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Abstract: Knowledge tracing is a crucial task that involves modeling learners’ knowledge levels
and predicting their future learning performance. However, traditional deep knowledge tracing
approaches often overlook the intrinsic relationships among learning features, treating them equally
and failing to align with real learning scenarios. To address these issues, this paper proposes the
multiple learning features, enhanced knowledge tracing (MLFKT) framework. Firstly, we construct
learner–resource response (LRR) channels based on psychometric theory, establishing stronger
intrinsic connections among learning features and overcoming the limitations of the item response
theory. Secondly, we leverage stacked auto-encoders to extract low-dimensional embeddings for
different LRR channels with denser representations. Thirdly, considering the varying impact of
different LRR channels on learning performance, we introduce an attention mechanism to assign
distinct weights to each channel. Finally, to address the challenges of memory retention and forgetting
in the learning process and to handle long-term dependency issues, we employ a bidirectional long
short-term memory network to model learners’ knowledge states, enabling accurate prediction
of learning performance. Through extensive experiments on two real datasets, we demonstrate
the effectiveness of our proposed MLFKT approach, which outperforms six traditional methods.
The newly proposed method can enhance educational sustainability by improving the diagnosis of
learners’ self-cognitive structures and by empowering teachers to intervene and personalize their
teaching accordingly.

Keywords: attention mechanisms; bidirectional long short-term memory networks; knowledge
tracing; learning performance prediction

1. Introduction

In the 21st century, advancements in high-tech information technologies such as
artificial intelligence, big data, virtual reality, blockchain, and the Internet of things have
brought disruptive changes to the field of education. These innovations have paved the
way for the transformation of traditional education into a new paradigm known as smart
education [1], which has greatly enhanced the sustainability of education [2]. E-learning
platforms such as Coursera, Edx, and Khan Academy have gained significant popularity
for sustainable education. However, the quality of learning resources provided by these
platforms varies, resulting in reduced learning efficiency and quality [3]. This situation
deprives learners of personalized services and prevents teachers from offering tailored
learning guidance. Particularly, with the unprecedented rise of online education due to the
COVID-19 pandemic, the need to provide large-scale online education with personalized
learning services has become urgent and essential for sustainable education [4].

Knowledge tracing emerges as a promising solution to address this need. It leverages
the abundant data generated by learners’ online learning journeys to automatically track
their knowledge levels, estimate their progress in acquiring specific knowledge compo-
nents, and accurately predict their performance [5]. Over the past 30 years, knowledge
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tracing has seen significant development, and classical models such as Bayesian knowledge
tracing (BKT) [6] and performance factor analysis (PFA) [7] have been extensively studied.
In 2015, Piech et al. introduced recurrent neural networks (RNN) [8] into the knowledge
tracing task and proposed the pioneering deep knowledge tracing (DKT) model, demon-
strating its effectiveness in performance prediction and opening up new research avenues in
knowledge tracing [9]. The field of knowledge tracing has since made substantial progress.

However, despite the important role of DKT in personalized e-learning services, there
are still several limitations in its development. Firstly, DKT models consider features in a dis-
ordered manner. Existing deep knowledge tracing models that rely on multi-feature analysis
randomly match and characterize different features, overlooking the inherent connections
among them. Secondly, these models treat various learning factors equally. While existing
deep knowledge tracing models consider the influence of multiple features on the learning
process, they either assign equal importance to different features or lack interpretability in
assessing feature significance. Thirdly, there is a lack of interpretable support from the field of
education. Although deep knowledge tracing excels in characterizing learners’ knowledge
states and performance prediction, it treats the diagnostic process as a “black box” and fails to
provide reasonable explanations grounded in educational knowledge.

To address the aforementioned limitations, this paper introduces a comprehensive
approach that incorporates various learner features, resource features, and response fea-
tures, all of which significantly impact the learning process. Grounded in psychometric
theory and considering item response theory (IRT) [10], we argue that learners’ poten-
tial knowledge states are not solely determined by their responses to specific resources.
Instead, they are also influenced by tapping information associated with the resource,
as well as learners’ personal and cognitive attributes. Furthermore, we emphasize that
responses should not be confined to simple right or wrong answers to exercises. Building
upon this perspective, we propose the construction of learner–resource response (LRR)
channels, which serve to expand the scope of item response theory and establish internal
connections among the features. These LRR channels encompass learner features, resource
features, and response features that align with specific educational assumptions. To ensure
seamless integration and association of these LRR channels without introducing unnec-
essary model complexity, we employ stacked auto-encoders to extract low-dimensional
embedding representations, resulting in denser LRR channels. Additionally, we incorporate
an attention mechanism to assign distinct attention weights to individual LRR channels,
enabling deep feature associations while prioritizing crucial information. To further en-
hance interpretability within the educational domain, we introduce the innovative use of
a Bi-LSTM network [11] to model learners’ knowledge states. This architecture not only
excels at handling long temporal dependencies but also accommodates the dual influence
of memory and forgetting factors in the educational context. Consequently, the model
becomes more interpretable within the educational domain. Finally, we present a novel
knowledge tracing framework that accurately models learners’ knowledge and predicts
their performance. By capturing changes in learners’ learning states more precisely, this
framework provides a comprehensive characterization of the entire learning process.

1.1. Research Questions

This paper aims to investigate multiple learning-feature-enhanced knowledge tracing
and address the following specific research questions:
RQ1: How can we quantitatively model the intrinsic associations among learner fea-

tures, resource features, and response features to effectively enhance knowledge
tracing performance?

RQ2: How can we learn deep representations of learner features, resource features, and
response features to develop more accurate models for predicting learning performance?

RQ3: How can we obtain interpretable learning performance prediction results to better
serve educational applications in real-world learning scenarios?
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1.2. Research Motivations

To achieve improved learning representations of multiple learning features and to
provide answers to the research questions stated above, we have undertaken targeted
efforts that distinguish our work from previous studies. The research motivations for this
study are as follows:

1. Incorporating learner features, resource features, and response features based on the
principles of psychometric theory, we construct LRR channels using item response
theory to enhance the intrinsic associations among different learning features.

2. Utilizing stacked auto-encoders, we mine low-dimensional embedding representa-
tions of LRR channels. Moreover, by employing an attention mechanism, we assign
varying weights to each LRR channel during training, allowing the model to focus
more on the crucial channels. This facilitates better fusion and deeper correlation of
learning features.

3. Drawing upon the classical education curve theory, we introduce Bi-LSTM into the
knowledge tracing task. By considering both memory and forgetting factors, Bi-
LSTM takes into account both past and future response information. This allows for
comprehensive consideration of the learner’s memory accumulation and forgetting
degree, which are reflected in the knowledge state.

The subsequent sections of this paper are structured as follows: Section 2 provides
an overview of the related work, highlighting the existing research in the field. Section 3
defines the research problems and introduces key assumptions and definitions that serve as
the foundation for our proposed framework. The details of the multiple learning features,
enhanced knowledge tracing (MLFKT) framework are presented in Section 4, offering
comprehensive insights into its design and functionality. Section 5 presents an elaborate
account of the experiments conducted. Sections 6 and 7 show a detailed analysis and
discussion of the experimental results. Finally, in Section 8, we provide a summary of our
work and offer an outlook on potential future directions in this domain.

2. Related Work

This section provides an overview of the current state of research on knowledge tracing
and highlights the unique contributions of this paper compared to previous work.

2.1. Probabilistic Graph-Based Knowledge Tracing

The concept of knowledge tracing was initially introduced by Corbett and Anderson
in 1994 within the field of intelligent education [6]. Knowledge tracing involves monitoring
the evolving knowledge states of learners in practice, as well as modeling these states and
predicting learners’ performance in subsequent learning interactions. Over the past few
decades, researchers have developed various mathematical and computational models
to tackle knowledge tracing tasks [12]. These approaches encompass a wide range, from
probabilistic models to deep neural networks [13]. Prior to the advent of deep learning in
knowledge tracing, probabilistic graph-based methods enjoyed popularity [14].

The probabilistic graph-based model provides a framework for describing a learn-
ing task that focuses on making inferences about the distribution of unknown variables
using known variables [15]. A typical example of a probabilistic graph-based knowledge
tracing model is the BKT model [6], which utilizes hidden Markov models (HMM) [16]
as a template-based probabilistic graph model to represent the learning process. BKT
is a time-series model with an implicit layer representing the knowledge state and an
observation layer representing performance data. The BKT model assumes three hypothe-
ses: (1) learners’ knowledge states are either mastered or unmastered; (2) learners do not
experience forgetting during the learning process; (3) knowledge points are independent
of each other. However, these hypotheses overly idealize the real learning scenarios of
learners. As a result, several variants of the BKT model have been proposed to address the
limitations arising from these assumptions and improve the prediction accuracy to varying
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degrees. Additionally, personalized learning parameters have emerged as a significant
research direction in probabilistic graph-based knowledge tracing. It is believed that the
prediction accuracy of the probabilistic graph-based knowledge tracing model depends
on its parameters. While traditional BKT fixes four parameters in the prediction process
(initial mastery probability, transition probability, slipping probability, and guessing prob-
ability), the actual learning scenario demonstrates that different learners exhibit distinct
initial mastery probabilities, slipping probabilities, and guessing probabilities. Therefore,
incorporating personalized learning parameters is beneficial for effectively characterizing
the entire learning process of learners and improving prediction accuracy.

2.2. Deep-Learning-Based Knowledge Tracing

The introduction of deep learning [17–20] has brought about rapid advancements in
the field of knowledge tracing [21]. In 2015, Piech et al. pioneered the use of recurrent
neural networks, specifically long short-term memory (LSTM) networks [22], for knowledge
tracing and proposed the DKT model, which revolutionized the representation of learners’
knowledge states and the prediction of their performance [9]. Since then, an array of deep
learning methods has been employed to improve the prediction of learners’ knowledge
states and performance [23]. Numerous advanced knowledge tracing models have emerged
as a result [24–28].

DKT+ [29] introduced regularization terms for reconstruction and waviness to the
loss function of the original DKT model, enhancing consistency in performance predic-
tion. Additionally, the dynamic key–value memory network (DKVMN) [30] models the
relationships between underlying concepts and directly extracts a student’s mastery level
of each concept. Unlike conventional memory-augmented neural networks that employ a
single memory matrix or two static memory matrices, DKVMN utilizes a static key matrix
to store knowledge concepts and a dynamic value matrix to store and update the mastery
levels of corresponding concepts. DKVMN has expanded the new research direction of
knowledge tracing by better capturing the dependency relationships between knowledge
points and by addressing the issue of accurately tracking learners’ mastery of specific
knowledge points [31]. However, the utilization of deep learning in knowledge tracing is
not limited to DKVMN, as more and more deep learning algorithms are being applied to
various methodological aspects of knowledge tracing to better extract and represent the
entire learning process of learners [32–34]. For instance, Wang et al. proposed a learner-
personalized modeling approach based on convolutional neural networks (CNN) [35] for
knowledge tracing tasks [36]. Pandey et al. introduced a method called self-attentive
knowledge tracing (SAKT) for identifying relevant knowledge points from a student’s past
activities and for predicting mastery based on a selective subset of knowledge points [37].
Zhang et al. employed graph convolutional networks (GCN) [38] to capture higher-order
information within the problem technique graph [39]. Nakagawa et al. introduced a knowl-
edge tracing method based on graph neural networks (GNN) [40] that takes into account
the potential graph structure. This approach converts the knowledge structure into a graph,
enabling the transformation of the knowledge tracing task into a time series node and
classification problem within the GNN framework. Various implementations of knowledge
graph structures have been provided as well [41]. While deep learning-based knowledge
tracing exhibits strong performance in predicting learners’ performance and representing
their knowledge states, its interpretability remains limited. Enhancing interpretability
within the knowledge tracing domain poses a challenge for future research scholars.

2.3. Multi-Feature Analysis in Knowledge Tracing

With the rapid advancements in deep-learning-based knowledge tracing, researchers
have recognized certain limitations in traditional deep knowledge tracing methods. These
traditional approaches primarily rely on learners’ answered exercises and their correctness,
disregarding the abundance of interactive information present in real-world learning sce-
narios. Factors such as knowledge point difficulty [26], exercise text [42], learner ability [3],
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response duration time [43], and knowledge associations [44] are often overlooked. As a
result, scholars have endeavored to integrate additional edge features into the traditional
deep knowledge tracing model to enhance its effectiveness [26,45–47]. Liang et al. [48] intro-
duced numerous edge features through extensive feature engineering, randomly matching
and characterizing these features using artificial neural networks, and effectively enhanc-
ing the prediction accuracy of deep knowledge tracing. Cheung et al. [49] developed an
automated system to uniformly process edge features and embed them into the deep knowl-
edge tracing model, eliminating the need for extensive feature engineering and achieving
improved model performance through enhanced input initialization. Distinguishing itself
from previous work, Sun et al. [31] employed the XGBoost algorithm [50] to pre-classify
edge features, while Liu et al. [43] employed principal component analysis [51] to automat-
ically capture feature representations and incorporated an attention mechanism after the
LSTM to assign importance weights to different features. Additionally, Zhang et al. [52]
leveraged heterogeneous networks to emphasize the significance of edge information. They
employed heterogeneous networks to describe the representations of exercises and their
attributes and added an attention mechanism after the RNNs model to determine the
importance weights of different exercises.

Despite the advancements in knowledge tracing through multi-feature analysis, there
remain areas that require further improvement. Firstly, the idea of incorporating these edge
features to enhance the prediction accuracy of deep knowledge tracing in the educational
domain lacks theoretical support. Secondly, there is a need to consider the inherent con-
nections between different types of edge features. Lastly, most studies treat each feature
as equally important, although some have attempted to address this issue by introducing
attention mechanisms. However, these attention mechanisms are typically added after
the RNNs models, primarily to handle long-term temporal dependencies, and their in-
terpretability in terms of the importance of response features is limited. Nevertheless,
multi-feature analysis in knowledge tracing has contributed to the field’s development by
characterizing learners’ real learning processes and improving the predictive capabilities of
deep knowledge tracing models.

3. Preliminaries

This section formalizes the research problem of MLFKT addressed in this paper. It
introduces the definition of the LRR channel and presents two significant hypotheses
within the education domain. For easy reference, Table 1 summarizes the symbols used
throughout the paper.

Table 1. Summary of notations.

Notation Description

Si Sequence of learning interactions for learner i up to moment t
Xi

t Learning interaction of learner i at moment t
FC Learner–resource response channels
N Number of LRR channels
f l , L Learner feature, number of learner features
f e, E Resource feature, number of resource features
f r, R Response feature, number of response features
qt Exercise performed by learners at moment t
rt Learners’ response to a particular exercise at moment t
vt Feature vector of LRR channel at moment t
FN

C Feature vector containing N LRR channels up to moment t
V
′
t Feature vector of LRR channel with attention mechanism weighting at moment t

vatt
t Feature vector with attention weight

rt+1 Predicted learners’ response at moment t + 1
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3.1. Definitions

In this section, we provide five precise definitions of the proposed method, which
builds upon two following educational a priori hypotheses:

Hypothesis 1 (Psychometric theory). The learner’s mental psychological state can be inferred by
observing their external behavior, and this mental state also influences their behavioral performance.

Hypothesis 2 (Item response theory). Learners’ responses and performance on a given resource
are specifically associated with their underlying knowledge structure.

When learners interact with an online learning platform, their interactions generate
learning logs that contain a wealth of information about their responses. These logs
primarily consist of three categories: learner features, resource features, and response
features. Let us define the following:

Definition 1 (Learner features). Learner features are a collection of characteristics related to
learner identity and learning ability. FL represents the set of learner features, which encompasses L
distinct learning features.

Definition 2 (Resource features). Resource features are descriptions of the content and related
attributes of the learning materials used by learners. FE represents the set of resource features,
including E different resource features.

Definition 3 (Response features). Response features represent the interaction characteristics
between learners and learning resources. FR represents the set of response features, comprising R
response features.

FL × FE × FR =
{
( f l , f e, f r)|( f l ∈ FL) ∧ ( f e ∈ FE) ∧ ( f r ∈ FR)

}
denotes the Cartesian

product of the sets of learner features, resource features, and response features.

Definition 4 (Mental knowledge structure). From the above two hypotheses, the external
behavior features, which are learner features, resource features, and response features, are acquired
to model the learner’s knowledge states and thus reflect the learner’s intrinsic knowledge structure.

Based on these hypotheses, we posit that learner features, resource features, and response
features exert influence on the learners’ learning process, and there exists a distinct relationship
among these features. Hence, we introduce the concept of the LRR channel.

Definition 5 (LRR channel). In accordance with the aforementioned educational hypotheses, each
feature set

{
f l , f e, f r

}
in FL × FE × FR that satisfies the hypotheses is defined as an LRR channel.

The total number of such LRR channels is denoted by N, where l ∈ (1, L), e ∈ (1, E), r ∈ (1, R),
and N ≤ (L× E× R).

3.2. Problem Definition

The objective of knowledge tracing is to model the evolution of learners’ knowledge states
and forecast their ability to correctly answer future exercises. In this work, we propose a novel
deep knowledge tracing model that incorporates deep multi-feature fusion. Our model takes
into account various factors that influence the learning process, including learner features,
resource features, and response features. Moreover, it establishes connections between these
features by constructing LRR channels based on educational priors.

Let Si = (Xi
1, Xi

2, · · · , Xi
t) represent the sequence of learning interactions for learner

i up to moment t. Here, i denotes the learner index, Xt denotes the learner’s interaction
at moment t, and Xt comprises N LRR channels. The learner’s response to exercise qt
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at moment t is denoted as rt, with rt = 1 indicating a correct response and otherwise
indicating an incorrect response.

Definition 6 (Learner performance prediction). We aim to predict the probability P(rt+1 =
1|qt+1, Xt) of the learner answering exercise qt+1 correctly at moment t + 1 based on the learner’s
historical learning interactions Si up to moment t.

4. Methods

This paper presents a novel knowledge tracing model framework called MLFKT,
which draws inspiration from previous studies such as BKT [6], DKT [9], DKVMN [30],
SAKT [37], and MDKT [43]. The MLFKT framework aims to enhance the tracing of learners’
knowledge states and to improve the prediction of learning performance by incorporating
multiple learning features.

The MLFKT framework consists of four components: LRR channel construction,
LRR channel feature representation learning, multi-deep fusion of LLR features using an
attention mechanism, and long-term knowledge state tracing using Bi-LSTM. The first
component utilizes learners’ learning logs from online learning platforms to capture fac-
tors that influence learners’ knowledge states and performance. Subsequently, the LRR
channels are constructed. In the feature representation learning phase of LRR channels,
low-dimensional embedding representations of these channels are obtained using stacked
auto-encoders. The multi-deep fusion of LLR features based on the attention mechanism
assigns different weight ratios to different LRR channels to refine the more crucial informa-
tion. For long-term knowledge state tracing, Bi-LSTM is employed to model the learner’s
knowledge state based on their historical learning interactions, effectively addressing the
challenge of long-term dependencies in temporal sequences. Finally, a prediction layer is
designed to forecast the learner’s performance in the next learning interaction. The detailed
implementation of the proposed MLFKT framework is illustrated in Figure 1.

4.1. Construction of the LRR Channels

This subsection consists of two parts: (1) acquisition of learning features and
(2) construction of LRR channels.

4.1.1. Acquisition of Learning Features

Psychometric theory suggests that learners’ inherent potential can be inferred by
analyzing their external responses. The objective of knowledge tracing is to track changes
in learners’ knowledge states based on their historical responses to resources and predict
their subsequent responses. However, traditional knowledge tracing approaches typically
define the external response solely as the learner’s response to an exercise, which does not
fully capture the complexity of real learning scenarios. For instance, learners with longer
response times to a resource may indicate weaker mastery compared to those with shorter
response times. Therefore, in this work, we aim to collect and analyze learners’ learning
logs from online learning platforms, which contain valuable information about learners’
responses to various resources. These logs are divided into three primary categories:
learner features, resource features, and response features, as shown in Table 2. Learner
features encompass personal and cognitive information about the learners, while resource
features include information about the resources and derived information from them.
Response features capture the learners’ behaviors resulting from their interactions with
the resources. These features have a significant impact on tracing changes in learners’
knowledge states and predicting their performance. Thus, in our subsequent work, we
endeavor to incorporate multiple features, including learner features, resource features,
and response features, to enhance the knowledge tracing process.
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Table 2. The summarization of learner features, resource features, and response features.

Type Learning Feature Related Information Description

Learner Features

Grade [53] Personal Information Characteristics of the learner’s
grade level

Ability [3] Cognitive Information Learners’ potential subjects’
abilities

Resource Features
Knowledge points [5] Exercise Information The knowledge contained in

exercises

Difficulty [26] Exercise Information The difficulty of exercises

Response Features

Correctness [21] Behavior Information Learners’ responses to
exercises

Hints [47] Behavior Information Whether the learner sought
official tips

Response Time [43] Behavior Information Time spent by learners
answering

Attempts [54] Behavior Information Times of learner correctly
answering

Deep knowledge tracing models that incorporate multiple learning features have
gained attention for their ability to consider various factors that influence learners’ knowl-
edge states and performance. However, these models often treat these features as randomly
matched or uniformly processed, leading to a lack of interpretability within the educa-
tional domain and overlooking the intrinsic connections between the features. For instance,
KTMFF [26] utilizes a multi-headed attention mechanism to integrate learning features such
as knowledge point difficulty, learner ability, and response duration. While the model is
data-driven and effective, it fails to provide an explanation for the underlying connections
between these different learning features.

Item response theory, on the other hand, suggests that subjects’ responses and perfor-
mance on test items are specifically related to their underlying features, highlighting the
inherent link between features. In order to establish this intrinsic link, we have developed
a LRR channel based on item response theory. However, we believe that the learners’
potential knowledge states are not solely determined by their responses to a given resource.
Instead, they are also influenced by additional tapping information about the resource, as
well as the learners’ personal and cognitive characteristics. Furthermore, the responses
themselves should not be limited to simply correct or incorrect answers to exercises.

4.1.2. Construction of LRR Channels Based on Educational Hypotheses

To enhance the understandability and training effectiveness of the model, we perform
feature engineering on the factors influencing learners’ knowledge states and performance
before constructing LRR channels. This process involves transforming these features into
categorical features, which we refer to as class features. The main objective of class features
is to discretize the input learner features, resource features, and interaction features into
numerical intervals, simplifying the complexity of the model input.

For instance, consider response duration time, which is a continuous variable. By
dividing it into intervals and categorizing it into six classes, we create class features for
response duration time. This approach aligns with the actual learning scenarios. During
data collection, when recording response times of learners answering exercises, we observe
significant differences in response times, ranging from 10 to 100 s. However, a mere 1 s
difference between a learner who took 10 s and another who took 9 s may not necessarily
indicate varying levels of knowledge mastery. There might be an underlying similarity
between them. Therefore, we consider response times within specific ranges as categories
and transform them into class features. Similar treatment can be applied to the remaining
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features listed in Table 2 to transform them into class features. This approach effectively
reduces the complexity of the input learning features, facilitating a more manageable
representation of the educational data.

Guided by the two educational a priori hypotheses derived from psychometric the-
ory and item response theory, we select feature sets from the Cartesian product of the
transformed learner features, resource features, and response features. These feature sets
represent individual LRR channels, aligned with the hypotheses.

By leveraging feature engineering and the categorization of features into class features,
we simplify the representation of complex input features, ensuring a more interpretable
and effective learning model. These steps contribute to the overall understandability and
training efficiency of the model, aligning with educational theories and enhancing its
applicability in real-world learning scenarios.

4.2. Feature Representation Learning of LRR Channels

As discussed in the previous subsection, the LRR channels proposed in this paper
incorporate a diverse range of features that influence learners’ knowledge states and perfor-
mance. However, these LRR channels often contain redundant and irrelevant information
at the feature level. Additionally, as the number of features increases, problems such as
high-dimensional input feature vectors, longer training times, increased parameters, and
higher computational costs arise. These challenges can make it difficult for the model to
converge to the global optimum and can adversely affect prediction accuracy. Therefore,
finding an effective approach to extract low-dimensional embeddings from LRR channels
and increase their density is crucial.

The introduction of stacked auto-encoders (SAEs) provides an ideal solution to this
problem. An auto-encoder is an unsupervised feature learning algorithm that trains
an artificial neural network to reconstruct the input data itself. It generates a compact
representation of the main features contained in the input data. A stacked auto-encoder
consists of multiple individual auto-encoders, allowing for the learning of embedding
feature vectors at different dimensions and levels from complex and high-dimensional
input data. The training process of stacked auto-encoders consists of two steps: pre-training
and fine-tuning. In the pre-training step, each individual auto-encoder is trained using
unsupervised methods. The output of one layer becomes the input for the next layer, and
this process continues until all the hidden layers are trained. The fine-tuning step involves
training the entire stacked auto-encoder and optimizing the weights and biases using error
back-propagation. In summary, each hidden layer in the stacked auto-encoder provides
an alternative representation of the input feature values, capturing different dimensions
and levels of embedding feature vectors from complex and high-dimensional input data
without losing important information. Furthermore, it reduces the dimensionality of the
input data, enabling deep feature extraction. Therefore, we utilize stacked auto-encoders to
obtain low-dimensional embedding representations for each LRR channel.

Before being fed into the SAE, the LRR channels undergo cross-feature processing. In
the 2010 KDD Cup competition [55], it was observed that cross-featured representations
improved model prediction performance, while separate feature representations showed a
decline in performance. The cross-feature processing method is defined as follows:

C(
{

f l
t , f e

t , f r
t

}
) = f l

t + (max( f l) + 1)× (max( f e) + 1)× f r
t (1)

where
{

f l
t , f e

t , f r
t

}
represents the interaction among learners at moment t within an LRR

channel composed of learner feature l, resource feature e, and response feature r, which
adheres to a specific educational domain hypothesis. For instance, if f l

t = at, f e
t = qt, f r

t = rt,
then f l

t denotes the learner’s ability at moment t, f e
t represents the learner’s practice

response at moment t, f r
t indicates whether the learner answered correctly at moment

t, max( f l) signifies the maximum value among the data for all ability features, max( f e)
denotes the maximum value among the data for all practice features, and C(·) symbolizes
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the crossover feature. Subsequently, the LRR channels undergo one-hot encoding to
produce a fixed-length vector, which represents a feature vector of LRR channels following
the educational domain rules encompassing learner feature l, resource feature e, and
response feature r. This encoding process is achieved using the following formula:

vt = O(C(
{

f l
t , f e

t , f r
t

}
)) (2)

Here, O(·) represents the one-hot encoding, and vt represents the feature vector that
contains the LRR channels formed by the learner’s interaction with the exercise at moment t.

In the knowledge tracing task, the learner interacts with the exercise from moment
1 to t, resulting in the generation of feature vectors V = (F1

C, F2
C, . . . , FN

C ) that consist of N
different LRR channels. Specifically, FN

C = (v1, v2, . . . , vt)N represents the feature vector for
the Nth LRR channel from moments 1 to t. These feature vectors, containing distinct LRR
channels, are then individually fed into the SAEs to extract low-dimensional embedding
representations of these LRR channels, thereby enhancing the density of each LRR channel.
We will use FN

C as an example to illustrate the functioning of the SAE.
The first auto-encoder of the SAEs takes FN

C as input and produces the output ỹN

using the following equations:

hN1 = tanh(WN1FN
C + bN1)

ỹN = tanh(WT
N1hN1 + bN2)

(3)

Here, hN1 represents the hidden layer of the first encoder, WN1 is the weight matrix
connecting the input layer and the hidden layer of the first encoder, and bN1 and bN2 are
the corresponding bias vectors. The activation function tanh is used in these equations.

The feature ỹN obtained from the first auto-encoder serves as the input for the second
auto-encoder of the SAE. The output z̃N is generated by the second auto-encoder using the
following equations:

hN2 = tanh(WN2ỹN + bN3)

z̃N = tanh(WT
N2hN2 + bN4)

(4)

In these equations, hN2 represents the hidden layer of the second encoder, WN2 is the
weight matrix connecting the output layer of the first encoder and the hidden layer of
the second encoder, and bN3 and bN4 are the corresponding bias vectors. The activation
function tanh is used as well.

Since the SAE is trained jointly with the Bi-LSTM as mentioned later, fine-tuning the SAE
weights increases the number of parameters and thus provides a better fit. Therefore, the SAE
is pre-trained separately. The weights of the parameters are updated using the Adam method,
and the objective function for optimization is the squared reconstruction error:

l =
1
2

T

∑
t=1

(z̃N − vN
t )2 (5)

Here, vN
t represents the actual output, and z̃N represents the expected output. The

output of the hidden layer of the second auto-encoder, obtained from the trained SAE,
serves as the low-dimensional embedding representation vector of the LRR channel.

4.3. Multi-Deep LLR Features Fusion Based on Attention Mechanism

Upon reviewing existing studies on knowledge tracing using multi-feature analysis,
we observed that most researchers either treat each feature equally or introduce an atten-
tion mechanism after modeling the learner’s interaction sequence. However, the former
overlooks the varying degrees of influence that different features may have on learner
performance, while the latter lacks interpretability regarding feature importance. Addi-
tionally, the inclusion of an attention mechanism often primarily increases the temporal
dependence between sequential elements, without directly extracting the importance of
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different features. In this paper, to enhance the specificity and effectiveness of LRR channels,
we propose incorporating an attention mechanism to assign different weights to each LRR
channel before inputting them into the RNNs model. This approach allows the model to
concentrate on crucial information and to learn to absorb it fully, thereby facilitating the
comprehensive integration and deep correlation of features.

As described in the preceding subsection, the low-dimensional embedding representation
vector of LRR channels, obtained through SAE, serves as the input for the attention mechanism.
Consequently, the input feature vector for the attention mechanism at time t is given by:

V′t = W2Vt + b2 = (v1′
t , v2′

t , · · · , vN′
t ) (6)

Here, Vt represents the feature vector containing N LRR channels generated at time t,
and V′t = (v1′

t , v2′
t , · · · , vN′

t ) denotes the input feature vector for the attention mechanism,
encompassing N LRR channels at time t. W2 = (W12, W22, · · · , WN2) signifies the pre-
trained weight of SAE, while b2 = (b12, b22, · · · , bN2) represents the corresponding bias
vector. Notably, since SAE is trained separately, the weights employed for constructing the
attention mechanism feature vectors remain unchanged and rely on the pre-trained weights.

Following the feature input, the attention distribution αt for the LRR channel is
computed as:

αt = σ(Uatt × tanh(Watt[v1′
t , v2′

t , · · · , vN′
t ] + batt)) (7)

Here, Watt corresponds to the weight of the attention module, while batt represents the
associated bias vector. σ and tanh denote the activation functions.

Upon obtaining the attention distribution for the LRR channel, the input feature vector
of the attention mechanism is encoded to produce the feature vector vatt

t carrying the
attention weights:

vatt
t = αt[v1′

t , v2′
t , · · · , vN′

t ] + [v1′
t , v2′

t , · · · , vN′
t ] (8)

4.4. Long-Term Knowledge Status Tracing Based on Bi-LSTM

The conventional deep knowledge tracing method relies on RNN, which effectively
handles temporal data and has been widely employed by researchers in knowledge tracing
tasks. However, RNN encounters difficulties when dealing with information spanning long
time intervals. During training, it is susceptible to issues such as gradient disappearance
and gradient explosion. To overcome these limitations, researchers have turned to LSTM, a
variant of RNN. LSTM addresses the problem of long-term dependency by incorporating
three carefully designed gates: the forgetting gate, the input gate, and the output gate. The
forgetting gate determines the importance of information from the previous hidden layer
state, the input gate determines the importance of information from the current state, and
the output gate determines the next hidden layer state. Consequently, researchers have
increasingly utilized LSTM and other RNN variants such as GRU in knowledge tracing
tasks to predict learners’ future performance.

However, online learning platforms often accumulate learners’ learning logs over ex-
tended periods, resulting in exceedingly long sequences of learning interactions that surpass
the capabilities of LSTM to handle prolonged time sequences. Moreover, existing approaches
only consider the influence of memory factors accumulated during past learning on learners’
future performance, overlooking the dynamic nature of learners’ knowledge state and per-
formance, shaped by both memory and forgetting factors. According to the learning curve
theory [56], continuous practice enables learners to eventually master the relevant knowledge.
German psychologist Ebbinghaus discovered that forgetting begins immediately after learning
and increases over time. Therefore, the occurrence of forgetting during the learning process
significantly affects learners’ knowledge states and performance.

This challenge can be addressed by leveraging Bi-LSTM [22], which is an extension of
traditional LSTM. As shown in Figure 1, the Bi-LSTM introduced for modeling consists
of two LSTMs superimposed on each other: one processes the input sequence in the
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forward direction, while the other processes it in the backward direction. The output is
determined by combining the states of both LSTMs. At each time step, six distinct weights
are employed, corresponding to the input to the forward and backward hidden layers
(W1, W3), the hidden layer to itself (W2, W5), and the forward and backward hidden
layers to the output layer (W4, W6). Notably, there is no information flow between the
forward and backward hidden layers, ensuring an acyclic unfolding graph. As shown in
Figure 1, the forward layer is computed in the forward direction from time steps 1 to t, with
the output of the forward hidden layer saved at each time step. Similarly, the backward
layer calculates the output of the backward hidden layer by traversing the time steps from
t to 1. Finally, the results of the forward and backward layers at corresponding time steps
are combined to obtain the final output.

We select bidirectional LSTM to model learners’ knowledge states and predict their
future performance for two primary reasons:

1. Learners’ learning processes are gradual and evolve slowly, necessitating a compre-
hensive tracking of their knowledge states that takes into account the influence of
time series on prediction results. Bidirectional LSTM exhibits heightened sensitivity
to long-term temporal information.

2. Learning processes are influenced by both memory and forgetting factors. While
considering the impact of learners’ memory accumulation on knowledge states, as
reflected by past response information, it is crucial to also account for the influence
of learners’ forgetting degree on knowledge states, as indicated by forward response
information. Bidirectional LSTM effectively leverages both past and forward response
information, better characterizing learners’ learning processes.

In the proposed approach, the feature vector vatt
t containing attention weights serves as

the input to the Bi-LSTM model. The model is trained to effectively capture the learner’s knowl-
edge state and to predict their response rt+1 at moment t + 1 through the following steps:

4.4.1. Processing of the First Layer

At moment t, the input to the first layer of the LSTM model determines the handling
of information:

Step 1: Identify information to discard:

et = σ(Ee · [ht−1, vatt
t ] + me) (9)

Step 2: Determine values to update:

it = σ(Ei · [ht−1, vatt
t ] + mi) (10)

Step 3: Decide which information to update:

Ũt = σ(EU · [ht−1, vatt
t ] + mU) (11)

Step 4: Update the cell state:

Ut = et ⊗Ut−1 + it ⊗ Ũt (12)

Step 5: Output information related to the learner’s knowledge acquisition:

gt = σ(Eg · [ht−1, vatt
t ] + mg)

h1
t = gt · tanh(Ut)

(13)

In the above equations, Ee, Ei, EU , Eg represent weight matrices, and me, mi, mU , mg
correspond to bias vectors. The activation functions σ and tanh are employed.
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4.4.2. Processing of the Second Layer

Subsequently, the output from the first layer is passed to the second layer of the LSTM
model to obtain the learner’s knowledge mastery output:

e′t = σ(Ee′ · [ht−1, vatt
t ] + me′)

i′t = σ(Ei′ · [ht−1, vatt
t ] + mi′)

Ũ′t = σ(EU′ · [ht−1, vatt
t ] + mU′)

U′t = e′t ⊗U′t+1 + i′t ⊗ Ũ′t
g′t = σ(Eg′ · [ht−1, vatt

t ] + mg′)

h2
t = g′t · tanh(U′t)

(14)

Similarly, Ee′ , Ei′ , EU′ , Eg′ are weight matrices, and me′ , mi′ , mU′ , mg′ represent bias
vectors. The activation functions σ and tanh are utilized.

The learner’s final knowledge mastery is obtained by considering the knowledge
mastery outputs from both layers of the LSTM model. Thus, the potential knowledge
mastery formed by the learner’s past learning trajectory at moment t can be expressed as:

ht = [h1
t , h2

t ] (15)

Once the learner’s knowledge mastery is acquired, the prediction of the learner’s
response r′t+1 is accomplished by integrating the learner’s interaction with the provided
resource at moment t + 1. This is achieved using the following equation:

r′t+1 = σ(ExyXt+1 + Ehyht + mhy) (16)

Here, Exy and Ehy denote weight matrices, and mhy represents the corresponding bias
vector. The activation function σ is applied to produce the final predicted response.

4.5. Optimization and Training

The objective of the model is to predict the performance of the next interaction, and to
achieve this, the target prediction is extracted and the weights are updated using stochastic
gradient descent. The loss function L is defined based on the predicted output r′t and the
target output rt as follows:

L = −
T

∑
t=1

(r′t log rt + (1− r′t) log (1− rt)) (17)

To ensure smoother prediction results, l1 and l2 regularization terms are added to the
loss function. The modified loss function L′ is obtained by incorporating these regular-
ization terms. The coefficients of the two regularization terms are denoted by λ1 and λ2,
respectively. The regularization terms are defined as follows, and the optimization process
of the objective function is illustrated in Algorithm 1.

L′ = L + λ1l1 + λ2l2

l1 =
∑T−1

t=1 ||r′t+1 − r′t||1
T − 1

l2 =
∑T−1

t=1 ||r′t+1 − r′t||22
T − 1

(18)
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Algorithm 1: Optimization process of proposed MLFKT framework with the
refined loss function

Input: Input: learning interaction sequence S
1 Initialization: weights Wl1 , Wl2
2 for e = 1: E (E = epoch) do
3 Learning rate η decreases to 1/10 of the original η per 30 epochs.
4 for t = 1: T (T = samples/batch size) do
5 Calculate the overall loss:

L′ = L + λ1l1 + λ2l2
L = −∑T

t=1(r
′
t log rt + (1− r′t) log (1− rt))

l1 =
∑T−1

t=1 ||r
′
t+1−r′t ||1

T−1

l2 =
∑T−1

t=1 ||r
′
t+1−r′t ||22

T−1

6 Compute the backpropagation error: ∂L(t)
∂W .

7 Update the parameters:Wl1(t + 1)←Wl1(t)−
ηλ1

n sgn(Wl1(t))− η
∂L(t)

∂Wl1
(t)

Wl2(t + 1)←Wl2(t)− η( ∂L(t)
∂Wl2

(t) +
λ2
n Wl2(t))

8 end
9 end

10 Return: Wl1 , Wl2

5. Experiments

This section presents the evaluation of the learning performance prediction and in-
terpretability achieved by our proposed MLFKT framework. Additionally, we discuss
potential applications of our method in the field of smart education.

5.1. Experimental Datasets

Two datasets were utilized in this study: the publicly available ASSISTment2009
dataset (https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
(accessed on 26 November 2022)) and the SSAI dataset provided by the Squirrel AI Intelli-
gent Adaptive Online Learning Platform (https://www.songshuai.com/ (accessed on 26
November 2022)). The ASSISTment2009 dataset originates from the “ASSISTments Skill
Builder” problem set, which is a component of the ASSISTments intelligent learning system
established in the United States in 2004. Due to its collection period from 2009 to 2010, it
is commonly referred to as ASSISTment2009–2010. On the other hand, the SSAI dataset
is obtained from the Squirrel AI Intelligent Adaptive Online Learning Platform, focusing
on learners’ interactions with middle school mathematics exercises. The fundamental
characteristics of the ASSISTment2009 dataset and the SSAI dataset are summarized in
Table 3. The other input learning features can be grouped into learner features, resource
features, and response features, thus allowing for similar feature processing methods.

Table 3. Statistical summaries of ASSISTment2009 dataset and SSAI dataset. A check mark indicates
that this information is included.

Basic Information ASSISTment2009
Dataset SSAI Dataset

Number of learner–exercise interactions 112,115 37,416

Number of knowledge 31 110

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
https://www.songshuai.com/
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Table 3. Cont.

Basic Information ASSISTment2009
Dataset SSAI Dataset

Number of students 2626 9345

Learner Features
Grade X

Ability X

Resource Features
Knowledge points X X

Difficulty X

Response Features

Correctness X X

Hints X X

Response Time X X

Attempts X

Furthermore, this paper employed several preprocessing techniques on the two
datasets to facilitate their utilization in the model. Firstly, any missing data pertaining to
learners’ behavior in both datasets were replaced with zeros to enable subsequent data cod-
ing. Secondly, interactions between learners and exercises that occurred three times or less
were excluded from the dataset since the analysis focuses on temporal order. Additionally,
any inconsistent or illogical data points, such as correctness feature values deviating from 0
or 1, were removed. Finally, duplicate data points present in both datasets were eliminated.

In the case of the ASSISTment2009 dataset, it encompasses various features including
knowledge points, correctness, attempts, hints, response time, and ability. Among these, the
number of attempts feature and the response time feature have wide value ranges, poten-
tially introducing complexity to the model. Consequently, these features were transformed
into class features. The highest recorded number of attempts in the ASSISTment2009
dataset was 3825, leading to the division of the attempts feature into three categories: 0 for
no attempts, 1 for a single attempt, and 2 for more than two attempts. Initially measured
in milliseconds, the response time feature in the ASSISTment2009 dataset was converted
to seconds. Data points exceeding the threshold of 400 s were excluded from the dataset.
Subsequently, the data underwent Z-Score distribution to attain a standardized normal
distribution. Finally, the data were converted into class features. Values below −0.8 were
classified as 0, values between−0.8 and 0.6 as 1, values between−0.6 and 0 as 2, and values
greater than 0 as 3. The hints feature in the ASSISTment2009 dataset indicates the number
of times learners accessed hints and, since the data values range exclusively from 0 to 10,
this feature was more appropriately treated as a class feature. The ability feature in the
ASSISTment2009 dataset was derived from an analysis employing the three-parameter IRT
model. Originally spanning from −4 to 4, the feature was divided into seven categories,
each representing a unit increment, resulting in a categorical representation.

Regarding the SSAI dataset, it encompasses knowledge points, correctness, difficulty,
hint, response time, and ability features. The processing of response time features followed
the same steps as applied to the ASSISTment2009 dataset. The view prompt feature in
the SSAI dataset indicates whether learners viewed a specific prompt or not, resulting
in two possible values: 1 for viewed and 0 for unviewed. The difficulty feature values
range from 0 to 9, making it suitable for categorical representation. Similar to the ASSIST-
ment2009 dataset, the ability feature in the SSAI dataset was also analyzed utilizing the
three-parameter IRT model. Additionally, the knowledge points feature in the SSAI dataset
was originally recorded in a character format but was converted to an integer type for
improved data processing.
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5.2. Baseline Models for Comparison

The evaluation encompasses three aspects: the effectiveness of learner–resource re-
sponse channels, the effectiveness of a stacked auto-encoder and attention mechanism for
representation learning, and the effectiveness of bidirectional LSTM for long-term model-
ing. Additionally, the proposed models are compared with six state-of-the-art methods:
Bayesian knowledge tracing (BKT) [6], deep knowledge tracing (DKT) [9], DKT+ [29],
dynamic key-value memory network (DKVMN) [30], self-attentive knowledge tracing
(SAKT) [37], and multiple feature deep knowledge tracing (MDKT) [43].

The following baseline models are considered:

• BKT [6]: The BKT model aims to capture students’ evolving knowledge state during
knowledge acquisition. It involves monitoring learners’ knowledge states over time
and predicting their performance in subsequent learning interactions.

• DKT [9]: The DKT model explores the use of recurrent neural networks (RNNs) to
model student learning. It offers the advantage of not requiring explicit encoding
of human domain knowledge and enables the representation of more complex
student knowledge.

• DKT+ [29]: The DKT+ model enhances the original DKT model by introducing
regularization terms corresponding to reconstruction and waviness in the loss function.
This regularization improves the consistency in prediction.

• DKVMN [30]: The DKVMN model leverages the relationships between underlying
concepts and directly outputs a student’s mastery level for each concept. It utilizes a
static key matrix to store knowledge concepts and a dynamic value matrix to store
and update the mastery levels of the corresponding concepts.

• SAKT [37]: The SAKT model aims to identify the relevant knowledge points from a
student’s past activities based on the given knowledge points and predicts mastery
accordingly. It effectively handles data sparsity issues, as predictions rely on a limited
set of past activities rather than relying solely on RNN-based methods.

• MDKT [43]: The MDKT model fully utilizes both student behavior features and
exercise features. It combines the attention mechanism with the knowledge tracing
model. Initially, machine learning is employed to automatically capture feature
representations. Then, a fusion attention mechanism based on the recurrent neural
network architecture is used for predicting student performance.

5.3. Evaluation Metrics

Knowledge tracing involves predicting learners’ performance and encompasses both
classification and regression aspects. In this paper, we utilize two evaluation metrics to
assess the prediction performance of the models: area under the curve (AUC) and root
mean square error (RMSE).

AUC is a widely adopted and reliable metric in classification problems. In this study,
AUC represents the accuracy of the model’s predictions, with correct learner responses
considered as positive samples and incorrect responses as negative samples. The AUC
value ranges from 0 to 1, where 0.5 indicates random prediction, while higher values
indicate more accurate predictions.

For the regression aspect of the prediction task, we employ RMSE,
a commonly used metric for regression problems. RMSE provides a straightforward

and interpretable measure of prediction performance without requiring adjustments based
on specific application scenarios. In our experiments, a smaller RMSE value indicates better
prediction performance, with values closer to 0 reflecting higher accuracy in predictions.
The calculation of RMSE is as follows:

RMSE(yi, ŷi) =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (19)
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Here, m represents the size of the test dataset, yi is the true value of the student’s
answer, and ŷi is the predicted value of the student’s answer.

5.4. Implementation Details

The experimental setup involves several development platforms and tools, includ-
ing Tensorflow, a deep learning framework, Scikit-learn, a machine learning algorithm
library, and Anaconda, a Python distribution with integrated scientific computing pack-
ages. Python was utilized for experiment design and implementation. The hardware
specifications and scientific computing packages used are presented in Table 4. The main
development environments employed in this experiment consisted of Windows 10, AMD
Ryzen Threadripper 2950X 16-Core Processor, 32 GB RAM, GTX 1080Ti graphics card,
Tensorflow 1.9, and Python 3.5.

Table 4. Software and hardware setup of the experiments.

Configuration Environment Configuration Parameter

Operating System Windows

Memory 8 GB

Programming Language Python 3.5

Deep Learning Framework Tensorflow 1.9

Python Libraries Numpy, Pandas, Matplotlib

To identify the most effective hyperparameters, we conducted numerous experiments
and empirically determined their optimal values. The optimal hyperparameters of these
experiments can be found in Tables 5 and 6. The selection of these specific platforms,
tools, and hardware configurations was guided by their compatibility, performance, and
suitability for deep learning tasks. By utilizing these well-established and widely-used
resources, we ensured a robust and reliable experimental setup, enhancing the credibility
and reproducibility of our findings.

Table 5. Setting of SAE experimental parameters.

Batch Size 300

Learning Rate 0.005

Epochs 5

Table 6. Setting of Bi-LSTM experimental parameters.

Batch Size 300

Learning Rate 0.05

Epochs 5 × 40

Hidden Size 200

To ensure avoidance of overfitting when training the SAEs simultaneously with Bi-LSTM,
pre-training of the SAE and fine-tuning of its weights are performed. Table 5 presents some
of the experimental parameters used for training the SAE. The feature descent dimension is
determined based on the original dimension of the features, as elaborated in the subsequent
section. The weights of the parameters are trained using the Adam optimizer method, with
the squared reconstruction error as the optimization objective. After training the SAE, the
output of the second hidden layer, an auto-encoder of the SAE, serves as input to the attention
mechanism, and the weights remain constant at the output due to pre-training. Subsequently,
the output, a feature vector with weights, is fed into the Bi-LSTM model. Table 6 provides



Sustainability 2023, 15, 9427 19 of 28

some of the experimental parameters for training the Bi-LSTM. The model is trained using
the five-fold cross-validation method, employing a dropout rate of 0.5 and a learning rate of
0.05 to mitigate overfitting. The bifurcation entropy is utilized as the training target. Through
experimentation, it was discovered that the Adam optimizer is less effective than the stochastic
gradient descent method within the context of this paper. Therefore, the parameters are trained
using the random gradient descent method.

6. Results

In this section, we present the experiment results and discuss the important findings
from our experiments.

Comparison with State-of-the-Art Methods (RQ1)

To validate the effectiveness of the proposed framework in this paper, we conducted
experiments using the ASSISTment2009 dataset and SSAI dataset. The training and test
sets were divided into an 80% and 20% ratio, respectively, as described in the previous
subsection. The specific experimental equipment and settings were also detailed earlier.
All experiments were performed with five-fold cross-validation, and the final results were
obtained by averaging the outcomes. The evaluation of experimental results was based on
AUC and RMSE metrics, as explained in the previous subsection.

Previous studies on knowledge tracing have demonstrated that the DKT model with
LSTM as the core model outperforms the DKT model with RNN and its variant GRU in
terms of prediction accuracy.

Therefore, in this paper, we adopted the DKT model with LSTM as the benchmark
model for comparison with the proposed framework. The comparative results are presented
in Table 7 and Figure 2.

As shown in Table 7, our proposed framework outperformed other classical knowledge
tracing models in both evaluation metrics on the ASSISTment2009 dataset and SSAI dataset.
This superiority highlights that our framework excels in predicting learner performance,
benefiting from the consideration of multiple learning factors. Additionally, by constructing
LRR channels to establish connections between features, employing SAE and attention
mechanisms to represent these channels, and employing Bi-LSTM to model long time-series
interaction sequences, we better characterize the learning process.

As shown in Figure 3, after five epochs of model training, the training and testing AUC
values of the proposed method and MDKT exhibit similar performance, indicating that both
algorithms converge and achieve relatively good results. However, there is a notable disparity
between the training AUC of DKT and its testing AUC. Additionally, the proposed method
converges with DKT after 15 epochs of training, while MDKT converges after 10 epochs.
These findings suggest that the training complexity of the proposed method is comparable to
DKT and slightly weaker than MDKT, but it remains within an acceptable range.

Table 7. The prediction performance of the proposed method is compared with six state-of-the-art
methods on two real datasets. Bolded values indicate the best performers, and underlined ones
indicate the previous best performers.

Model
ASSISTment2009 SSAI

AUC RMSE AUC RMSE

BKT 65.18% 0.4982 57.23% 0.5611

DKT 77.45% 0.4169 62.15% 0.4838

DKT+ 66.78% 0.5198 60.02% 0.5411

DKVMN 78.06% 0.4170 64.79% 0.4791

SAKT 85.86% 0.4644 79.80% 0.4050

MDKT 87.36% 0.3606 77.57% 0.4279

Proposed MLFKT 93.92% 0.3118 88.81% 0.3659
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Figure 2. The proposed MLFKT framework was compared with six state-of-the-art methods. In this
paper, six state-of-the-art KT methods were replicated, and experiments were conducted on two real
datasets and were evaluated using two metrics, AUC and RMSE. A larger AUC indicates higher
prediction accuracy, and a smaller RMSE indicates better stability of the methods.
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Figure 3. The training and testing AUC on the ASSISTment2009 dataset. Forty epochs of training and
testing were implemented to verify the convergence characteristics and computational complexity of
the proposed method, DKT, and MDKT.
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7. Discussion

In addition to the aforementioned experiments, we conducted a series of ablation
experiments to assess the effectiveness of the LRR channel, stacked auto-encoders, attention
mechanisms, and bidirectional LSTM in our proposed framework. The experimental equip-
ment, settings, and evaluation metrics remained consistent with the previous experiments.
Each experiment was repeated 10 times, and the average results were reported. Since
there are various ways to combine features, this paper focuses on discussing only a few
representative cross-feature combinations, which are selected based on the principles of
item response theory.

The experimental results are presented in Table 8. The “DKT-LSTM” model refers to
the DKT model with LSTM as the core, while “MLFKT-X” represents the deep knowledge
tracing model with Bi-LSTM as the core and incorporates different LRR channels. In
the table, “SC” refers to the knowledge–correctness feature combination, “NC” refers
to the ability–correctness feature combination, “NSC” represents the ability–knowledge–
correctness channel (based on the hypothesis that learners’ correctness and scores on
exercises are related to their abilities), “NST” represents the ability–knowledge–response
time channel (based on the hypothesis that learners’ answer time and scores on exercises
are related to their abilities), and “ALL” denotes the inclusion of all features in the dataset.
Additionally, “CNN” indicates the use of convolutional neural networks, “SAE” indicates
the use of stacked auto-encoders, and “ATT” indicates the use of attention mechanisms.

As shown in Table 8, the proposed framework outperformed the DKT-LSTM model
in terms of AUC and RMSE metrics on both the ASSISTment2009 and SSAI datasets. By
incorporating various cross-feature combinations, such as MLFKT-SC, MLFKT-SC + NC,
MLFKT-NSC, MLFKT-NSC + NST, and MLFKT-ALL, the performance of the framework
was further improved. The utilization of additional techniques, such as CNN and SAE, con-
tributed to even better results. Ultimately, by incorporating SAE and attention mechanisms
(SAE + ATT) into the MLFKT-ALL model, we achieved the best performance, surpassing
all other models in terms of both AUC and RMSE metrics.

Table 8. Nine ablation experiments were conducted on the ASSISTment2009 and SSAI datasets.
Bolded values indicate the best performers.

Model
ASSISTment2009 SSAI

AUC RMSE AUC RMSE

DKT-LSTM 85.60% 0.3770 76.77% 0.4312

MLFKT-SC 88.31% 0.3567 81.22% 0.4185

MLFKT-SC + NC 91.57% 0.3287 83.17% 0.4095

MLFKT-NSC 91.67% 0.3296 85.13% 0.3961

MLFKT-NSC + NST 91.45% 0.3293 85.65% 0.3934

MLFKT-ALL 90.76% 0.3379 85.90% 0.3991

CNN: MLFKT-ALL 86.80% 0.3685 83.86% 0.4039

SAE: MLFKT-ALL 93.84% 0.3125 88.39% 0.3690

SAE + ATT: MLFKT-ALL (Proposed) 93.92% 0.3118 88.81% 0.3659

7.1. Effectiveness of Multiple Features and LRR Channels (RQ2)

Incorporating various additional features that influence learners’ knowledge states
and performances and establishing intrinsic connections between these features through
the construction of LRR channels can provide a better characterization of learners’ learning
processes. In our experiments on the ASSISTment2009 and SSAI datasets, we observed
that incorporating more learner and resource features generally led to an increase in the
AUC values and a decrease in the RMSE values. For example, on the SSAI dataset, the
AUC value of MLFKT-NSC increased by 1.95% compared to MLFKT-SC, while the RMSE
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value decreased by 0.9%. Similarly, MLFKT-NSC + NST had an AUC increase of 0.52% and
an RMSE decrease of 0.27% compared to MLFKT-NSC. Furthermore, MLFKT-ALL showed
a 0.25% higher AUC value compared to MLFKT-NSC + NST. These results indicate that
considering additional features that influence learners’ knowledge states and performance
can enhance the accuracy of performance prediction and provide better insights into learners’
learning processes.

Moreover, we observed that MLFKT-NSC outperformed MLFKT-SC + NC in terms of
both AUC and RMSE metrics, suggesting that constructing LRR channels can effectively
enhance the associations between features. However, on ASSISTment2009, there were
instances where incorporating more features did not lead to performance improvement
and, in some cases, resulted in performance degradation. For example, the performance
metrics of MLFKT-ALL on AUC and RMSE were better than those of MLFKT-SC but inferior
to MLFKT-NSC. This discrepancy may be attributed to certain features negatively affecting
learners’ knowledge states and performance. Nevertheless, in general, incorporating
additional features that influence learners’ knowledge states and performance, as well as
constructing LRR channels to enhance feature connections, can facilitate a more accurate
modeling of learners’ learning processes.

7.2. Effectiveness of Stacked Auto-Encoder and Attention Mechanism (RQ2)

The utilization of SAEs enables the extraction of low-dimensional embedding represen-
tations from different LRR channels, resulting in denser and more compact representations.
By employing an attention mechanism to assign importance weights to various LRR chan-
nels, the model can focus on crucial information while fully integrating and characterizing
features. Our experiments on the ASSISTment2009 and SSAI datasets demonstrate sig-
nificant improvements in the accuracy of performance prediction when using SAE for
representing learning of LRR channels. In ASSISTment2009, SAE: MLFKT-ALL achieved a
3.08% increase in AUC value compared to MLFKT-ALL, as shown in Figure 4. Notably, the
representation learning achieved by SAE surpassed the effectiveness of using convolutional
neural networks (CNN) on both datasets. Similarly, SAE + ATT: MLFKT-ALL outperformed
SAE: MLFKT-ALL in terms of AUC and RMSE metrics on both datasets. The attention
mechanism enables the model to focus on more important features during training, leading
to improved feature representation. The results of our experiments demonstrate that the
attentional weight coefficient for the NSC feature combination is higher than that of the
NC feature combination. Conversely, the attentional weight coefficient for the NC feature
combination is higher than that of the SC feature combination. This finding aligns with
the results presented in Table 8, providing further support for our findings. In summary,
the incorporation of SAE and the attention mechanism for representation learning en-
hances the integration and characterization of features, resulting in improved accuracy and
effectiveness in predicting learner performance.

7.3. Effectiveness of Stacked Auto-Encoder and Attention Mechanism (RQ2)

The utilization of SAEs enables the extraction of low-dimensional embedding represen-
tations from different LRR channels, resulting in denser and more compact representations.
Additionally, incorporating an attention mechanism assigns effectiveness weights to differ-
ent LRR channels, allowing for a focus on more important information while facilitating the
full fusion and characterization of features. Our experiments on the ASSISTment2009 and
SSAI datasets reveal significant improvements in the accuracy of predicting learner perfor-
mance through the use of SAE for representation learning of LRR channels. Specifically,
SAE: MLFKT-ALL achieved a 3.08% improvement in AUC value compared to MLFKT-ALL
in ASSISTment2009, as shown in Figure 4. Notably, the representation learning achieved
by SAE surpassed the effectiveness of using convolutional neural networks (CNN), a find-
ing consistent in the SSAI dataset. This improvement can be attributed to SAE’s ability
to extract embedding features of varying dimensions and levels from high-dimensional
data, enabling deep feature extraction from input channels. Furthermore, SAE + ATT:
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MLFKT-ALL outperformed SAE: MLFKT-ALL in terms of both AUC and RMSE metrics
on both the ASSISTment2009 and SSAI datasets. The addition of the attention mechanism
allows the model to focus more on crucial features during training, resulting in superior
feature representation. In summary, employing SAE and the attention mechanism for
representation learning of input channels enables a more comprehensive and profound
integration and characterization of these features, thereby enhancing the accuracy and
effectiveness of predicting learner performance.

76.00%

81.00%

86.00%

91.00%

96.00%

AUC on ASSISTment 2009 

DKT-LSTM MLFKT-SC MLFKT-SC+NC
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Figure 4. In the experiments, nine ablation experiments were conducted on two real datasets and were
evaluated using two metrics, AUC and RMSE. A larger AUC indicates higher prediction accuracy,
and a smaller RMSE indicates better stability of the methods.

7.4. Effectiveness of Bidirectional LSTM (RQ2)

The classical education curve theory posits that learners experience a continuous cycle
of memory formation and forgetting during the learning process. Therefore, incorporat-
ing memory and forgetting factors into the knowledge tracing model can improve the
prediction of learner performance. By considering interaction sequences of learners over
longer intervals and accounting for the influence of memory and forgetting, the Bi-LSTM
enhances prediction accuracy. In ASSISTment2009, the AUC of MLFKT-SC improved
by 2.71% and the RMSE decreased by 2.03% compared to the baseline. Similarly, in the
SSAI dataset, MLFKT-SC exhibited a 4.45% improvement in AUC and a 1.27% decrease in
RMSE compared to the baseline, as shown in Figure 4. This improvement stems from the
ability of Bi-LSTM to effectively leverage the impact of accumulated learner memory, as
reflected in past information, and to capture the influence of learner forgetting, as reflected
in forward response information. Moreover, Bi-LSTM can effectively handle long sequences
of learner interaction over time. Consequently, incorporating Bi-LSTM into the knowledge
tracing task, considering both memory and forgetting factors, and modeling learners’ long
time-series interaction sequences, results in superior performance prediction.

The key contributions of this paper can be summarized as follows:
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1. We propose a novel deep knowledge tracing model that incorporates learner features,
resource features, and response features. LRR channels are constructed based on item
response theory, following the principles of psychometric theory. The LRR channels
enhance the intrinsic associations among different learning features and provide
educational interpretability to the model.

2. Our proposed knowledge tracing framework based on LRR channels applies to a wide
range of educational scenarios and can handle a large amount of learning information.
We introduce a deep representation learning approach that leverages stacked auto-
encoders and attention mechanisms to fuse multiple features into the knowledge tracing
task. We also introduce Bi-LSTM into the knowledge tracing task, which takes into ac-
count both memory and forgetting factors. By considering both past and future response
information, Bi-LSTM comprehensively reflects the learner’s memory accumulation and
forgetting degree, thus enhancing the accuracy of knowledge state estimation.

3. The proposed framework outperforms six baseline methods on two real benchmark
datasets, achieving state-of-the-art performance. Specifically, the proposed model
improves the AUC by 12% over the previous best result on the knowledge tracing
benchmark. This demonstrates the effectiveness of our proposed approach and its
potential for practical applications in educational settings.

7.5. Applications in Education (RQ3)

Our framework offers valuable support to teachers in facilitating targeted instructional
interventions and promoting focused learning among students. As depicted in Figure 5,
the figure illustrates the predicted probability of a learner’s correct response to an exercise
alongside the corresponding changes in their cognitive knowledge structure.

By accurately predicting the likelihood of a learner providing a correct response, we
can assess their mastery of specific knowledge points. This information proves instrumental
in helping learners identify and address knowledge gaps, while empowering teachers to
deliver more tailored interventions. By recommending appropriate answer sequences and
learning resources to learners, teachers can optimize the learning process. The results of our
aforementioned experiments not only showcase the framework’s enhanced performance
in predicting learner outcomes but also highlight its practical applicability within the
education domain, addressing real-world challenges.

This research aims to investigate the mental dynamic cognitive states of learners’ knowl-
edge structure by modeling and analyzing their external behaviors, which include learner
features, resource features, and response features. These mental states provide insights into
the learners’ internal knowledge structure and their cognitive processing, which are crucial
for cognitive diagnosis. The novelty of this research lies in the expansion of the scope of
application of the item response theory (IRT). Unlike traditional IRT, which only considers
learners’ correctness responses and utilizes a single ability parameter to describe their mental
states, our approach not only incorporates a wider range of external learning features but also
delves into the internal knowledge structure with greater granularity.
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Learner 

ID: 1597 

Study Time 1 Study Time 2 Study Time 3 Study Time 4

Study Time 5 Study Time 6 Study Time 7 Study Time 8

The whole learning progress: study time 1~T

(a) Skill mastery on different study time slices

…

(b) Dynamic skill mastery sequences over the entire learning process

Figure 5. The knowledge features, such as S3, S103, S105, S106, etc., are defined in Table 2. This figure is
primarily used to depict the learners’ proficiency levels in various knowledge points and the dynamic
progression of knowledge mastery as learning advances. (a) A radar chart is used to depict the learner’s
mastery of the eight knowledge points at a specific study time, with larger areas indicating higher levels
of mastery. (b) The overall dynamics of the learner’s knowledge mastery throughout the entire learning
process, with darker colors representing greater proficiency. The radar chart in (a) is constructed by
capturing a time-specific knowledge mastery from (b).

8. Conclusions

In this paper, we have proposed a novel knowledge tracing framework MLFKT, which
is designed to enhance learning feature representation and improve learning performance
prediction. Our framework offers three key contributions. Firstly, it leverages psychometric
theory, which posits that learners’ intrinsic features can be inferred from their extrinsic
responses, allowing us to effectively utilize the abundant learning features available in
online learning platforms. Additionally, we have constructed a learner–resource response
channel, establishing intrinsic connections between features and expanding the applicability
of item response theory to a broader range of educational scenarios, thereby enriching the
processable information. Secondly, our framework incorporates SAEs and an attention
mechanism to learn the representation of these channels. This approach enables the
channels to acquire dense, low-dimensional embedding representations while retaining
crucial information. Furthermore, by assigning varying effectiveness weights to different
channels during fusion, we establish deep relationships and integration among the channels.
Lastly, our framework is built upon the concept of LRR, taking into account the dual factors
of memory and forgetting in learners’ learning processes. By introducing Bi-LSTM into
the knowledge tracing task, our model effectively captures the long-range interaction
information among learners while better uncovering and portraying the entire learning
trajectory. Experimental results demonstrate that our proposed knowledge tracing model
surpasses previous models in accurately predicting learners’ performances. In future
work, we propose two avenues for further exploration. Firstly, we aim to develop more
sophisticated models that can effectively capture the intrinsic knowledge structure of
learners, thereby enhancing the modeling of their learning behaviors. Secondly, we plan to
explore the integration of knowledge graphs as a means of providing better explanations
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from the perspective of structured knowledge modeling. Through the progress of this study,
learners can develop a more comprehensive understanding of their knowledge structure
and engage in more focused learning within online self-directed learning environments.
This, in turn, enables teachers to provide more effective interventions and personalize the
teaching and learning experiences, ultimately facilitating personalized education.
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