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Microarray technology is a powerful tool for measuring RNA

expression for thousands of genes at once. Various studies have

been published comparing competing platforms with mixed

results: some find agreement, others do not. As the number of

researchers starting to use microarrays and the number of cross-

platform meta-analysis studies rapidly increases, appropriate

platform assessments become more important. Here we

present results from a comparison study that offers important

improvements over those previously described in the literature.

In particular, we noticed that none of the previously published

papers consider differences between labs. For this study, a

consortium of ten laboratories from the Washington, DC–

Baltimore, USA, area was formed to compare data obtained from

three widely used platforms using identical RNA samples. We

used appropriate statistical analysis to demonstrate that there

are relatively large differences in data obtained in labs using the

same platform, but that the results from the best-performing

labs agree rather well.

Microarray technology has become an important tool in
medical science and basic biology research. A first time user will
find many platform options and little guidance on which is the
most appropriate for their application. Various comparison
studies have been published presenting contradictory results.
Some have observed agreement in results obtained with different
platforms1–6, others have not7–10. Here we demonstrate that the
disagreement observed in some studies may be due to disputable
statistical analyses. In particular, none of the prior studies
have considered lab-to-lab variability (lab effect). The lab effect

has been observed in all scientific fields11. Therefore, it is
essential to assess this effect before drawing conclusions about
platform performances.

A consortium of ten labs from the Washington, DC–Baltimore,
USA, area was formed to compare the performance of three leading
platforms. Researchers in each lab were given identical RNA
samples that were processed according to what was considered
best practice in each lab. Affymetrix GeneChips were used in five of
the labs (Affymetrix labs 1–5), two-color spotted cDNA arrays were
used in three labs (two-color cDNA labs 1–3), and two-color long
oligonucleotide arrays were used in two labs (two-color oligo labs
1 and 2). Here we describe the features of our experiment that are
necessary for such studies to be informative and a set of simple
assessment measures useful for summarizing and interpreting the
observed data.

To decide among various strategies for measuring the same
quantity, one looks to optimize accuracy and precision. Because
in many situations precision can be improved at the cost of
accuracy, and vice versa, one tries to find the strategy providing
the ‘best’ balance. Because the definition of best depends on the
application, it is important to consider precision and accuracy in the
context of a realistic problem. We mimicked the most common
application of microarray technology: screening for a few candidate
genes that appear to be differentially expressed among thousands of
genes that are not. In this context, an appropriate comparison
experiment requires at least the following three features. (i) To
appropriately assess precision we should make a comparison with
an a priori expectation of no-fold change for most or all genes. (ii)
To appropriately assess accuracy, an a priori expectation of nonzero
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log–fold change of a few genes is needed. (iii) To be able to
distinguish between platform effect and lab effect, at least two labs
should provide data from each platform. We have designed the first
platform comparison experiment that includes all of these features.

In general, the Affymetrix labs achieved better accuracy and
precision. But overall, the best-performing lab was two-color oligo
lab 2. Furthermore, two-color cDNA labs 1 and 3 outperformed
most Affymetrix oligo labs in some categories. The worst perfor-
mance was observed from a two-color oligo lab; thus the best and
worst overall performance was achieved using the same platform.
This underscores the importance of considering the lab effect. In
general, we found that the lab had a larger effect on, for example,
precision than did the platform, and that the results from the best-
performing labs agreed rather well.

RESULTS
Assessment measures and plots
We created two samples in which we expect a few genes to be
differentially expressed. To do this we developed a strategy based
on mixtures from four knockout human cell lines that resulted in
four specific genes with a priori expectation of fold change different

from 1 (Supplementary Methods online). We refer to these
genes as the altered genes. For each of these two samples we created
an exact copy, or technical replicate, for a total of four samples.
Exact copies of these four samples where hybridized by the ten
labs using their platform of choice, and the resulting data were
processed as described. We quantified relative expression between
the two duplicate pairs of samples with log2-fold change. This
resulted in two replicate log2-fold change measurements for each
gene, from each lab.

To summarize precision we used two simple measures: correla-
tion across replicate log2-fold change measurements and standard
deviation (s.d.) of the difference between replicate log2-fold change
measurements. These assessment measures can also be used to
quantify the similarity between measurements made using dif-
ferent platforms. We refer to these two assessment measures as
correlation and s.d. (Table 1, columns 3 and 4). A box plot of the
differences used to compute the s.d. for each lab provides a
graphical summary (Fig. 1a).

To assess accuracy we validated 16 genes using RT-PCR
(Supplementary Methods). The 16 genes included the four
altered genes, four randomly selected genes from those that were
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Table 1 | Assessment measures for all ten labs

Precision Proportion of agreement

Platform Lab number Correlation s.d. Accuracy signal (s.e.m.) 25 50 100

Affymetrix oligo 1 0.48 0.32 0.62 (0.05) 0.72 0.56 0.54

Affymetrix oligo 2 0.76 0.17 0.64 (0.05) 0.80 0.70 0.70

Affymetrix oligo 3 0.67 0.24 0.66 (0.05) 0.68 0.66 0.60

Affymetrix oligo 4 0.79 0.15 0.59 (0.04) 0.80 0.70 0.65

Affymetrix oligo 5 0.59 0.25 0.58 (0.05) 0.64 0.68 0.55

Two-color cDNA 1 0.65 0.23 0.41 (0.12) 0.68 0.64 0.65

Two-color cDNA 2 0.68 0.21 0.13 (0.04) 0.28 0.30 0.38

Two-color cDNA 3 0.46 0.23 0.54 (0.09) 0.72 0.68 0.50

Two-color oligo 1 0.68 0.51 0.21 (0.09) 0.40 0.36 0.33

Two-color oligo 2 0.90 0.10 0.76 (0.13) 0.44 0.72 0.81

To summarize precision we used the correlation across replicate log2-fold change measurements and standard deviation (s.d.) of the difference between replicate log2-fold change measurements.
To quantify accuracy we regressed the observed log2-fold changes of 16 genes against nominal log2-fold changes obtained using RT-PCR. The slope of the regression line defines what we refer
to as accuracy signal. The proportion of agreement in interesting genes lists—ranked by fold change—of sizes 25, 50 and 100, created with replicate log2-fold change measurements, are also
used to assess precision.
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a b Figure 1 | Precision and accuracy assessment

figures. (a) Box plot of the difference in log2-fold

change between replicate measurements of gene

expression from each of the ten labs. The platform

used is represented by different colors defined in

the figure. (b) Observed log2-fold change versus

nominal (calculated from RT-PCR experiments)

log2-fold change for the four altered genes and

12 other genes. The results for each of the 10 labs

are represented by the lab number and color for

the different platforms as in a. The solid diagonal

line is the identity function and represents

perfect accuracy.
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consistently found not to be differentially expressed across all
platforms, four genes that were consistently found to be differen-
tially expressed across all platforms, and four genes found to be
differentially expressed using one platform and not the others. To
quantify accuracy we regressed the observed log2-fold changes of
these 16 genes against nominal log2-fold changes obtained by
RT-PCR analysis. The slope of the regression line defines our
assessment measure, which we refer to as the signal (Table 1,
column 5). A graphical summary is the scatter plot of the observed
versus nominal values obtained by all labs (Fig. 1b and Supple-
mentary Fig. 1 online).

A scatter plot of the log2-fold changes obtained by the best-
performing Affymetrix oligo and two-color cDNA labs showed no
correlation for about 95% of genes (Fig. 2a). These genes had log2-
fold changes close to zero and were probably not differentially
expressed. Because for these genes it is likely that we measured zero
log2-fold change plus random measurement error, we did not
expect across-platform measurements to correlate. But for the
few genes that appeared to be differentially expressed there was
good agreement. In practice, we typically screen a small subset of
genes that appear to be differentially expressed. Therefore, it is
more important to assess agreement for genes that are likely to pass
this screen. To account for this, we introduced a new descriptive
plot: the correspondence at the top (CAT) plot. This plot is useful
for comparing two procedures for detecting differentially expressed
genes. To create a CAT plot we made a list of n candidate genes for
each of the two procedures and plotted the proportion of genes in
common against the list size n (Fig. 2b). As assessment measures,
we reported the value of these curves for list sizes 25, 50 and 100.
We refer to these assessment measures as the proportion of
agreement (Table 1, columns 6, 7 and 8).

Preprocessing
We found that within- and across-platform
performance can be greatly improved using
alternative preprocessing algorithms to the
defaults offered by the array manufacturers.
For our analysis, probe-level data from the
Affymetrix oligo arrays were preprocessed
with the robust multiarray analysis
(RMA)12. Print-tip normalization with no
background correction was used to prepro-
cess probe-level data from the two-color
platforms13. Spot-quality information was
ignored because we found it did not have
substantial impact on downstream results.
Because algorithms implementing these
methodologies are available from the Bio-
conductor project14, we will refer to them as
the Bioconductor procedures. We com-
pared the results obtained with this
approach to those obtained with what we
consider to be the default approaches: Affy-
metrix’s MAS 5.0 algorithms for Affymetrix
oligo arrays and median adjustment nor-
malization with background correction for
the two-color technologies. Although in
general the default procedures had slightly
better accuracy (not statistically signifi-
cant), the gains in precision given by the

Bioconductor procedures were dramatic. Because of the great
improvement provided by the Bioconductor procedures (Supple-
mentary Fig. 2 online and Supplementary Table 1 online), we use
them for all of the experiments presented in this paper.

Annotation
To match features across platforms, we used mappings that match
features to genomic entities that are available from various public
databases. Resourcerer15 provides mappings that link features to
UniGene, LocusLink and RefSeq for all the platforms used in our
experiment. Resourcerer also provides its own annotation in a
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Figure 2 | Plots demonstrating agreement for differentially expressed genes. (a) Scatter plot of observed

log2-fold change from two-color cDNA lab 1 and Affymetrix oligo lab 4. Points inside red circle represent

genes that do not appear to be differentially expressed. Blue points are genes that appear to be

differentially expressed. The solid diagonal line is the identity function and represents perfect accuracy.

(b) CAT plot showing agreement between differential expression calls, defined by ranking genes by fold

change, using replicate measurements from each lab. We considered list sizes less than 100 because we do

not expect more than 100 genes to be differentially expressed, thus correspondence of larger lists is not

of interest. The three colors represent the different platforms as in Figure 1a. The different line types

represent the different labs within each platform so that a color and line-type pair uniquely represents

each lab. The yellow strip represents critical values for rejecting the null hypothesis of no agreement

at the 0.001 level.

UniGene LocusLink

RefSeq 9,288

876

109

21

109

6

7,021

4,853

Figure 3 | Venn diagram illustrating agreement between annotation

databases. For each mapping (UniGene, LocusLink and RefSeq) we obtained

a different set of genes that had identifiers for each platform. This Venn

diagram shows the agreement between these three different lists.
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eukaryotic gene orthologs (EGO) database. Unfortunately, none of
these mappings are one to one: not all the features in the arrays are
annotated and/or some are annotated with more than one genomic
identifier. Therefore, for a particular annotation only a subset of the
array features will have an entry for each platform. Furthermore,
these subsets differ depending on which annotation was used
(Fig. 3). The annotation used had an effect on the across-platform
agreement. For example, the correlation between measurements
from Affymetrix oligo lab 4 and two-color cDNA lab 1 was 0.39–
0.44 when using UniGene and EGO, respectively. We found that
using the genes having entries in all databases for all platforms
provided the best agreement. For all the analyses presented here
we used the subset of genes obtained from this intersection
(Supplementary Table 2 online).

Platform comparison
Our results demonstrated that precision is comparable across
platforms (Table 1 and Fig. 1a). With the exception of two-color
oligo lab 1, all the labs performed similarly, and it is clear that the
lab effect is stronger than the platform effect. All the labs provided
attenuated log2-fold change estimates, and this is consistent with
previous observations12 (Fig. 1b). In general, the labs using the
Affymetrix platform seem to attain better accuracy than the
labs using two-color platforms, although the best signal
measure was attained by two-color oligo lab 2. Two-color cDNA

lab 2 and two-color oligo lab 1 were clearly underperforming. The
differences in data obtained by the other eight labs were not
statistically significant.

We used CAT plots to assess across-platform agreement. It is
important to note that these were used to compare results from
single array experiments, and thus we did not expect perfect
agreement. Note, for example, that the agreement of lists of the
top 100 genes created from replicate fold-change measurements
ranged from 33–81 percent (Fig. 1b). CAT plots comparing across-
lab agreement demonstrate that the Affymetrix oligo labs consis-
tently provided results similar to those from the best-performing
labs (Fig. 4). This suggests that the Affymetrix platform provides by
far the most consistent data across labs. Apart from two labs, there
appears to be good agreement regardless of the platform used
(Fig. 4 and Supplementary Table 3 online).

DISCUSSION
We defined a series of assessment measures and plots used to
compare three leading microarray platforms. These were justified
by questions of scientific interest and have practical inter-
pretations. The signal measure represents the expected log2-fold
change in expression of a gene that should be differentially
expressed with a nominal fold change of two, and the s.d.
measure gives us the expected log2-fold change of a null gene.
These two measures gave us a clear idea of the signal-to-noise ratio.
Although, overall, the Affymetrix platform performed best, it is
important to keep in mind that this platform is typically more
expensive than the alternatives.

We also demonstrated that there was relatively good agreement
between the Affymetrix labs and the best-performing two-color
labs. These results contradict some previously published results that
find disagreement across platforms7–10. The conclusions reached by
these studies are likely due to three misconceptions. The first
misconception is that absolute measurements of gene expression
can be used to assess data across platforms. Note that both studies
using absolute measurements had found disagreement7,10. Results
established based on absolute measurements are misleading
because they are adversely affected by platform-dependent probe
effects that can be removed by considering relative measurements
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Figure 4 | CAT plots showing agreement in differential expression calls, based on fold change, between each lab and a reference lab. (a–c) The different line

types represent the individual labs, and the three colors represent the different platforms as in Figure 2b. The black curve is the CAT curve comparing replicates

from the reference lab. (a) CAT plot using data from the best-performing Affymetrix oligo lab as the reference. (b) CAT plot using data from the best-performing

two-color cDNA lab as the reference. (c) CAT plot using data from the best-performing two-color oligo lab as a reference.

Table 2 | Correlation and s.d. measurements computed for absolute and
relative measurements of expression

Correlation s.d.

Absolute Relative Absolute Relative

Affymetrix oligo versus
Affymetrix oligo

0.98 0.79 0.16 0.15

Two-color cDNA versus
two-color cDNA

0.91 0.65 0.29 0.23

Affymetrix oligo versus
two-color cDNA

0.40 0.44 0.91 0.25

Affymetrix oligo lab 4 and two-color cDNA lab 1 were used for this comparison.
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of expression. The statistical model used to motivate our assess-
ment measures, described in the Methods section, can be used to
demonstrate this point. Note that in all studies interested in
differential expression of genes, relative expression is the quantity
of interest; thus this type of measurement is always available. The
second misconception is that preprocessing has no significant effect
on final results. With one exception4, all previous studies had used
algorithms that have been shown to be inferior to alternatives
developed by the academic community12,13. Finally, the third
misconception is that platform performance is not affected by
lab. The existence of the sizable lab effect was ignored in all
previously published comparison studies. This permits the possi-
bility that studies done by, for example, experienced technicians
may find agreement and studies done by less-experienced techni-
cians may find disagreement (Supplementary Fig. 3 online).

Although we found relatively good across-platform agreement, it
is quite far from being perfect. In all across-platform comparisons,
there was a small group of genes that had relatively large fold
changes from data obtained using one platform but not using the
others (Fig. 2b). We conjecture that some genes were not measured
correctly, not because the technologies are not performing ade-
quately, but because transcript information and annotation can still
be improved.

Our results provide a useful assessment of three leading tech-
nologies and demonstrate the need for continued cross-platform
comparisons. In fact, Affymetrix has released a new platform for
measuring gene expression in humans, which yields slight improve-
ments in accuracy and precision (Supplementary Figs. 1 and 4
online and Supplementary Table 4 online). We expect our study to
serve as a starting point for larger, more comprehensive compar-
isons. Furthermore, our findings show that improved quality
assessment standards are needed. Assessments of precision based
on comparisons of technical replicates appear to be standard
operating procedure among, at least, academic labs. We have
demonstrated that precision and accuracy assessments are not
informative unless performed simultaneously. We hope that our
study serves as motivation to create such standards. This will be
essential for the success of microarray technology as a general
measurement tool.

METHODS
Data analysis. A commonly used statistical model for microarray
data is Yijk ¼ yi + fij + eijk, in which Yijk represents measurement k
of log2-scale expression of gene i measured by platform j. Here yi

represents absolute gene expression in the log2 scale. fij denotes
the platform-specific probe or spot effect. Measurement error is
represented by eijk. For illustrative purposes we considered each of
the effects in this model to be random and statistically indepen-
dent from each other. We represented their variances with vy, vf
and ve.

Many researchers have observed a sizeable probe effect in
microarray data, which implies that nf is large12. This will result
in artificially large correlations when comparing absolute measure-
ments obtained using the same platform. To see this, note that
within-platform correlation is corr(Yij1, Yij2) ¼ (vy + vf)/(vy + vf
+ ve). This correlation is typically close to one, but only because vf
can be much larger than vy and ve. If we compare across platforms,
the correlation will not be as large, but only because the probe
effect is not common to the two platforms and therefore does not

affect the correlation corr(Yi1k, Yi2k) ¼ vy/(vy + vf + ve). These
theoretical predictions were confirmed empirically (Table 2).

A simple solution to the probe effect problem is to consider
relative expression instead of absolute expression. Most experi-
ments compare between different samples, thus in general this
type of measure is readily available. By considering the difference
of the Yijk from the two samples, the fi,j are cancelled out. Because
these are log2-scale measurements this difference is simply the log2

ratio of the absolute expression levels.
For the relative expression measurements, the within-platform

correlations were substantially smaller and the across lab correla-
tion was a bit larger (Table 2). We propose that only assessments
based on relative expression are useful. All the results presented in
this paper deal with relative expression.

Additional methods. Sample preparation, RT-PCR and micro-
array hybridization and experimental design are described in
Supplementary Methods online. The code and data necessary
to reproduce this work are available online (http://www.biostat.
jhsph.edu/~ririzarr/techcomp).

Note: Supplementary information is available on the Nature Methods website.
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