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Blockchain technology has been widely used in digital currency, Internet of +ings, and other important fields because of its
decentralization, nontampering, and anonymity. +e vigorous development of blockchain cannot be separated from the security
guarantee. However, there are various security threats within the blockchain that have shown in the past to cause huge financial
losses. +is paper aims at studying the multi-level security threats existing in the Ethereum blockchain, and exploring the security
protection schemes under multiple attack scenarios. +ere are ten attack scenarios studied in this paper, which are replay attack,
short url attack, false top-up attack, transaction order dependence attack, integer overflow attack, re-entrancy attack, honeypot
attack, airdrop hunting attack, writing of arbitrary storage address attack, and gas exhaustion denial of service attack. +is paper
also proposes protection schemes. Finally, these schemes are evaluated by experiments. Experimental results show that our
approach is efficient and does not bring too much extra cost and that the time cost has doubled at most.

1. Introduction

In recent years, with the rapid development of blockchain
technology, the application scenarios of blockchain have not
only been limited to digital currency and financial fields but
have gradually been deeply integrated with all walks of life
[1, 2], such as smart city and Internet of things (IoT). In
2008, Satoshi Nakamoto released his famous Bitcoin
whitepaper [3], which first put forward the concept of
“blockchain.” Blockchain is a new distributed computing
and storage paradigm which integrates many existing
technologies. It uses cryptography principle and timestamp
technology in data layer to ensure the immutability of data,
uses peer-to-peer network to communicate data in network
layer, uses distributed consensus algorithm to maintain the
consistency of data in the consensus layer; uses scripts and
algorithms to implement smart contracts in contract layer;
and uses Turing complete virtual machine to realize various
functions in the application layer. Compared with

traditional databases, blockchain, as a distributed database,
requires multiple nodes to maintain data together, which
requires data consistency and business fairness.

At the end of 2013, Vitalik Buterin, founder of Ethereum,
released the first edition of EthereumWhite Paper [4], which
realized the development of smart contracts with Turing’s
complete programming language. From then on, blockchain
application was no longer limited to the currency field, and
the blockchain 2.0 era started. As an open source public
chain platform, Ethereum’s function of supporting smart
contracts will help its development. Smart contract is a
representative technology in the blockchain 2.0 era, and its
concept was put forward by cryptographer Szabo [5] as early
as the end of the 20th century. He defined smart contract as a
set of promises defined in digital form, and the participants
of the contract can implement these promises on machines.
It was limited to the science, technology, and environment at
that time, and it was not until the birth of Ethereum that it
gradually revived.
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Blockchain technology, as a new technology, technically
ensures transaction security through encryption algorithm
and digital signature, and relies on consensus mechanism to
generate blocks to form a chain structure to ensure that data
cannot be tampered with. Nevertheless, blockchain is still
facing great security threats [6], especially in smart contracts.
Because of the differences in the programming ability of
smart contract developers, security problems are inevitable.
On June 18, 2016, hackers maliciously attacked +e DAO
project, resulting in the theft of 3.6 million Ether and the loss
of nearly 100 million funds. On July 20, 2017, hackers
exploited the contract loophole of Parity Multi-Signature
Library, resulting in the freezing of over 500,000 Ether in 587
wallets and a loss of about RMB 220 million. In April 2018,
nearly RMB 6 billion was stolen by hackers due to integer
overflow loopholes in the contract code of American Chain
BEC project, which reduced the market value of tokens to
almost zero. In 2019, the global blockchain lost more than $6
billion due to security incidents. In 2020, the blockchain was
hacked incurring a loss of nearly $3.8 billion.

+erefore, it is meaningful to study the security attacks of
blockchain, especially to study the security threats of smart
contracts that cause the greatest losses, which is helpful to
improve the security level of the Ethereum blockchain. +e
contributions of this paper are summarized as follows:

(i) We introduce the background of various attacks,
and analyze the principles and attack paths of ten
kinds of security threats on Ethereum.

(ii) We construct several specific attack scenarios, and
propose the protection schemes corresponding to
Ethereum attacks.

(iii) We test and evaluate the proposed protection
schemes. Finally, a demonstration system is built to
demonstrate the multiple attack scenario.

+e rest of this paper is organized as follows. Section 2
reviews the related work. +e backgrounds and architecture
of the Ethereum blockchain are introduced in Section 3. In
Section 4, we study the principle of ten kinds of attacks on
Ethereum. In Section 5, we explore the corresponding
protection schemes.+e protection schemes are evaluated in
Section 6. In Section 7, this paper is concluded.

2. Related Work

Aiming at the security threats in blockchain scenarios, the
existing research work mainly focuses on attack discovery
and attack protection.

2.1. Attack Discovery. From the perspective of attack dis-
covery, the detection methods based on symbol execution,
fuzz testing, taint analysis, and formal verification are used
to monitor the security threats of contract generation, re-
lease, and execution, and to detect the potential risks and
vulnerable paths in the process of contract interaction. Luu
et al. [7] proposed a detection method based on symbolic
model to monitor the security threats in the whole process of
contract generation-release-execution in real time, and to

detect the potential risks in the process of contract inter-
action and the vulnerability of accurate location of vul-
nerable paths. Its design is fully modularized, allowing
advanced level users to execute and plug in their own
identification logic to check self-defined properties in their
smart contracts. In addition, there are many automated
detection tools, for example, teEther [8], Securify [9], ZEUS
[10], EasyFlow [11], and SmarTest [12]. +ere are many
detection tools at present, but they are difficult to be widely
used. Tu et al. [13] proved that the detection efficiency is not
high, and there are fewer vulnerabilities that can be detected.
We can combine traditional detection methods with ma-
chine learning to improve the versatility and efficiency of
detection tools to a certain extent.

In addition, Hou et al. [14] put forward the method of
deep reinforcement learning by analyzing the behavior of
associated users, and automatically discovering the attack of
consensus strategy. Li et al. [15] proposed an improved
selfish mining based on hidden Markov decision processes
to maintain the benefit from selfish mining. Li et al. [16]
focused on the validity of semi-selfish mining attacks con-
sidering the probability of being detected. Marcus et al. [17]
put forward a method of solar eclipse attack on Ethernet
network with very few resources.

2.2. Attack Protection. From the perspective of attack pro-
tection, based on multi-signature, Byzantine consensus
virtual layer design, and safe miner selection, the problems
of DoS attack and currency age attack in blockchain op-
eration are solved. Li et al. [18] proposed a cross-chain
system based on multiple signatures, which can ensure the
credibility of trading groups by locking assets and resisting
DoS attacks at the same time. Sonnino et al. [19] proposed a
cross-ledger consensus protocol based on Byzantine con-
sensus mechanism to resist cross-ledger replay attacks. Li
et al. [20] used the amount of coins to select miners and limit
the maximum value of currency age to fight against currency
age attacks, thus improving the robustness of the system.
Wang et al. [21] proposed a secure inter-chain transmission
protocol, which can effectively resist the double-flower at-
tack by recording the asset transmission process between
multiple chains and ensuring its consistency. Luu et al. [22]
put forward the verifier dilemma problem, that is, after the
nodes participating in the consensus pay a lot of computing
power to verify the transaction, if they do not get the
bookkeeping right, the verifier will face the dilemma of
paying more computing power to verify or accepting the
wrong script, so as to solve the double-flower attack
problem. Luu et al. [23] put forward a secure fragmentation
protocol which can be used to build public chains, and the
analysis proves that this scheme can effectively improve the
system throughput. Nguyen et al. [24] proposed an approach
and a tool, called SGUARD, which automatically patches
vulnerable smart contracts.

As a complex system, blockchain faces security threats
from the data layer to the application layer. At present, the
related work of blockchain security attack and protection is
mainly discussed from the attack as a whole, but not the
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specific attack. However, this paper goes deep into the
details, investigates the security problems faced by Ethereum
at all levels, studies and tests several typical attacks existing
in smart contracts, and proposes protection schemes.

3. Background

+e related technologies and background knowledge in-
volved in this section are introduced, including Ethereum
architecture, memory layout, and transaction process.

3.1. Ethereum. Ethereum is an open-source public chain
platform for executing intelligent contracts through
Ethereum virtual machines. +ese machines execute intel-
ligent contracts by consuming Ethereum coins. +e concept
of Ethereum first appeared at the end of 2013. Inspired by
Bitcoin, Vitalik Buterin, founder of Ethereum, released the
first edition of Ethereum white paper, which realized the
development of intelligent contracts with Turing’s complete
programming language.

As of November 2021, the market value of Ethereum has
exceeded $570 billion, which is the second highest crypto-
currency in market value after Bitcoin with $1.27 trillion.
Ethereum is often described as “the computer of the world.”
From the point of view of computer science, Ethereum is a
deterministic but unbounded state machine, which has two
basic functions, the first is a globally accessible singleton
state, and the second is a virtual machine that changes the
state. It uses blockchain to synchronize and store the state of
the system [25], and cryptocurrency called Ether is used to
calculate and limit the execution resource cost. Ethereum
developers can write intelligent contracts and build
decentralized applications that can run on Ethereum virtual
machines. While ensuring stable and normal operation, it
can also reduce or eliminate examination procedures, and
save resources and reduce risks by eliminating the partici-
pation of third parties.

3.2. Ethereum Architecture. As Figure 1 shows, Ethereum
architecture is composed of five layers [26], namely, the data,
network, consensus, contract, and application layers.
Ethereum system runs on these five layers. +e data layer
includes technical elements such as data block, chain
structure, hash function, asymmetric encryption, time-
stamp, Merkle tree, etc., which ensures the reliability and
stability of Ethereum data [27]. +e network layer specifies
the peer-to-peer network, wherein each node can obtain the
updated status of blockchain from some active nodes. +ere
is no central server, and only the nodes exchange infor-
mation fairly. +e consensus layer ensures the consistent
state of the blockchain. At present, Ethereum adopts the
Proof of Work (PoW) consensus mechanism. But in the
future version planning, Ethereum consensus mechanism
will gradually transition to Proof of Stake (PoS) mechanism
[28]. +is design can speed up the transaction and save the
resource consumption [29]. It is also effective to avoid the
disadvantage of unfair initial equity distribution existing in
the simple equity proof mechanism. +e contract layer

encapsulates various scripts, algorithms, and smart
contracts, so that various instructions can be executed
automatically and determinately. Smart contract is exe-
cuted in Ethereum virtual machine at a certain cost of gas
according to different instructions. A smart contract is
also an Ethereum account, which we call a contract ac-
count (CA). +is means that they have a balance and they
can trade through the network. But they cannot be
manipulated by humans. +ey are deployed on decen-
tralized network nodes and run as programs. Individual
users can interact with the smart contract by submitting a
transaction to execute a certain function. Smart contracts
can define rules like regular contracts and automatically
enforce them through code. +e application layer en-
capsulates various application scenarios and cases. For
example, various blockchain applications built on
Ethereum are deployed in the application layer. And, it is
the basis for the realization of a programmable society in
the future. Finally, some corresponding components are
needed to serve these five layers, which is called external
necessary environment, such as web user interface
interacting with applications, database for storing
blockchain data, cryptographic mechanism supporting
consensus protocol, etc. [30].

3.3.Memory Layout of Ethereum. Ethereum virtual machine
(EVM) is Turing-complete, and its operations are limited by
the number of gas provided by users for each transaction.
+e implementation of the Ethereum virtual machine is
based on the stack. Unlike traditional computers, all in-
structions of Ethereum virtual machine are executed on the
stack, and the parameters or operation results required by
the instructions can be obtained through the stack operation.
+e maximum depth of the Ethereum virtual machine stack
is 1024, and the size of each data unit in the stack is 256 bits,
which is convenient for executing Keccak-256 elliptic curve
hashing algorithm.+ere are two main storage models in the
Ethereum virtual machine, namely, temporary memory
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Figure 1: Ethereum’s hierarchical structure.
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model and permanent storage model. Temporary memory of
virtual machine is a simple byte array based on word
addressing, which is similar to the concept of traditional
computer memory, and its storage is unstable. Unlike
temporary memory, permanent storage is a word array
based on word addressing. As a part of the system state,
permanent storage will be maintained in real time, and it is
more stable than its temporary memory. In the initial state,
both the data in the temporary memory area and the data in
the permanent storage area of Ethereum virtual machine are
initialized to 0. Storage stores data through key-value pairs,
which maps 32-byte keys to 32-byte data. Global variables in
smart contracts are stored in the storage area, and their
storage location is determined by the type of the variable and
its position in the code. If a variable store is less than 256 bits,
Ethereum virtual machine may store multiple variables in
one slot. Or the mapping type occupies a slot in which the
mapping or array length is stored. +e specific locations of
arrays and mapping elements are stored in slots according to
a set of special hash rules.

3.4. Transaction Process of Ethereum. +e trading process of
Ethereum is as follows. (1) +e sender constructs a trans-
action and digitally signs it. (2) +e sender calls api through
JSON-RPC to submit the signed transaction to the Ethereum
client. (3) After verifying the received transaction, the
Ethereum client broadcasts it to Ethereum point-to-point
network. (4) Any client that receives the transaction in-
formation will add the transaction to its transaction pool if
the client is also a miner. (5) +e miner executes a series of
transactions selected from its trading pool, creates a new
block, and updates the status of the block chain. +ere are
three types of transactions. For transfer transactions, the
specified amount needs to be updated and transferred from
the sender’s account to the receiver’s account or contract
account. For contract deployment, enter a bytecode to create
a new contract account and associate it with the entered
bytecode. For contract call, where the recipient is the called
smart contract, the input uniquely identifies the callee
function through the hash digest algorithm, and the byte-
code associated with the called smart contract account is
loaded into the Ethereum virtual machine for execution. (6)
Miners solve the problem of workload proof by looking for a
random nonce value. +e hash value of metadata of this new
block needs to be smaller than a certain value, which reflects
the difficulty of creating the block. Unlike Bitcoin’s com-
putationally intensive workload, Ethereum uses a memory-
intensive problem called “Ethash.” (7) When creating the
block, the miners broadcast it to the point-to-point network
of Ethereum, so that other clients can verify the block. (8)
When other Ethereum clients verify a new block, the client
will add the block to the blockchain.

4. Security Attacks on Ethereum

Attacks on Ethereum can be divided into five layers: ap-
plication layer, contract layer, consensus layer, network
layer, and data layer attacks. In this paper, we focus on the

attacks in the application layer, the contract layer, and the
network layer. +e other two layers of attacks are our future
research directions.

4.1. Attacks of Application Layer. +e application layer is
the carrier of blockchain technology and provides solu-
tions for various business scenarios. Security vulnera-
bilities in various trading platforms and user accounts
seriously threaten the asset security of blockchain wallet
users. +erefore, we analyze three common types of
attacks.

4.2. Replay Attack. +e replay attack is to replay transaction
information. +e user signs a message, uploads it to the
contract, and then verifies the signature inside the contract.
But since the user’s signature information is online, ev-
eryone can get it. When verifying the user’s signature in the
contract, if the signed message does not include variables
that change randomly with the number of transactions, such
as timestamp, nonce, etc., the attacker will hold the user’s
signature and forge transactions, thereby obtaining a profit.
It can be widely understood as the process of using the same
payment information to purchase goods multiple times.
When the Ethereum and Ethereum Classic chains emerged
after the hard fork, it was found that transactions on the
Ethereum chain were still valid when they were replayed on
the Ethereum Classic chain. As Figure 2 shows, while pa-
rameters remain unchanged, multiple transfers can be made
through the replay attack.

4.3. False Top-Up Attack. +e status field in the Ethereum
token transaction receipt is true or false depending on
whether an exception is thrown during the execution of the
transaction. When the user calls the transfer function of the
token contract to transfer, if the transfer function runs
normally and no exception is thrown, the status of the
transaction is true. If digital currency exchanges, wallets, and
other platforms have flaws in determining whether tokens’
recharge transactions are successful, it will lead to serious
false top-up attack. As Figure 3 shows, when
balances[msg.sender]< value, it enters the else logical
section and returns false, and finally no exception is thrown.
In this attack, although the exchange did not receive the real
tokens, the transaction execution did not throw an excep-
tion, and the user did get the real recharge record. In this
case, users can steal real assets. +e false top-up attack has
become a type of attack that cannot be ignored in blockchain
system.

4.4. Transaction Order Dependence Attack. Transaction or-
der dependence attack is a kind of attack that widely exists in
the blockchain system; an example of transaction order
dependence attack is shown in Figure 4. In blockchain,
transactions initiated by nodes need to be packaged by
miners before they can be finally recorded on the blockchain.
Miners select a series of transactions from the trading pool
and then package them into a new block. According to
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miners’ criteria for transaction selection, miners will gen-
erally choose the transaction fees to sort and package in
order to get the maximum benefits. +erefore, the sequence
of a series of transactions packaged in the block is not the
same as the sequence of transaction generation but is also
related to the gas cost consumed by the transaction.
+erefore, the contract code cannot know the order of
transactions. And, the transaction is visible to each node in
the transaction pool, so its execution order can be observed.

+e attacker observes the transactions that may contain
the target contract in the pool. If they exist, the status of the
contract that is not conducive to the attacker or the authority
of the contract will be modified by the attacker. Attackers
can also steal transaction data, create their own transactions

at a higher gas price, and then package their own transac-
tions in the block before the original transaction, thus
obtaining transaction processing priority. In Ethereum geth
client, txpool consists of two parts, namely, pending queue
and queued queue. When the sending transaction Nonce is
greater than the completion transaction nonce+1, the
transaction will be queued, and if the current sending
transaction nonce is equal to the completion transaction
nonce + 1, the transaction will be placed in pending waiting
for packaging.

4.5. Attacks of Contract Layer. As an indispensable part of
blockchain technology, smart contract not only expands the
application of blockchain technology but also increases the
attack surface faced by the blockchain system. +e smart
contract is written in a high-level language like solidity, and
then the contract will be compiled into bytecode, which will
be deployed to the blockchain by the contract owner and run
on various virtual machines similar to Ethereum virtual
machines. In the process, the smart contract will face various
security threats [31].

4.6. Integer Overflow Attack. Integer overflow is a typical
loophole in the blockchain system, which once caused se-
rious economic losses in the development of blockchain. In
the Ethereum platform, Solidity language is the most
mainstream language for writing intelligent contracts. Be-
cause of the insecurity of its design, integer overflow is a
serious problem. Generally speaking, integer overflow can be
divided into integer overflow and integer underflow.
According to arithmetic classification, there are three
overflow problems: multiplication overflow, addition
overflow, and subtraction overflow. In April 2018, nearly
RMB 6 billion was stolen by hackers due to integer overflow
loopholes in the contract code of the American Chain BEC
project, which reduced the market value of tokens to almost
zero. In the same month, hackers used the integer overflow
vulnerability of SMTproject side to create a huge amount of
SMT currency for selling, and the Firecoin Exchange sus-
pended the recharge and withdrawal of all other currencies
for this purpose.

In Solidity, the variable supports unsigned integers, and
the value after uint represents the number of bits occupied by
its unsigned integers in storage, and supports 8-bit unsigned
integers to 256-bit unsigned integers. An unsigned integer of
type uint8 stored in the range of 0 to 28 − 1, that is, [0, 255],
and an unsigned integer of type uint256 stored in the range of
0 to 2256 − 1. Because the range of stored integers from uint8
to uint256 is limited, and the range of represented integers is
also limited, there is an overflow problem. +e integer
overflow attack is shown in Figure 5. When
balances[msg.sender]< amount, it results in an underflow.

4.7. Re-Entrancy Attack. Re-entrancy attack is a typical
attack in Ethereum, which directly led to the hard bifur-
cation of Ethereum. +e main reason for the attack is the
sequencing and atomicity of updating smart contract

function transferProxy(address _from, address _to, uint256 _value, uint256 _fee,
uint8 _v, bytes32 _r, bytes32 _s) public returns (bool){
bytes32 h = keccak256(_from,_to,_value,_fee);
if(_from != ecrecover(h,_v,_r,_s)) revert();

}

Figure 2: Replay attack.

function transfer1(address _to, uint256 _value) returns (bool) {
if(_value <= balance[msg.sender] && _value > 0)
{

balance[msg.sender] -= _value;
balance[_to] += _value;
return true;

}
else

return false;
}

Figure 3: False top-up attack.

event Purchase(address _buyer, uint256 _price);
event PriceChange(address _owner, uint256 _price);
modifier ownerOnly() {

require(msg.sender == owner);
_;

}
function TransactionOrdering() {

owner = msg.sender;
price = 100;

}
function buy() returns (uint256) {

Purchase(msg.sender, price);
return price;

}
function setPrice(uint256 _price) ownerOnly() {

price = _price;
PriceChange(owner, price);

}

Figure 4: Transaction order dependence attack.
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variables and transferring operations, the re-entrancy attack
is shown in Figure 6. When the logic in the smart contract
code adopts the sequence of transferring operation first and
then modifying the variable value, the attacker can construct
a smart contract with the malicious callback function. If the
object of the transfer operation is a malicious contract, it can
lead to recursively calling the contract, destroying the
original business logic of the contract, and bypassing its
inspection to obtain additional transfer income.

By default, the Ethereum smart contract has an unnamed
callback function, which has no parameters or return values.
If no function can be found in the calling contract to match
the hash of the provided function, the callback function will
be called.When the contract receives a transfer without data,
it will also call the callback function. In addition, in order to
receive Ether, the callback function must be marked as
payable. If it is not marked as payable, the contract can only
receive Ether by calling other functions marked with pay-
able. Imagine such a scenario, if a special callback function is
constructed, in which the transfer function of the other party
is called, then a recursive transfer will be generated, and the
contract with loopholes will continuously transfer money to
the special contract until the gas is exhausted. It should be
noted that this attack is only aimed at the transfer method of
address.call.value () in Ethereum solidity.

4.8. Honeypot Attack. Honeypot contracts are the most
interesting findings. +ese contracts hold ether, and pretend
to do so insecurely. In short, they are scam contracts that try
to fool us into thinking we can steal the ether they hold,
while in fact all we can do is lose ether. As Figure 7 shows,
CryptoRoulette is a type of honeypot attack. +e variable of
game is not initialized, so it by default points to the first
location of the contract storage space, and then stores the
caller’s address here. +e submitted number is stored in the
second location. In fact, the variable of secretNumber
eventually is overwritten by the address of the caller’s. A
common pattern they follow is, in order to win the ether they
hold, we must send them some ether of our own first.
However, if we try that, we are in for a nasty surprise: the
smart contract eats up our ether, and we find out that the
smart contract does not do what we thought it would.

4.9. Short Url Attack. Short url attack is a typical attack in
Ethereum, which usually occurs in exchanges. In Ethereum
virtual machine, the data end of the input will be automatically
filledwith 0.Malicious attackers can use an address account with
the end of 0, and the exchange fails to verify the address length

input by the user, which causes the transferred related variables
to shift and enlarge, thus expanding the actual transfer amount
by several times, and malicious attackers can obtain a large
amount of benefits. +ere are two main reasons for this vul-
nerability; one is that the exchange has not verified the incoming
address length of the user, and the other is that the Ethereum
virtualmachine has an automatic completionmechanism for the
data whose length does not conform to the specification when
calling the smart contract, resulting in the shift amplification of
parameters. We can use sendRawTransaction() to achieve this
attack and the code is shown in Figure 8.

4.10. Airdrop Hunting Attack. +e airdrop hunting attack
uses multiple new accounts to call the airdrop function in
order to obtain airdrop coins, and attackers transfer them to

function withdraw(uint _amount) {
balancesAndAmount(balances[msg.sender], _amount);
require(balances[msg.sender] -_amount > 0); 
msg.sender.transfer(_amount);
balances[msg.sender] -= _amount;

}

Figure 5: Integer Overflow attack.

contract Victim{
function withDraw(){

uint amount = userBalannce[msg.sender];
if (amount > 0) {

msg.sender.call.value(amount)();
userBalannce[msg.sender] =0;

}}
}
contract Attacker{

function() payable{
test++;
Victim(msg.sender).call(bytes4(keccak256("withDraw()")));

}
}

Figure 6: Re-entrancy attack.

struct Game {

address player;

uint256 number;

}

Game[] public gamesPlayed;

function shuffle() {

secretNumber = uint8(sha3(now, block.blockhash(block.number-1)) )% 10 ;

}

function play(uint256 number) payable public {

require(msg.value >= betPrice && number <= 10);

Game game;

game.player = msg.sender;

game.number = number;

gamesPlayed.push(game);

if (number == secretNumber) {

msg.sender.transfer(this.balance);

}

shuffle();

lastPlayed = now;

}

Figure 7: Honeypot attack.
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their account to achieve wealth accumulation. +is attack is
relatively common that as long as it is a contract with an
airdrop function, it can make multiple profits. +e first
automated attack was the Simoleon contract. As Figure 9
shows, the contract was designed to give some amount of
ether to initialized an account, so the attacker thinks that we
can create a few more accounts to get rewards, then transfer
all the money to one account. +e attacker write attack the
contract and create many temporary contracts, and call this
function in these contracts.

4.11.Writing of Arbitrary Storage Address Attack. +e attack
of arbitrary memory address writing is a common and
harmful attack in the blockchain system. +e attack can
cause malicious users to write and overwrite any storage
variable in the smart contract. In Ethereum, the state
variables of intelligent contracts will be stored in the
storage area, which is an important and open contract
storage space. Generally speaking, contract developers
will set strict access control to the global variables stored
in the storage area to ensure the security of contracts.
Storage key-value pair mapping is used to store data. If the
user can arbitrarily control the key value of storage when
writing, he or she can modify any storage variable value,
so as to avoid all the related detection operations in the
contract that uses the state variable value to check the
authority, and thus achieve the purpose of improving the
authority. In addition, because the attacker can use this
vulnerability to destroy the contract storage structure, and
perform any variable overwriting operation, such as
overwriting the value of the state variable storing the
address of the contract owner, this may cause abnormal
execution of contract functions, freezing of funds, and
other hazards. Since the required guard is invalid, the
contract owner can try to underflow the array size by
executing the code of Figure 10 when the array length
bonusCodes is 0.+erefore, we can write to any location in
the storage arbitrarily.

4.12.Attacks ofNetworkLayer. +e network layer is the most
basic technical architecture in the blockchain system. It
encapsulates the blockchain system’s networking methods,
message dissemination mechanisms, authentication mech-
anisms, etc., so that the blockchain has decentralized and
nontamperable characteristics. But these features also

provide convenience for attackers who can easily launch a
DoS attack. +e purpose of the attack is to make users
temporarily or permanently unable to use these services
provided by the smart contract.

4.13. Gas Exhaustion Denial of Service Attack. According to
the design of Ethereum, when the smart contract is deployed
or the function in the smart contract is called, the execution
of the contract code needs a certain amount of gas to ensure
that the calculation is completed completely. At the same
time, the Ethereum system limits the maximum total
amount of gas consumed by each block, and the total
amount of gas of all transactions in the block cannot exceed
the maximum total amount of gas in this block. Once an
operation in an intelligent contract consumes a lot of gas,
resulting in the consumed gas value reaching the maximum
total amount of gas in the block, the operation will not be
successfully executed, and all processes depending on the
operation will fail, so the contract cannot normally complete
other functions, resulting in a denial of service state. As
Figure 11 shows, transferring money to everyone at once is
likely to result in reaching the gas limit of ethereum blocks.
Usually, this denial of service attack occurs when a contract

mapping (address => uint) balances;

event Transfer(address indexed _from, address indexed _to, uint256 _value);

function transfer(address to, uint amount) public returns(bool success) {

if (balances[msg.sender] < amount) return false;

balances[msg.sender] -= amount;

balances[to] += amount;

emit Transfer(msg.sender, to, amount);

return true;

}

Figure 8: Short URL attack.

function transfer(address _to, uint256 _amount) returns (bool success) {
initialize(msg.sender);
if (balances[msg.sender] >= _amount

&& _amount > 0) {
initialize(_to);

} else {
return false;

}
}
function initialize(address _address) internal returns (bool success) {

if (_totalSupply < _cutoff && !initialized[_address]) {
initialized[_address] = true;
balances[_address] = _airdropAmount;
_totalSupply += _airdropAmount;

}
return true;

}

Figure 9: Airdrop hunting attack.

function PopBonusCode() public {
require(0 <= bonusCodes.length);
bonusCodes.length--;

}
function UpdateBonusCodeAt(uint idx, uint c) public {

require(idx < bonusCodes.length);
bonusCodes[idx] = c;

}

Figure 10: Writing of arbitrary storage address attack.
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developer does not consider the block gasLimit and intro-
duces the operation of modifying dynamic data structure
variables such as arrays whose size will change with time.
After a block is mined, an attacker can issue multiple
transactions at a higher gas price immediately, and then use
the above operations of the contract to consume the gas limit
of the whole block, so that the block does not contain any
other transaction before a certain time, thus preventing
other users from using the functions of the contract
normally.

5. Security Protection Schemes

In this section, we propose the protection schemes against
the ten attacks mentioned in the previous section.+e details
follow.

5.1. Protection Schemes of the Application Layer. We can
prevent the replay attack in the following ways: (1) Avoiding
using the transferProxy function and using a more secure
signature method. (2) Adding variables such as nonce,
timestamp, etc. +e nonce generation algorithm does not
adopt the design of self-increment from 0 to avoid the same
value as other scenarios. (3) Adding address (this) in kec-
cak256(). (4) Adding chainID, which is the blockchain’s
name.

To prevent the false top-up attack, we judge not only
transaction success but also whether the balance of the top-
up wallet address increases accurately. +is judgment can
be made through the Event log. Many centralized ex-
changes, wallets, and other service platforms obtain the
transfer amount and judge the accuracy of the transfer
through Event logs. However, we need to pay special at-
tention to the evil situation of the smart contract, because
the Event can be written arbitrarily, and it is not a man-
datory default option that cannot be tampered with. +e
required and asserted methods can also be used that an
exception will be thrown directly to interrupt the execution
of the subsequent instructions of the contract when the
conditions are not met.

+e protection of transaction order dependence attack is
a very complicated process. For the ERC20 transaction order

dependence attack that happened once, it only needs the
contract developers to pay attention to this problem and
follow the best programming practices. For the attack sce-
nario constructed in this example, this problem is not the
problem of the contract developer, but the problem of the
Ethereum system itself. At present, the better solution is to
confuse transactions, such as hiding transactions as internal
transactions, and so on.

5.2. ProtectionSchemesofContractLayer. For the problem of
integer overflow, we can consider the results of each step by
setting up a complete inspection mechanism, but this
method is difficult and cumbersome, and it is not universal.
+erefore, OpenZeppelin provides SafeMath [32] in an
intelligent contract function library, which can effectively
prevent integer overflow. +ere are two ways to use the
SafeMath library. +e first one is to use the library functions
directly, such as SafeMath.add(a,b). +e other is that library
functions can be called after using SafeMath for unit. For
example, a.add(b) means that add(a,b) in safemath library
has been executed.

For the protection of re-entrancy attack, the most
fundamental solution is to update all the states that should
be changed in advance before the transfer, instead of
updating them after the transfer, which depends on the
smart contract developers to follow the best practices. In
addition, it is also an idea to use other transfer methods
instead of the msg.sender.call.value() function. For the
designed attack scenarios, we use these two methods to test
them, respectively. For the first method, we put the change
in account balance before the transfer, and then judge
whether the transfer is successful or not, and if the transfer
is not successful, restore the balance of the user’s account.
In this way, the code re-entrancy attack is successfully
prevented, and the protection scheme is effective. For the
second scheme, we use the transfer() function to replace the
msg.sender.call.value() function, which can also prevent
the re-entrancy attack. +e above two schemes can well
prevent a re-entrancy attack, but the best scheme is the first
one, which updates the status first and then transfers
money.

Honeypot contracts are diverse and unpredictable. For
the CryptoRoulette attack, we can clearly use memory or
storage for variables. We can also use the new version of the
compiler with version 0.5.0 and later where this problem has
been solved by the system because smart contracts with
uninitialized storage variables cannot be successfully com-
piled. Finally, we remind everyone that some people use
Ethereum smart contracts to cheat. +ey fully figure out the
psychology of some people’s greed for small profits, and
throw out some seemingly handy bait, then run away after
having enough users. Because these creators spend for fees to
create these contracts, they have a purpose that putting a
certain amount of ether can get all the balance of the ac-
count, so it is definitely arbitrage. Publishing the source code
on Github also uses various tricks to make people not find
loopholes in a short time, thus encouraging users to enter the
trap.

address public owner;
address[] investors;
uint[] investorTokens;
function invest() public payable {

investors.push(msg.sender);
investorTokens.push.(msg.value * 5);

}
fuction distribute() public {

require(msg.sender == owner);
for(uint i = 0, i < investors.length; i++) {

transferToken(investors[i],investorTokens[i]);
}

}

Figure 11: Gas exhaustion denial of service attack.

8 Security and Communication Networks



Short url attack protection only needs the exchange to
increase the address length check at the client. In addition,
for contract developers, the web3 interface used has already
fixed the vulnerability. When users call the contract with
web3, if they find that the data length is insufficient, they
will not add 0 at the end, but add 0 at the beginning of the
field, which effectively prevents the short url attack. In a
word, the protection of this vulnerability mainly depends
on two parts, one is that the client actively checks the
address length, the other is that the parameter format check
is added at the web3 level. Although this vulnerability can
be reproduced at the virtual machine level of Ethereum,
there will be no problem in the actual application scenario
of the blockchain.

To prevent an airdrop hunting attack, we can set per-
mission control for the airdrop function. For example, only
the contract creator can distribute tokens to target addresses.
Or only externally owned accounts can receive airdrop
rewards, and contract accounts cannot participate.

For any memory address write attack, this attack is rare,
and it is often the result of many factors. +erefore, the
protection of this attack can be achieved by the contract
developers following the best practices. In the development
of contracts, developers need to pay attention to dynamic
arrays. Errors in the processing of dynamic arrays may lead
to contract loop-holes in an unobvious way. +erefore, in
unnecessary cases, dynamic array is not used, which can
effectively avoid this attack.

5.3. Protection Schemes of theNetwork Layer. Gas exhaustion
denial of service attack protection also depends on the best
practices of contract developers. +e size of the gas con-
sumed by different instructions is not certain. By debugging
the attack scenario, it is found that the sload instruction was
executed in the loop, consuming 800 gas. However, the
operation with high gas consumption is usually to operate
the data in the storage area, so the contract developer should
try not to operate the data in the storage area in the loop.
Besides, we can also add an end mark of the loop in the
execution.

6. Program Evaluation

6.1. Experiment Setup. +e private Ethereum blockchain is
deployed on Alibaba cloud server, which has 4 processors
with 8GB RAM and 200GB hard Disk, and each processor
has 2 cores. +e server is running with Ubuntu 18.04. Smart
contracts are written by Solidity programming language.

6.2. ExperimentProcesses. Based on the above configuration,
we implemented ten defense methods as mentioned in the
previous section. To analyze their efficiency, we tested time
cost of 50, 100, 150, 200, 250, and 300 transactions. +e
experimental results are shown in Figure 12.

6.3. Result Analysis. In Figure 12, we find the most time-
consuming is the replay attack’s protection scheme, followed

by the short url attack’s protection scheme. +e replay at-
tack’s protection scheme adds signing and signature veri-
fication, which need to perform complex calculations, so it is
the most time-consuming. For the short url attack’s pro-
tection scheme in web3, if the data length is insufficient, it
will add 0 at the beginning of the field. First judge the address
length, if the length is less than 40 bit, then web3 calls a
function to automatically complement the address which is
time-consuming. Even with these two schemes, the time cost
has doubled at most. +e time cost of the other eight
protection schemes is roughly the same as transactions
without them, and can be ignored. Because they either
change the execution order of the code or add a judgment,
they do not bring too much extra cost. All in all, these
protection schemes do not bring much time cost and they
are efficient.

7. Conclusions

+is paper discussed the security threats of the Ethereum
blockchain, the attack scenes of these threats, and their
protection schemes. Ten security attacks were studied at
different levels of Ethereum, which mainly included the
application layer, the smart contract layer, and the network
layer. +e paper presented the corresponding preserved
methods in detail according to their attack principles. In
general, improving the quality of Ethereum smart contracts
can fundamentally prevent attacks. Finally, we evaluate these
protection schemes by experiments.

In the future, on the basis of studying public chain se-
curity, alliance chain security and cross-chain security will
be studied, and security protection schemes for multi-attack
scenarios between cross-chains will be realized. +e auto-
matic attack detection of cross-chain system is also our
important research direction.
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