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Abstract

Kernel-based objective functions optimized using the mean
shift algorithm have been demonstrated as an effective
means of tracking in video sequences. The resulting algo-
rithms combine the robustness and invariance properties af-
forded by traditional density-based measures of image sim-
ilarity, while connecting these techniques to continuous op-
timization algorithms.

This paper demonstrates a connection between kernel-
based algorithms and more traditional template tracking
methods. There is a well known equivalence between the
kernel-based objective function and an SSD-like measure on
kernel-modulated histograms. It is shown that under suit-
able conditions, the SSD-like measure can be optimized us-
ing Newton-style iterations. This method of optimization is
more efficient (requires fewer steps to converge) than mean
shift and makes fewer assumptions on the form of the un-
derlying kernel structure. In addition, the methods natu-
rally extend to objective functions optimizing more elabo-
rate parametric motion models based on multiple spatially
distributed kernels. We demonstrate multi-kernel methods
on a variety of examples ranging from tracking of unstruc-
tured objects in image sequences to stereo tracking of struc-
tured objects to compute full 3D spatial location.

1 Introduction

Kernel-based methods for computer vision have received
significant attention since they were first introduced several
years ago [12]. Recently, these methods have been intro-
duced to solve visual tracking problems involving location
[3] and location and scale [8]. These techniques track a
target region that is described as a spatially-weighted inten-
sity histogram. An objective function that compares target
and candidate kernel densities is formulated using the Bhat-
tacharyya measure, and tracking is achieved by optimizing
this objective function using the mean shift algorithm. Ex-
perimental results have shown the promise of kernel-based
tracking methods in a wide range of contexts.

Intuitively, kernel-based descriptions of tracking regions

are attractive because they combine summary descriptions
of both intensity values and spatial positions in a way that
avoids the need for complex modeling of object shape, ap-
pearance or motion. Conceptually, they forge a link be-
tween statistical measures of similarity (which historically
required brute force optimization) with powerful methods
from continuous optimization.

The underlying assumption in kernel-based tracking is
that a statistical summary in terms of a kernel-weighted
feature histogram is sufficient to determine location, and is
sufficiently insensitive to other motions to be robust. This
raises a question as to what motions can and cannot be re-
covered using kernel-based methods. For example, rota-
tional motion cannot be estimated with current kernel-based
methods because only rotationally-symmetric kernels have
been used. On the other hand, most kernels are not scale-
invariant, requiring some apparatus to deal with scaling of
the target.

In order to gain an understanding of the performance
and performance limitations of current kernel-based meth-
ods, we use the equivalent SSD form of the original Bhat-
tacharyya metric. We then derive a Newton-style minimiza-
tion procedure on this measure. The structure of this op-
timization makes explicit the limitations in kernel-density
tracking. These limitations arise both from the structure of
the kernel alone and from interactions between the kernel
and the image spatial structure. We also show empirically
that the Newton-style formulation is a more efficient opti-
mization than mean shift which is fundamentally a gradient
descent algorithm.

This analysis provides the basis for considering the de-
sign of an expanded set of kernel-based trackers using one
or more modified kernels. Intuitively, multiple kernels in-
crease the measurement space and, in doing so, increase the
sensitivity of a kernel-based tracking algorithm. The SSD
measure we develop extends naturally to multiple kernels,
as does the associated optimization procedure. We show de-
signs for kernels that attend to particular types of image mo-
tions, including scale and rotation, and to particular types of
image intensity structures, including generic region proper-
ties such as symmetry. These are demonstrated on several
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motion sequences. Comparative results with the mean shift
algorithm are also provided.

2 Mean Shift Tracking of Location

Here, we review the basic concepts of kernel-based tracking
using the terminology and notation similar to [3, 11].

Consider a target chosen for tracking as a defined region
of pixel locations {xi}i=1...n in an image I with time index t.
For each pixel location, a feature vector f ∈F characterizes
the appearance within some neighborhood of that pixel lo-
cation. Let U = 1 . . .m represent a finite number of feature
“bins,” and let b : F → U denote the “binning” function
on features. For simplicity, the expression b(x, t) will rep-
resent the bin of the feature value of location x in an image
with time index t. Let K : ℜ2 → ℜ+ denote a kernel which
weights image locations.

With these definitions, a kernel-weighted empirical dis-
tribution, or histogram, q = (q1,q2, .......,qm)t of a target
region can be computed as:

qu = C
n

∑
i=1

K(xi − c)δ (b(xi, t),u) (2.1)

C =
1

∑n
i=1 K(xi − c)

(2.2)

where δ is the Kronecker delta function and c is the kernel
center location. Note that the definition of C implies that
∑m

u=1 qu = 1. Unless otherwise noted, we subsequently con-
sider only kernels that have been suitably normalized so that
C = 1.

Equation (2.1) can be written more compactly by defin-
ing, for each feature value u, a corresponding sifting vector
u as ui = ui(t) = δ (b(xi, t),u). We can combine these sifting
vectors into an n by m sifting matrix U = [u1,u2, . . . ,um].
Similarly, we can define a vector version of the kernel func-
tion K by Ki(c) = K(xi,c). With this, we can now rewrite
(2.1) in a more concise form:

q = UtK(c) (2.3)

Suppose we are now given a candidate region centered
about c in a subsequent image acquired at time t ′. The cor-
responding empirical feature distribution would be

p(c) = p(c, t ′) = Ut(t ′)K(c) (2.4)

The location tracking problem can now be stated as fol-
lows: given a model distribution, q, and a candidate distri-
bution, p(c), choose a location c∗ that maximizes the sim-
ilarity between the target distribution and the model distri-
bution.

In [3], the location estimation problem is solved by op-
timizing the sample estimate of the Bhattacharyya coeffi-
cient:

ρ̂(c) ≡ ρ̂(p(c),q) =
m

∑
u=1

√
pu(c)qu, (2.5)

In the notation developed above, this expression can be
written as

m

∑
u=1

√
p(c)q =

m

∑
u=1

√
p(c)

√
q =

√
p(c) ·√q

where the square root operator is taken to apply componen-
twise to the vector argument.

At this point, the following additional assumptions are
required: 1) K(x− c) = k(‖x− c‖2); 2) k is non-negative1

and non-increasing; 3) k is piecewise differentiable [12].
Under these assumptions, the mean shift algorithm is then
derived in two steps. The first is to expand the above expres-
sion in a Taylor series about p. Doing so and rearranging
terms yields the following expression to be maximized:

O(c) =
n

∑
i=1

wiK(xi − c) (2.6)

wi =
m

∑
u=1

√
qu√

pu(c)
δ (b(xi, t),u) (2.7)

In the vector notation developed above, this becomes

w = U

( √
q√

p(c)

)
(2.8)

O(c) = wtK(c) (2.9)

where / is again taken to apply componentwise to the asso-
ciated vectors.

This optimization is then solved by computing the gra-
dient and setting it equal to zero. The final solution can be
written in the form of a weighted mean:

c∗ − c = �c = ∑n
i=1(xi − c)wig(‖xi − c‖2)

∑n
i=1 wig(‖xi − c‖2)

(2.10)

where g(x) = −k′(x).
It can be shown that the series of “mean shifts” computed

using this rule is seeking the mode of the kernel-weighted
distribution of wi (which can be thought of a similarity mea-
sure) as a function of kernel location. It is useful to note
that other authors [12] consider g as the kernel function, in
which case the notion of this being a “mean shift” is more
direct and obvious. In this case, it can also be shown that the
optimization is a form of local gradient ascent on a convo-
lution surface defined by K applied to the weights wi [12].

1Collins [8] has recently developed a generalization of the mean shift
algorithm that does not require non-negativity.
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3 An Alternative Optimization

Consider the sum of squared differences (SSD) objective
function also known as the Matusita metric [6]

O(c) = ‖√q−
√

p(c)‖2. (3.1)

It is well known that the Matusita metric and the Bhat-
tacharyya coefficient are related [6, 5] by

O(c) = 2−2ρ̂(c) (3.2)

As a result, the minima of (3.1) coincide with the maxima
of the Bhattacharyya coefficient (2.5), and hence we can
equivalently work with (3.1), which we will refer to subse-
quently as the SSD error.

We derive a Newton-style iterative procedure to solve
this optimization by expanding the expression for

√
p(c)

in a Taylor series and dropping higher order terms:

√
p(c+�c) =

√
p(c)+

1
2

d(p(c))−
1
2 UtJK(c)�c (3.3)

where JK is the n by 2 matrix of the form

JK =
[

∂K
∂c1

,
∂K
∂c2

]
=




∇cK(x1 − c)
∇cK(x2 − c)

...
∇cK(xn − c)




and d(p) denotes the matrix with p on its diagonal.
Thus the optimization equation (3.1) can now be written

in terms of a correction �c as

O(�c) = ‖√q−
√

p(c)− 1
2

d(p)−
1
2 UtJK�c‖2 (3.4)

The minimum of this objective function is then the solution
of the linear system

Jt
KUd(p)−1UtJK�c = 2Jt

KUd(p)−
1
2

(√
q−

√
p(c)

)
(3.5)

Hence, the solution to this optimization will exist provided
that JU = d(p)−

1
2 UtJK is of column rank 2.

At this point, it is interesting to compare the mean shift
correction method with SSD. Comparing (3.5) and (2.8),
note that the term Ud(p)−

1
2 (
√

q−√
p(c)) corresponds to

the weighting vector w. Further, if the kernel satisfies the
assumptions required by the mean shift procedure, then
∇cK(xi−c) = g(‖xi−c‖2)(x−c)t and thus setting the right
hand side of (3.5) to zero and solving for c yields a modified
mean shift operator. However, in (3.5) the linear system so-
lution attempts to jump directly to the minimum in a single
step. Figure 1 shows a simple example of a return map illus-
trating this behavior. As with all gradient ascent algorithms,
mean shift tends to under perform Newton style iteration.
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Figure 1: Return map comparison between mean shift and
kernel-based SSD approach. The left plot compares the re-
turn map for shift when the target is centered on “box” sig-
nal; the right plot the performance when the target is cen-
tered on a 1D step function (an “edge”). For kernel-based
SSD approach, both epan and triangular kernels have been
used. It can be seen that SSD has nearly perfect 1-step per-
formance, whereas mean shift much slower to return.

3.1 More Complex Motion Models

The basic idea of kernel-based estimation can now be eas-
ily extended to recover richer models of target motion fol-
lowing the line of development generally used for template
tracking [4, 1, 9]. Let f (x,µ) represent a parametric defor-
mation model of a target region characterized by the param-
eters µ = (µ1,µ2, . . . ,µr). The function f is assumed to be
differentiable w.r.t to both µ and x. The definition of the
kernel function can be extended to include f by defining

K(x,c,cf,µ) = Cµ K( f (x− cf,µ)− c) (3.6)

Cµ =
1

∑i K( f (x− cf,µ)− c)
(3.7)

Note we have been forced to reintroduce Cµ as non-rigid
mappings f may change the effective area under the kernel
and thus will require renormalization. The reason for differ-
entiating between the location of the kernel and the location
that the deformation acts about will become apparent when
we introduce multiple kernels in the next section. For now,
we will identify c = cf and simply write K(x− c,µ). With
this, the definition of a corresponding vector form K(c,µ)
exactly parallels the development above, and thus we can
now define a kernel-modulated histogram as:

q(c,µ) = UtK(c,µ) (3.8)

Again, following the same steps of Taylor series expan-
sion, we see the histogram Jacobian includes a kernel Jaco-
bian that is now an n by 2+ r matrix of the general form:

JK =
[

∂K
∂c1

,
∂K
∂c2

,
∂K
∂ µ1

,
∂K
∂ µ2

, . . . ,
∂K
∂ µr

]
For a concrete example, consider the problem of deter-

mining the appropriate scaling of the kernel as discussed in
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[8]. The three parameters of interest are the two translation
parameters and one scaling parameter. It is easy to show
that for kernels with C = 1, the kernel jacobian has the gen-
eral form

JK = [Kx,Ky,x.∗Kx +y.∗Ky − (x.∗Kx +y.∗Ky)K]

where Kx = ∂K
∂c1

, Ky = ∂K
∂c2

, x and y are vectors comprising

the locations xi −c, and (·) denotes the sum of the elements
of the vector argument. The subtraction of the summed
derivatives is a direct consequence of the requirement that
the kernel remain normalized after scaling.

Given a predicted set of model parameters c and µ, a cor-
rection term is computed as the solution of the linear system

e =
√

q−√
p(c,µ)

Jt
KUd(p)−1UtJK

[ �c
�µ

]
= Jt

KUd(p)−
1
2 e

(3.9)

We defer at this point to [1] for an in-depth discussion of
the general form and structure of f , and, in particular, con-
ditions under which it is possible to optimize these compu-
tations.

3.2 The Limits of Single Kernels

At this point, it is interesting to consider some of the prop-
erties of kernel-based tracking using a single kernel. First,
note that, as with the mean shift algorithm, histogram bins
with zero values must be ignored or otherwise regularized
[7] in order for the inverse of d(p) to be well defined. Fur-

thermore, the rank of JU = d(p)−
1
2 UtJK can in any case be

no larger than min(r + 2,m) [10]. In fact, note that the mth
value of the histogram is a function of the previous m− 1
(due to the constraint that the histogram sums to 1), and it
can be easily shown that this results in a rank reduction on
UtJK. Note any zero values in the histogram will serve to
further lower m.

From this it follows that at least three different features
values are necessary to track two degrees of translational
freedom, no matter how the feature values are distributed.
Moreover, this form of rank deficiency is an inherent limi-
tation on any kernel-based objective function. That is, this
rank deficiency indicates that, at any point in the solution
space, there are target motions that lie in the kernel of JU
and hence are not detectable by a change in the kernel-
weighted histogram. But this in turn implies that even at
an optimum, there must be always be local motions that
leave the value of a histogram-based objective function un-
changed. The only case where this is not true is when the
histogram values themselves are at an extremum at the op-
timum.

Figure 2: A tracking on a bulls-eye figure.

To briefly illustrate these ideas, consider the image
shown in Figure 2. The kernel at a is ambiguous both be-
cause it only spans two colors, and because it lies along a
spatial boundary. The kernel at b, although spanning three
colors is still ambiguous due to the spatial boundary. The
kernel at c has been centered on the bullseye and, based
on the fact that the histogram is at an extremum here, does
have a unique optimum, but this is an unstable equilibrium.
It is interesting to note that, in general, there is no single,
circularly symmetric kernel that can stably track a unique
location on this target.

It is possible to have rank deficiency with an arbitrarily
large number of feature values, given the appropriate in-
teraction between the image and the kernel structure. In
general, the invariance of a kernel to a given motion is ana-
lytically equivalent to examining the equation

0 = Ut ∂K
∂ µ i

for parameter µi of a given composition of kernel K and de-
formation f . If the chosen column vector of partial deriva-
tives of the kernel lies in the null space of the columns of U,
then that deformation is unrecoverable and JU will be rank
deficient. This is the kernel-tracking equivalent of the aper-
ture problem. Of course, other rank deficiencies can result
due to linear combinations of local motions that lie in the
(column) null space of U.

4 Multi-Kernel Tracking

As discussed in the previous section, a single kernel, no
matter what its structure, is ultimately limited by two fac-
tors: 1) dimensionality of the histogram (which in turn may
be a function of available image structure), and 2) the inter-
action between its derivative structure and the spatial struc-
ture of the image as it is exposed by the histogram. Thus,
the obvious direction to pursue is to somehow increase the
dimensionality of the measurement space, and to simulta-
neously architect the derivative structure of the kernel to be
sensitive to desired directions of motion.
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The recent paper by Collins [8] is in fact a step in this
direction, where two kernels (one for location and one for
scale) are employed. We follow a similar approach by plac-
ing multiple kernels on the image at locations (and ulti-
mately profiles) that provide independent information on
motion. Consider the following kernel

Definition 4.1. A roof kernel of length l, span s, center c
and normal vector n is defined as

Kr(x;c,n) =
4

(l ∗ s2)
max(s/2−|(x− c) ·n|,0).

Intuitively, a roof kernel is simply an extrusion of a tri-
angular kernel.

The choice of the roof kernel above is motivated by the
following observation. In 1-D, consider a triangular kernel
centered at a location where the signal changes histogram
bins (and thus forms a step edge). In 1-D, the form UtJK(x)
computes the scalar convolution of g (which is now itself
a step edge) with the underlying binned image at x. It fol-
lows that the triangular kernel, in the absence of noise, is the
optimal detector for the step edge in the binned signal [2].
Furthermore, the response is a linear function of translation
within the span of the kernel. Although this discussion is
for the one-dimensional case, it is easy to see that a similar
argument can be made in for a two-dimensional roof kernel
with orientation n where n is points along the local “spatial
gradient” of the binned image2.

Intuitively, two roof kernels oriented in orthogonal direc-
tions provide independent information on x and y motion.
Algebraically, the use of two kernels doubles the dimension
of the histogram, and therefore increases the potential rank
of the system. To formalize and generalize these ideas, we
proceed as follows:

Suppose we adjoin several kernels
into an n × r kernel matrix K(cf,µ) =
[K1(c1,cf,µ),K2(c2,cf,µ), . . . ,Kr(cr,cf,µ)]. Follow-
ing the development above, we can now define matrices
that contain the corresponding model and target histograms
as Q = U(t0)tK(0,0) and P(c f ,µ, t) = U(t)tK(c f ,µ). Note
that we now distinguish between kernel location (c) and
the center of the deformation (cf); the latter is now taken
to be the origin of the entire collection of kernels. The
optimization is then

O(c f ,µ) = ‖Q−P(c f µ , t)‖2 (4.1)

where ‖ · ‖ now denotes the Frobenius norm.
At this point, it is useful to recall that the Frobenius norm

on a matrix is equivalent to the norm of the single column

2It is important to note that these are changes in the bin index which re-
flect the underlying spatial gradient only to the extent the binning function
is uniform and monotonic.

vector constructed by concatenating the columns of the ma-
trix. Let p̄ and q̄ denote the “stacked” versions of P and Q.
By recasting the problem in this form, and performing the
same derivation of the Newton iterations, we have:

e =
√

p̄(µ, t)−√
q̄

JU(µ) = d(p̄)−
1
2




UtJK(c1,cf,µ)
...

UtJK(cr,cf,µ)




Jt
UJU

[ �c f

�µ

]
= Jt

Ue

(4.2)

It should be clear that the algebraic structure of the
stacked system will be no worse than that of any single ker-
nel, and in general will be much better. Of course, multi-
ple kernels is not a panacea for improving tracking quality.
For example, applying the same kernel at the same location
does not improve the rank structure of the system. Simi-
larly, kernels placed or oriented appropriately may not yield
independent information. Thus, care and analysis of kernel
properties is essential in constructing multi-kernel trackers.

4.1 Multiple Kernel Constructions

The previous section has already motivated one possible
multi-kernel construction: the combination of two ramp
kernels in orthogonal directions to provide location infor-
mation. In particular, returning to the simple bulls-eye ex-
ample of Figure 2, it is easy to see that the two kernels now
provide two independent measures of motion, and thus it is
possible to track many locations on the target.

Once we take the step of allowing multiple kernels, there
are a number additional possibilities for defining tracking
structures. Here we detail a few.

Symmetry Seeking: As currently defined, the goal of
kernel-based tracking is to match a fixed kernel-weighted
histogram to a time and parameter varying one. An alterna-
tive is to match two time and location varying histograms to
each other. This is particularly useful in cases where the im-
age itself exhibits some type of symmetry, in which case the
trackers will be forced into a symmetric configuration. For
example, two kernels placed on the opposing sides of the
bulls-eye figure in Figure 2 will automatically array them-
selves symmetrically about the center.

Fixed Reference: Rather than selecting a sample his-
togram at a location, an alternative is to choose a fixed refer-
ence or some or all values of the kernel-weighted histogram.
For example, a uniformly colored foreground object might
be forced to have a histogram which is exactly 50% the fore-
ground color (but leaving the remaining distribution unspec-
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ified). In this case the kernel would naturally center itself on
the occluding contour.

Translation and Rotation: Kernels that are responsive to
rotation must have changing value along circular lines about
the origin. This is true of the roof kernel for a small range of
motion. However, it is not hard to design kernels that em-
phasize this attribute. For example, the kernel that is defined
in polar coordinates as K(θ ,r) = sin2(θ),r < rmax with suit-
able normalization is such a kernel.

5 Demonstrations

5.1 Tracking Location

In this section, we compare the tracking results of the
kernel-based SSD tracking with the mean shift tracker for
translation motion. The kernel-based SSD approach is
implemented both using single kernels and multiple ker-
nels. Thus, we compare results from three implementations,
namely mean shift, single kernel-based SSD and the multi-
ple kernel-based SSD. The kernel used in the single kernel-
based and the mean shift approach is the Epanechnikov ker-
nel used by [3] for mean shift tracking. For the multi-kernel
approach, we use the triangular kernel discussed in Sec-
tion 4.

The histogram binning for comparison is based on the
HSV space. The bins in the model distribution containing
less than 10% of full value were ignored in the calculations
to enhance stability. The bins in the multi-kernel approach
consists of a bin for dark pixels (< 20% of full scale bright-
ness), a bin for unsaturated pixels (< 20% full saturation)
and ten equally spaced bins for hue values. All model dis-
tributions are computed once on the initializing frame and
held fixed for the entire sequence.

As indicated by the return map figure in Section 3.2, the
convergence for mean shift is much slower compared to the
kernel-based approach, so we compare the tracking results
for all the three implementations with fixed number of it-
erations per frame. The Figure 3, Figure 4 and Figure 5
show the tracking results when only 2 iterations per frame
were run and every third frame in the sequence was used.
It is quite evident from Figure 3 that the mean shift tracker
performs quite poorly with HSV based histogram binning.
On the other hand, the kernel-based SSD trackers perform
quite well. If the number of iterations are increased and
fewer frames are dropped, the mean shift tracker gives bet-
ter results. We found that the mean shift tracker performs
better with histogram binning based on RGB space. Fig-
ure 4 shows the comparison of the mean shift and kernel-
based SSD tracking with histogram binning based on both
HSV and RGB space. It can be seen that although the mean
shift tracker performs better, the kernel-based SSD trackers
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Figure 3: The center position of the tracked region for mean
shift, single-kernel SSD and the multiple-kernel SSD with
histogram binning based on HSV space (2 iterations per
frame).The top and bottom plots show x and y center po-
sitions respectively.

still outperform the mean shift tracker. Figure 5 shows the
selected template region in the first frame and five frames
from the 450 frame tracked sequence. The kernel-based
SSD trackers do a better job of tracking than the mean shift
trackers with fixed number of iterations. The fast conver-
gence of kernel-based SSD tracking and slow convergence
of the mean shift tracking is thus quite evident.

5.2 Tracking Similarities

As discussed earlier in the Section 4, the power of the
multiple-kernel SSD tracking lies in tracking similarities.
Different kernels for each similarity namely x translation, y
translation, scale etc can be used to compute each of these
similarities. In Figure 6, we show results for tracking an
image sequence with primarily translation and scale. Two
orthogonal triangular kernels are used for x and y translation
and a limited conical kernel is used for scaling. Six frames
from a 90 frame sequence are shown. It can be easily seen
the scaling changes by more than a factor of 2.
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Figure 4: The center position of the tracked region for mean
shift, single-kernel SSD and the multiple-kernel SSD with
histogram binning based on both HSV and RGB space (2
iterations per frame). The top and bottom plots show x and
y center positions respectively.

5.3 A Structured Tracking Example

Figure 7 shows four frames from a 500 frame stereo se-
quence showing a light yellow wand moving above a highly
textured background.

A tracker for this wand was designed using the following
elements. The histogram space for this problem is identi-
cal to the HSV binning described previously. Two symmet-
rically arrayed roof trackers were keyed to the foreground
color of the wand. The results of these trackers are shown
by the red and blue (upper and middle) plusses on the wand.
One roof kernel orthogonal to the axis of symmetry was
keyed to the foreground color of the wand, with the per-
centage of foreground set to be 50%. For small changes in
angle, the roof kernel trackers on a straight edge are rotation
invariant, so location is first tracked using the five roof ker-
nels, and then the orientation of the wand is computed after
the tracking cycle by fitting a line though the centerline be-
tween the symmetry pairs. This is the blue (or central) line
on the tool). Although in principle the estimation of rota-
tion can be direction combined with translation as detailed

Figure 5: Tracking comparison for mean shift, single-kernel
SSD and multiple-kernel SSD approaches with 2 iterations
per frame. The first frame shows the selected template re-
gion. In the following frames, the tracked region from these
different tracking approaches are shown. The tracked re-
gion in each frame for mean shift, single-kernel SSD and
multiple-kernel SSD with histogram binning based on HSV
space are shown in blue, red and green rectangle respec-
tively. The tracked region with histogram binning based on
RGB space for mean shift and single-kernel SSD are shown
in magenta and black respectively.

above, the local invariance of the translation stage to rota-
tion facilitates this simpler solution. Note the entire solution
for location and rotation is also scale invariant.

This sequence is the output of one camera of a stereo
pair. A similar tracking algorithm for a second pair is used
to track the wand, and the resulting locations and kernel
orientations are used to construct the five degree of freedom
pose of the wand in space.

6 Conclusions

We believe the use of kernel-weighted histograms as de-
scribed in this paper provide a number of unifying insights
into the general form and structure of visual tracking prob-
lems. Historically, two “extremes” in the spectrum of track-
ing algorithms are blob tracking and template tracking. The
former is unstructured, approximate, is insensitive to the de-
tails of target geometry, and is typically solved using either
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Figure 6: Similarity tracking with the multi kernel SSD ap-
proach. The first frame shows the selected template region.
The subsequent frames show the tracked region with a blue
rectangle.

brute force search, or statistical techniques (e.g. centroids)
on segmented images. Template tracking, on the other hand,
emphasizes the spatial structure of the target, can recover a
rich class of motions, and is typically solved using continu-
ous optimization.

Kernel-based methods forge a link between these two ex-
tremes. Not only do similar optimization techniques apply,
but there is a fundamental relationship between the struc-
ture of a collection of histograms for detecting and estimat-
ing target motion, and the spatial structure of the target it-
self. At one extreme, a simple circularly symmetric kernel
places few constraints on target motion, but in the limit, as
more and more kernels are added, the spatial structure of
the target becomes more and more constrained.

Our current work is continuing to develop this connec-
tion in a more formal sense, and to apply these insights to
challenging tracking problems. For example, it is not yet
clear how to properly adapt the histogram structure over
time to adapt to changing illumination, changing target ap-
pearance, or occlusion. Likewise, there is, as of yet, no
well-developed theory of how to best make use of multiple
features simultaneously. Finally, in addition to tracking, the
same SSD-based approach can be applied to other registra-
tion problems. By doing so, we hope to gain the robustness
associated with integral measures such as histograms, while
making use of well-developed optimization results in this
area.
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