiple kernel learning

Multiple kernel learning (MKL) algorithms aim to find

the best convex combination of a set of kernels to form

the best classifier. Many algorithms have been presented

in recent years and they form two classes. First, wrapper

methods solve MKL by first solving a single SVM prob-

lem for a given set of kernel weights, and then they update

the kernel weights. Since wrapper functions rely on solv-

ing SVM, they appeal to existing well-developed solvers,

thus they can be relatively easy to implement. The second

class of MKL algorithms utilize more sophisticated opti-

mization methods to greatly reduce the number of SVM

computations, allowing for them to solve the problem

with a much larger number of kernels than wrapper meth-

ods. We will focus on two wrapper methods (SimpleMKL

[15], Simple and Efficient MKL (SEMKL) [16]), as well

as, and an example of a second class of MKL algorithms

DALMKL [17].

Sparse MKL solutions do not typically outperform uni-

formly weighted kernels [18]. There is still great value in

sparse kernel weights, specifically, the model can be eas-

ier to interpret with fewer non-zero kernel weights. Each

MKL method can provide an ordering for the importance

of a data type or features that may prompt investigators

towards data sources that contain the most relevant infor-

mation for classification. Ranking data sources can help

researchers focus their studies on gene/metabolite sets or

the data types that are most likely to lead to meaningful

results.

Several studies have applied MKL to genomic data. An

extensive comparison of regression techniques, including

support vector regression (SVR) and Bayesian multitask

MKL, has been conducted to predict drug sensitivity

using six genomic, epigenomic, and proteomic profil-

ing datasets for human breast cancer cell lines [19].

Bayesian multitask MKL involves the selection of pri-

ors and different selection of priors can lead to a dra-

matically different result. MKL was also implemented to

predict survival at 2000 days from diagnosis, using the

METABRIC dataset for breast cancer, and observed that

predictive accuracy can be increased by grouping genes

within a pathway into a single kernel [20]. These papers

illustrate that MKL can be effectively applied to data that

is from multiple sources and how it can be used to anal-

ysis high dimensional data, however, MKL remains an

under-utilized tool for genomic data mining. This article

aims to bridge these gaps by providing a unified survey

of MKL methodology, highlighting its unique benefits in

tackling challenges in large-scale omics data analysis, and

establishing benchmarked models for further algorithm

development.

This paper is organized as follows. “Implementation”

section discusses practical issues when conducting MKL,

and describes the features offered our package RMKL.

“Results” section describes the results from one exper-

iment which uses simulated data, and two experiments

that use real data from The Cancer Genome Atlas

(TCGA). Lastly, in “Conclusion” section, we make obser-

vations regarding our results andmention several areas for

future work.

Implementation
SimpleMKL uses subgradient descent to find the direc-

tion has the most improvement. Then it uses lines

search to find the optimal set of kernel weights. For

each candidate set of kernel weights, SimpleMKL must

solve an SVM problem iteratively along the vector of

maximum improvement. SEMKL can decrease the com-

putational burden dramatically by updating the set of

kernel weights with an explicit formula derived using

the Cauchy-Schwarz inequality as opposed to using line

search.
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DALMKL optimizes the dual augmented Lagrangian of

a proximal formulation of the MKL problem. This formu-

lation presents a unique set of problems such as the con-

jugate of a loss function must have no non-differentiable

points in the interior of its domain and cannot have a finite

gradient at the boundary of its domain. The inner function

is differentiable and the gradient and Hessian only depend

on the active kernels making gradient descent efficient.

DALMKL is written in C++, and uses Newton descent

to update the kernel weights. A flowchart describing how

general wrapper methods and DALMKL are implemented

can be found in Additional file 1: Figure S2.

There are many considerations that must be made

before conducting SVM or any MKL algorithm. One of

the most important is the prioritization of features and

kernels. Even though SVM does not deal with each fea-

ture directly it can suffer from the curse of dimensionality.

If there are a large number of features and a very small

number of features can separate the data, then SVM will

not necessarily find the best subspace that separates the

data. Feature prioritization can improve the accuracy of

SVM [10, 20]. Features can be prioritized by determining

which features have the biggest effect size or smallest p-

value from a t-test or more robust two group comparisons

such as the Wilcoxon rank-sum test.

Kernel prioritization is important to alleviate many

potential problems for MKL. For instance, if many kernels

share a lot of redundant information then the efficiency

of MKL can greatly diminish since many wrapper meth-

ods seek a sparse combination of kernels. Kernels that can

both classify the data and yet provide different bound-

aries, similar to ensemble learning. A potential method

for prioritizing kernels is to conduct SVM with each can-

didate kernel, then determine the kernels with the largest

accuracy or eliminate the kernels with accuracy lower

than the no information rate. Figure 1 summarizes the

workflow we use and recommend for the implementation

of MKL. There has been work using minimal redun-

dancy maximal relevance criteria, and kernel alignment to

remove kernels that share too similar [21].

We present an R package, RMKL, which can implement

cross-validation for training SVM and support vector

regression models, as well as MKL for both classification

and regression problems. Our package is equipped with

implementations of SimpleMKL, SEMKL, and DALMKL

under two loss functions. We demonstrate each of these

three implementations in simulated and real data to com-

pare their performance. RMKL is freely available for

download throughCRAN at https://CRAN.R-project.org/

package=RMKL. Next, we further discuss the features of

RMKL.

There are several features in RMKL that aim to make

the implementation of MKL easier. For instance, we pro-

vide a wrapper function to compute kernel matrices which

Fig. 1 Recommended workflow for an MKL experiment

can provide kernels for training and test set. Another

convenient function in RMKL is a wrapper function for

conducting cross-validation for SVM. A challenge ofMKL

wrapper methods is that there are no guidelines for select-

ing the penalty parameter. Fortunately, there are recom-

mended values for the penalty parameter (0.5, 0.05, and

0.005) for DALMKL. Unfortunately, direct comparisons

between SimpleMKL, SEMKL, and DALMKL are not

possible using the same cost parameter in all three imple-

mentations. We provide a function that uses the solution

of DALMKL to estimate for a comparable cost parameter

for SimpleMKL and SEMKL.

Results
Benchmark example

In addition to accuracy, an important characteristic of

MKL is the learning of kernel weights. In this example, 9

datasets are generated with two groups and the amount

overlap between the two groups varies. The two groups

have 50 observations from a bivariate normal distribu-

tion where the mean of group 1 was fixed at (5,5), and

the means of group 2 were {(-4,-4),(-3,-3), . . . , (4,4)}. The

covariance structure of the two groups were

https://CRAN.R-project.org/package=RMKL
https://CRAN.R-project.org/package=RMKL
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�1 =

[

1 0

0 1

]

, and �2 =

[

1 −0.5

−0.5 1

]

.

If the two groups do not overlap, then we expect a

radial kernel with a small scale parameter to have a larger

weight than a radial kernel with a larger scale parameter

(see kernel parameterization in the kernlab R package),

leading to a smooth boundary. On the other hand, if

there is a large amount of overlap between the groups,

we expect lower accuracy and a less smooth classifi-

cation rule. Thus a larger scale hyperparameter should

be preferred.

We consider two radial kernels, denoted K1 andK2, with

hyperparameters σ1 = 2 and σ2 = 0.04. In Fig. 2a, notice

that as the amount of overlap between the two groups

increases the weight for K1 increases. This yields a clas-

sification rule that is less smooth and can accommodate

for the overlapping groups. When there is little overlap

between the groups, we see that K2 is given much more

weight than K1, leading to a smooth classification rule for

perfectly separable data All algorithms can classify per-

fectly when there is no overlap, but when the groups are

completely overlapping, the prediction accuracy of each

algorithm is approximately 0.5 (Fig. 2b).

TCGA ovarian

Bell et al. (2011) provide integrative analyses of The Can-

cer Genome Atlas (TCGA) ovarian cancer dataset [22].

Survivorship for ovarian cancer is difficult to predict from

clinical information only, which is limited since most can-

cers are late stage. Information from high throughput data

sources can be utilized to increase prediction accuracy.

To illustrate MKL as a data integration tool, we perform

MKL to find the best kernel for clinical and miRNA gene

expression data separately, and then combine them into a

single analysis. Our goal is to predict if a patient will live

longer than three years after diagnosis and patients who

were right-censored were not considered.

There are 283 samples in this dataset. We used 70%

(198) as the train samples and 30% (85) as a test set.

For all kernel and variable prioritization, only the train-

ing set was used, and then the final classification accuracy

of MKL was computed for the final MKL model. Can-

didates for the clinical kernels were constructed using

kernels for stage and age, and the average of these two

as a kernel. To avoid the curse of dimensionality, we

include the 65 top-ranked genes, based on p-value from

testing for differences in mean expression for patients

who survived more than 3 years and those who did not.

We used these 65 genes to conduct SVM with 10 fold

cross-validation for many several radial kernels (σ =

10−10, . . . , 1010) to identify the range that leads to the

highest predictive accuracy. Ultimately in our MKL anal-

ysis, we used a linear kernel, and 3 radial kernels with σ =

10−4, 10−3, 10−2. Surprisingly, using miRNA data only

has similar prediction accuracy as clinical information

only, but using both data sources leads to a substantially

higher accuracy than either of the individual data

sources (Fig. 3).

a b

Fig. 2 Results from SEMKL, SimpleMKL, and DAMKL on 9 benchmark datasets, where two radial kernels K1 and K2 with σ1 = 2 and σ2 = 0.05 were

used. a Displays the learned kernel weight of K1 as the mean of each group changes. b Displays the predictive accuracy of each algorithm as the

distance between each group changes. DAL Hinge and DAL Logistic refer to conducting DALMKL under different loss functions
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Fig. 3 Prediction accuracy of MKL implementations using clinical and

miRNA data individually and together in a single analysis using 198

patients to train each model and 85 patients to test the

corresponding model. DAL Hinge and DAL Logistic refer to

conducting DALMKL under different loss functions

Hoadley data

Hoadley et al. (2018) conducted integrative molecular

analyses for all tumors in TCGA [23]. We studied 15 can-

cer types which were selected because they had a total

of greater than 300 tumors and more than 20 events.

Survival was dichotomized by a cutoff that was selected

such that the proportion of patients that survived was

0.4–0.6. Patients who were right-censored were not

included in the analysis. Gene expression data was used

to find relationships between gene sets and our binary

survival outcome. In this analysis, we focused on 50 gene

sets that are included in the hallmark gene sets introduced

by Liberzon et al. (2015) [24], which represent specific

well-defined biological states or processes. The cancer

types and survival cutoff are provided in Additional file 1:

Table S1 and S2.

To identify gene sets that may aid in classification, SVM

is employed with cross-validation to identify which ker-

nel shape and hyperparameter is most suitable. Gene sets

were not considered if the training accuracy was less than

the no information rate (NIR). This occurred when SVM

classified all patients into one class, typically the largest

class. The remaining gene sets were introduced to MKL

using their shape and hyperparameter that leads to the

highest accuracy in SVM. Details for how many gene sets

were included for MKL are in Additional file 1: Table S3.

Gene sets that have significant importance can be areas

for future study.

In Fig. 4 and Additional file 1: Figure S3, we see that ker-

nel weights are similar in SEMKL, and DALMKL (both

hinge and logistic loss), while SimpleMKL is quite differ-

ent and is often times less sparse than other methods.

Additional file 1: Table S3 displays the prediction accu-

racy for each method. DALMKL tends to be the most

accurate. There are cases, such as ovarian cancer (OV),

where SimpleMKL allocates weight more evenly across

the gene sets and can achieve a significant increase in

accuracy. On the other hand, when all methods only con-

sider a small number of gene sets SimpleMKL performs

the worst.

The pan-cancer pathway analysis revealed multi-

ple gene sets that carry important prognostic values.

Interestingly, many pathways such as KRAS signaling,

inflammatory response and spermatogenesis had non-

zero kernel-based importance scores across many can-

cer types. We hope the finding will spur additional

research into the role of these pathways in cancer

development and prognosis especially spermatogenesis,

which is less studied compared with other pathways

in cancer.

Conclusion
Integrating heterogeneous data sources into a single anal-

ysis allows patients to obtain more accurate prognoses

or diagnoses. MKL can construct non-linear classification

without any parametric assumptions for a single or mul-

tiple data types. Additionally, MKL may not suffer from

overfitting because the final decision rule is based on a

weighted average of SVM models. Kernel weights from

MKL can have an appealing interpretation and help iden-

tify data sources that are most important in the classifier.

There are several considerations to be made regard-

ing which MKL algorithm to use. If a small number of

kernels are used, then each of the four methods seems

to have similar performance. However, if a large num-

ber of kernels are used then DALMKL should be used.

Regardless of the number of kernels, SimpleMKL and

SEMKL have similar run times, however, DALMKL tends

to run significantly faster. There are currently no recom-

mendations for selection of cost parameter is SimpleMKL

or SEMKL, while DALMKL provides recommendations

and a formula to estimate a comparable cost for wrapper

methods. DALMKL should be used first to get a range

of cost values for SimpleMKL or SEMKL. A drawback

of DALMKL is that the parameters for the optimization

problem are more complicated and therefore not easy to

interpret, while only a little bit of knowledge about SVM

is needed to understand the parameters in SEMKL and

SimpleMKL.

The real data analyses presented in this paper are

biased, i.e. the censoring mechanism was completely

ignored. Also, the selection of survival threshold was
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Fig. 4 Heatmap of gene set importance for each of the 15 cancer types considered. (DALMKL Logistic)

picked to provide an approximately even split of the

binary outcomes potentially losing biological meaning.

Extensions to MKL can be made to account for an imbal-

ance of samples between the two groups, by modifying

the objective function such that there is a different cost

associated with misclassification for both classes. MKL

presents opportunities to answer statistical questions. For

instance, by considering different loss functions MKL can

be extended to regression and survival analysis settings.

The problem of missing data has been addressed for MKL

[25] but there is still a lot of room for improvement. Uti-

lizing kernel alignment is an additional step in kernel

prioritization than can greatly increase the performance

of MKL algorithms [21].

Additional file

Additional file 1: This file contains a brief summary of SVM and MKL, 3

tables, and 1 figure that better summarize the experiment with Hoadley

data. (PDF 376 kb)
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