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Abstract— In this paper we present a robust and accurate
method to detect 17 facial landmarks in expressive face images.
We introduce a new multi-resolution framework based on the
recent multiple kernel algorithm. Low resolution patches carry
the global information of the face and give a coarse but robust
detection of the desired landmark. High resolution patches,
using local details, refine this location. This process is combined
with a bootstrap process and a statistical validation, both
improving the system robustness. Combining independent point
detection and prior knowledge on the point distribution, the
proposed detector is robust to variable lighting conditions and
facial expressions. This detector is tested on several databases
and the results reported can be compared favorably with the
current state of the art point detectors.

I. INTRODUCTION

Facial landmarks detection is an important step in com-

puter vision applications such as facial expression recog-

nition, face identification, face alignment, face tracking or

facial synthesis. Despite many works have been proposed,

locating facial landmarks is still an unsolved problem for

applications that need to operate under a wide range of

conditions such as illumination variations, occlusions, poses,

expressions, etc. One challenge for the development of such

detectors is an inherent tradeoff between robustness and

accuracy.

Previous method for facial landmark detection can be clas-

sified into two categories: model-based methods and inde-

pendent detection points methods (without models). Model-

based methods regard all facial landmarks as a shape which is

learned from a set of labelled faces, and try to find the proper

shape for any unknown face. The second category usually

tries to find each facial landmark independently, without any

model.

Typical model-based methods use two types of models:

explicit or implicit. Explicit models based methods include

active shape or active appearance models (ASM/AAM) [1],

[2]. Other approaches using extended AAM or ASM have

also been proposed as well. Milborrow and Nicolls [3] make

some simple extensions to the ASM and use it to locate

landmarks in frontal views of upright faces. Approaches

combining texture and shape-based methods have also been

proposed. Cristinacce and Cootes [4] use PCA on the grey

level images combined with ASM. Implicit models based

methods use unstated models. For example, [5] and [6] use

pixel gray levels as input of a Neural Network to detect

multiple facial landmark. This way, spacial relation between

points are implicitly learned by the Neural Network. All

these methods use strong relation between points but they are

limited to some common assumptions, e.g. a nearly frontal

view face and moderate facial expression changes, and tend

to fail under large pose variations or facial deformations in

real-world applications.

Independent detection points methods detect each facial

landmark independently. Vukadinovic and Pantic [7] detect

20 facial points using GentleBoost classifier learned on

features extracted with Gabor filters. These methods, because

of the absence of relation between points, can detect some

outliers that introduce some robustness problems.

Recently, methods combining these two kinds of approach

have been proposed. For example, the Pictorial Structure

Matching (PSM) approach of Felzenszwalb and Huttenlocher

[8] learns detectors for a set of manually points and a tree

structure for the spatial relationships between selected pairs

of features. Valstar et al. [9] propose a method based on

Support Vector Regression to detect independently each fa-

cial points and use Markov Random Field to exploit relation

between points.

This paper fits into this scheme combining independent

point detection with explicit models. This approach com-

bines advantages from the two facial landmarks detection

paradigms : The strong relation between the model points

avoids some outlier detections but this method does not suffer

from AAM’s initialization and convergence problems. Our
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Fig. 1. Overview of the proposed method

contributions are three-folds :

1) A new facial landmark localizer combining Support

Vector Machine point detection and statistical Point

Distribution Models.

2) A new training methodology based on a specific

bootstrap process which leads to better generalization

abilities.

3) A new multi-resolution detector using the recent mul-

tiple kernel algorithms for SVM.

The remainder of this paper is organized as follow: in

section II we present our method including multiple kernel

learning applied to facial point detection, the pyramidal

patches multi-resolution extraction process, the bootstrap

process and the statistical validation. In section III, we

present our experimental results on several databases in-

cluding frontal, near frontal and expressive images. Finally,

section IV concludes this paper.

II. METHODOLOGY

To detect facial feature points in an image, we first locate

the face using the Viola-Jones face detector [10]. During

the training step, we create sets of features corresponding

to patches at different resolution. Weights on these sets

are learned using the recent multiple kernel algorithms for

Support Vector Machine combined to an original bootstrap

process. During the evaluation step, the SVM gives, for

each candidate pixel contained in a search region, a con-

fidence index of being the searched facial feature. Finally,

we combine information arising from the confidence index

of each candidate pixel of each facial feature with a Point

Distribution Model (PDM). This PDM is learned on the

expressive training database using Gaussian Mixture Models

(GMM).

A. Feature Extraction

The proposed facial landmark detection method uses in-

dividual feature patch templates. The size of these patches

have to be relevant according to the inter-ocular distance:

a small size will only encode the local information loosing

global details, and on the other hand a large size will only

encode coarse information. In this paper, we use multi-

resolution patches extracting different level of information.

For a pixel i, we take the first patch (p1i ) large enough

to encode plenty of general information. The other patches

(p2i , p
3

i , ..., p
N
i ) are extracted cropping a progressively smaller

area giving increasingly detailed information. Then, all

patches are subsampled so that all samples have the same

size (fig.2). All patches are built from gray level intensities.

Thus, high resolution patches encode local information and

small details, such as canthus or pupil location, around the

point. Low resolution patches, on the other hand, encode

global information. In the case of the patch p4i in fig. 2,

eye landmark localization is helped by the nose and hair

positions.
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Fig. 2. Pyramidal multi-resolution patches for a pixel i. At each step, the
patch area is divided by 4, emphasizing different level of information

This method uses one detector per point. For each facial

landmark, the training is performed with positive and neg-

ative examples. For a given facial point, we use 9 multi-

resolution patches as positive examples (target samples): the

first centered on the ground truth and the 8 others on 8

positions surrounding the ground truth. As negative (non-

target samples) set, we use 16 multi-resolution patches more

or less distant from the true facial point (fig. 3).



Fig. 3. The target samples are the 9 closest points to the ground truth, and
the non-target samples are the other ones.

B. Multiple Kernel Learning

As classifier, we decided to use Support Vector Machines.

One advantage of SVMs is that the determination of the

model parameters corresponds to a convex optimization

problem: any local solution is also a global optimum.

1) Training Step: Given xi = (p1i , ..., p
N
i ) a training

set of m samples associated with labels yi ∈ {−1, 1}
(target or non-target), the classification function of the SVM

associates a score s to a new sample (or candidate pixel)

x = (p1i , ..., p
N
i )

s =

(

m
∑

i=1

αik(xi, x) + b

)

(1)

With αi the dual representation of the hyperplane’s normal

vector [11]. The function k is the kernel function resulting

from the dot product in a transformed high-dimensional

feature space.

In multi-kernel SVM, the kernel k can be any convex

combination of semi-definite functions.

k(xi, x) =

K
∑

j=1

βjkj with βj ≥ 0,

K
∑

j=1

βj = 1 (2)

In our case, we have one kernel function per set of features

(each resolution)

k =

N
∑

j=1

βjkj(p
j
i , p

j) (3)

Weights αi and βj are set to have an optimum hyperplane

in the feature space induced by k. This hyperplane separates

the two classes samples and maximizes the margin: the

minimum distance of one sample to the hyperplane. This

optimization problem has proven to be jointly-convex in αi

and βj [12], therefore there is a unique global minimum that

can be found efficiently.

β1...βN represent the weights given to each resolution.

Thus, using a learning database the system is able to find

the best combination of these types of feature in order to

maximize the margin.

This is an innovative way of using multi-kernel learning.

Usually, multiple kernel learning is used to combine different

kind of kernel functions such as Gaussian Radial Basis

functions or Polynomial functions. This paper introduces a

new framework for multi-resolution point detection: each

linear kernel function ki is dedicated to a specific resolution.

Among all pixels in the search region, we need to choose

the one that corresponds to the desired facial landmark. In

the perfect case, we should have s > 0 if the candidate pixel

is close to the landmark, s < 0 otherwise. In the general case

when we have zero or more than one candidate pixel with a

positive score, we use the value of s to make a decision. This

score given by the SVM classifier can be seen as a confidence

index for a pixel to be the desired facial landmark.

2) Evaluation Step: During the test phase we extract

the pyramidal-patches for each pixel. The region of interest

(ROI) can be the whole face detected by the Viola-Jones

detector. In order to reduce the computational time of patches

extraction, we use two large regions of interest: one for

the eyes and one for the mouth. The position and the size

of these regions have been statistically extracted during the

training step. Thus, they are large enough to take into account

variation such as head rotations into account. Using the

classifier, we test each candidate pixel in the search ROI. This

leads to a SVM score for each candidate pixel. We obtain

a SVM score map depicting, for each pixel of the ROI, the

confidence index belonging to positive features (Fig. 1). We

want that the best SVM score corresponds to the landmark

position.

C. Bootstrap & Negative Patches

To have a robust detector, non-target samples have to

be relevant. As explained in II-A , this detector is applied

to large ROIs (one for the eyes and one for the mouth).

Because random patches taken in these regions should not

be representative, we use a bootstrap process in order to add

relevant false alarms in the training process. The system is

iteratively retrained with two updated training sets containing

false alarms produced after facial points detection has been

performed.

We split the training database into three different databases

without mixing subjects: A, B and C. Eventually, A and

B are used for training and C is used for cross-validation.

The training-bootstrapping algorithm that we implemented

proceeds as follows:

1) Train on A and evaluate on B.

2) Gather false alarms and add them to the B set of

negative examples.

3) Proceed to Validation on C. If detection rate does not

increase anymore, go to step 5. Else go to step 4.

4) Switch A and B database and go to step 1

5) Concatenate A and B set of positive and negative

examples, and compute the final training.

This original bootstrap adds false alarms at each iteration

without mixing any samples of A and B. This strategy is

really important to avoid overfitting. False alarms detected on

A are only added in A. These false alarms force the SVM, in

the next iteration, to refine the optimum hyperplane between

positive and negative examples. This procedure helps to find

relevant patches. In fig. 4, we want to detect the inner corner

of the left eye, but some wrong detections appear: these false



alarms are added to the negative examples set of the same

database. By doing so, a very large number of redundant

false alarms are eventually grabbed. This high number of

redundant patches assists the detector to add some weights

on significant false alarms.

Eyes ROI

Mouth ROI

Ground truth

False alarms 
at iteration 1

False alarms 
at iteration 2

Fig. 4. Relevant false alarms added to the set of negative samples at each
iteration.

D. Statistical Model & Validation

The detector learns a set of manually labelled points

without spatial relationships between them. Consequently,

in order to valid detection results, we have to restrict the

configuration of detected points to a set of plausible shapes.

We can split the point distribution model into several models:

right eye, left eye and mouth. These models have to be

flexible because of the possible variation of expressions,

poses, morphology or identity. Therefore, we use a Gaussian

Mixture for each model which can handles complex distri-

butions [13]. The Gaussian Mixture Model can be written as

a linear superposition of K Gaussian in the form :

p(x) =

K
∑

k=1

πkN(x|µk,Σk) (4)

where N(x|µk,Σk) is the probability density function of

a gaussian with mean µ and covariance Σ. Such a mixture

can approximate any distribution up to arbitrary accuracy,

assuming that sufficient components are used. The hope is

that a small number of components will give a good enough

estimate. We use the EM algorithm to fit such a mixture to

a set of data.

We need these models to represent expressive shapes.

Thus, we use 3 gaussians for each model : 3 for the right

eye, 3 for the left and 3 for the mouth. Then, we proceed

to the statistical validation by computing the Mahalanobis

distance d for each model M :

dMk = min
k

[(x− µk)Σ
−1

k (x− µ)] (5)

With x the hypothesis to valid. We need dMk to be smaller

than a threshold TM
k selected such that 95% of the training

shapes have a Mahalanobis distance to the gaussian model

lower than TM
k . During the evaluation step, for each facial

landmark, we have SVM scores for their different possible

localizations. Then, we want to choose the set of candidate

pixels that leads to a shape validated by the model. We first

test the shape having the best sum of SVM scores to see if

its Mahalanobis distance d is lower than T . If outliers are

detected by the SVM, d will not be lower than T , thus we

try the next best combination of SVM (using a combinatorial

optimization) scores and so on.

III. EXPERIMENTS

A. Training Data Sets

The proposed facial landmark detection method was

trained on 2 different databases:

The Cohn-Kanade database [14] which is a representative,

comprehensive and robust test-bed for comparative studies of

facial expression. It contains image sequences with lighting

conditions and context are relatively uniform. The database

contains 486 sequences starting with the neutral expression

and ending with the expression apex. For our training, we

used the first frame (neutral expression) and the last frame

(expression apex) of 209 samples.

The CMU Pose, Illumination and Expression Database

(PIE) [15] which consists of over 40,000 facial images of

68 people. Each person were imaged across 13 different

poses, under 43 different illumination conditions, and with 4

different expressions. For our training, we used 108 samples

randomly taken.

We train our detector on 317 faces (extracted using Viola-

Jones face detector) resized to 100x100 pixels. The inter-

ocular distance varies between 30 and 40 pixels. At the first

bootstrap iteration, we have 9 target samples and 16 non-

target samples of 4 different resolutions: the first patch is

9x9 pixel, the second 17x17, the third 25x25 and the last

37x37, all resized to 9x9 pixels. Our bootstrap process is

applied for each points. Thus, the number of false alarms

we add varies, but we can approximate this augmentation by

an increase of 30% of negative patches, with only relevant

examples.

B. Multi-Kernel Learning evaluation

We use the SimpleMKL [16] algorithm to train multi-

kernels SVMs. Fig. 5 shows the impact of the multi-

resolution patches on facial point detection. Decision maps

obtained with the kernels k1...k4 show that each kernel ki
emphasize different level of information. Kernel k1 deals

with this problem using a local point of view, whereas kernel

k4 uses global information. The final decision map, given by

the SVM ouput, uses these different levels of information to

give a confidence index to each candidate pixel of the search

region.

As we have one SVM for each facial landmark, we find

one set of weights β1, β2, β3, β4 for each facial landmark.

Mean weights learned for the points belonging to the same

facial feature are reported in Table II.

We notice that the lower resolution patches (corresponding

to k4) always have the biggest β. This means that a more

important weight is associated to global information. These

patches help to find the coarse location of the searched point.



Point C m e Point C m e

Outer corner of the right eye 99.1% 4.0% 2.5% Bottom of the left eye 100% 4.5% 2.4%
Top of the right eye 99.2% 3.9% 2.5% Inner corner of the left eyebrow 84.5% 6.6% 6.5%
Inner corner of the right eye 99.3% 4.2% 2.8% Outer corner of the left eyebrow 91.1% 5.0% 3.5%
Bottom of the right eye 99.5% 3.4% 2.4% Nose 98.5% 4.0% 5.8%
Outer corner of the right eyebrow 89.4% 6.0% 5.1% Right mouth corner 96.2% 3.8% 4.7%
Inner corner of the right eyebrow 84.1% 7.1% 6.1% Mouth top 94.3% 4.9% 6.6%
Inner corner of the left eye 99.6% 5.0% 2.4% Left mouth corner 95.5% 5.3% 4.5%
Top of the left eye 100% 3.1% 2.5% Mouth bottom 95.0% 5.2% 4.2%
Out corner of the left eye 100% 3.1% 2.4% - - - -

TABLE I

RESULTS FOR TEST ON 266 COHN-KANADE EXPRESSIVE IMAGES NEVER SEEN IN TRAINING. C REPRESENTS THE CUMULATIVE ERROR DISTRIBUTION

OF POINT TO POINT AT 10% (me < 0.1). THE MEAN m AND THE STANDARD DEVIATION e OF THE ERROR ARE MEASURED IN PERCENTAGES OF dIOD
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Fig. 5. Decision map of each kernel for the outer corner of the right eye
detection.

Facial landmarks β1 β2 β3 β4

Brows (6 points) 0.1863 0.2774 0.1823 0.3541
Eyes (8 points) 0.2140 0.2229 0.1654 0.3977
Mouth (4 points) 0.1496 0.2639 0.2380 0.3484

TABLE II

MEAN WEIGHTS ASSOCIATED TO EACH KERNEL.

Then, the other patches using local information refine this

location.

C. Distance Error Measure

The criteria for success is the distance of the points

computed using our detector compared to manually labelled

ground truth. The detection error of a point i is defined as

the Euclidian distance di between the point and its manually

labelled ground truth. The average is given as

me =
1

ndIOD

n
∑

i=1

di (6)

With dIOD the Inter-Ocular Distance and n the total

number of images. The detection is defined as success if

me < 0.10 (10% of dIOD).

D. Bootstrap Evaluation

To evaluate the bootstrap process impact on the overall

system performance, we proceed to two trainings: in the

first, non-target samples are collected with the full bootstrap

strategy. In the second training, bootstrapped samples are

replaced by patches randomly chosen in the whole ROI. We

also evaluate the system performance with only one bootstrap

iteration. As test database, we use Cohn-Kanade test set (with

only new subjects). The accuracy of each training is reported

in table III.

Method Accuracy at 10% (me < 0.1)

MKL SVM + Random patches 88%
MKL SVM + Bootstrap (1 it) 92%
MKL SVM + Full bootstrap (6 it) 97%

TABLE III

EVALUATION OF THE BOOTSTRAP PROCESS

Training with random patches and training with the full

bootstrap process have the same number of non-target sam-

ples. Thus, this study shows how much this bootstrap process

increases results on detection.

E. Experimental Results & Comparaison

Several databases have been used to test this detector.

We first evaluated it on the same Cohn-Kanade database

as in III-D. The results of this study are shown in Table

I depicting the classification rate for all points. As we can

see, all points are detected with a high accuracy even if the

database includes expressive images. Eyebrows points have

low detections results because of the difficulty to locate these

points manually

Two others database are also used to evaluate the gen-

eralization of this method: AR Face Database [17] which

contains frontal view faces with different facial expressions,

illumination conditions, and occlusions. We also evaluate

this method on BioID database [18] which contains 1521

frontal face images that vary with respect to illumination,

background, face size and slight head pose variation. Based

on results from literature [3], [4], [5], [9], this database is

considered more difficult. Thus, test on BioID constitutes a

benchmark comparison with the existing state of the art.

Fig. 7 shows the cumulative error distribution measured on

these two databases. We can see that our detector is really

accurate on unseen faces from other databases. On the AR



Fig. 6. Some typical results on the Cohn Kanade, AR Face and BioID databases.

Face database, which contains faces with facial expressions,

we can see that 80% of the images have an average point

error less than 5% of dIOD which roughly correspond to 2

pixels per point.
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Fig. 7. Cumulative error distribution measured on BioID and AR Face
database.

Then, to compare our facial point detector with those of

the state of the art [2], [9], [4], [3] we have to use the BioID

database. All of these detector are publicly available and

they all have been tested on BioID database. Table IV shows

the cumulative error distribution of the me17 error measure.

This measure represents the mean over all internal points (all

points that lie on facial landmarks instead of the edge of the

face). It shows that our methods can be compared favorably

with state of the art experimental results.

Method Accuracy at 10% (me < 0.1)

AAM [2] 85%
BoRMaN [9] 95%
CLM [4] 90%
STASM [3] 95%
Our system 95%

TABLE IV

COMPARISON OF THE CUMULATIVE ERROR ON BIODID DATABASE.

IV. CONCLUSION

In this papers we present a robust and accurate method for

fully automatic detection of facial landmarks in expressive

images.

The system aims at exploiting different resolutions of the

face image. Low resolution patches permit to catch the whole

face structure, resulting in robust but inaccurate detection.

High resolution patches extract information on a small area

of the face and lead to several possible accurate detections,

in which one is the desired landmark. The multi-kernel

learning provides a gentle way to combine these different

levels of information. The system is trained using an original

bootstrap process. Evaluations have proven that false alarms

added during this operation are more relevant than patches

randomly chosen. Finally, we combine SVM point detections

with a statistical validation step correcting outlier detections

and providing more robust results.

The whole system, trained on Cohn-Kanade and PIE

databases, is robust to varying lighting conditions, facial

expressions and occlusions of the face caused by glasses or

hair. Cross-bases validation tests on the AR Face and BioID

databases show that our detector can be compared favorably

with the start of the art.

The accuracy of our detector allows the understanding of

subtle changes in human face. As our current works are based

on emotion recognition, we plan to utilize this detector as a

first extraction step of emotional relevant features
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