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Abstract  

The prediction of the time and the efficiency of the 

remediation of contaminated soils using soil vapor 

extraction remain a difficult challenge to the 

scientific community and consultants. This work reports 

the development of multiple linear regression and arti- 

ficial neural network models to predict the remediation 

time and efficiency of soil vapor extractions performed 

in soils contaminated separately with benzene, toluene, 

ethylbenzene, xylene, trichloroethylene, and perchloro- 

ethylene. The results demonstrated that the artificial 

neural network approach presents better performances 

when compared with multiple linear regression models. 

The artificial neural network model allowed an accurate 

prediction of remediation time and efficiency based on 

only soil and pollutants characteristics, and consequent- 

ly allowing a simple and quick previous evaluation of 

the process viability. 
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1 Introduction 

 
Since the last century, human activities, environmental 

accidents, or even natural causes have created an enor- 

mous number of cases of soil contamination that can 

represent a risk to public health. 

According to the United States Environmental 

Protection Agency (USEPA), the contaminants that are 

most commonly found in soils are the halogenated vola- 

tile organic compounds and the group of contaminants 

constituted by benzene, toluene, ethylbenzene, and xy- 

lene (USEPA 2007). Soil vapor extraction (SVE) is the 

remediation technology that is more commonly used to 

treat soils contaminated with those contaminants 

(USEPA 2007). This technology uses vacuum pumps to 

create a movement of air in the soil matrix that remove 

the contaminant, which is distributed through all the soil 

phases (Grasso 1993). Even that this technology is con- 

sidered fast and extremely efficient (Albergaria et al. 

2006), there are cases where it can be time consuming 

and inefficient, namely in soils with high organic matter 

contents or with low porosity. Following this, the 

prediction of the remediation time and efficiency 

becomes essential to avoid unexpected results that 

could lead to a waste of time, resources, and money. 

In the last three decades, the prediction of the reme- 

diation time has been the aim of several works that 

experimented distinct models. Baehr et al. (1989), 

Falta et al. (1989), and Sleep and Sykes (1989) devel- 

oped a mathematical models based on differential equa- 

tions that could be solved numerically. Kaleris and 

Croise (1997) predicted the remediation time    for 

 
 

  



  

 

 

continuous and pulsed SVE using the mixed petroleum 

engineering reservoir numerical model and based on 

local equilibrium mass transfer. Sawyer and Kamakoti 

(1998) had a more simple approach by directly using air 

flow rates for estimating the closure time of SVE. 

Barnes (2003) incorporated in their model principles 

of uncertainty analysis, soil gas flow with contaminant 

vapor transport and decision theory. Alvim-Ferraz et al. 

(2006) developed the simple mathematical models that 

predicted remediation times with relative differences not 

higher than 10 %. However, these models present lim- 

itations and were unable to achieve full acceptance from 

the scientific community. As far as it is known, the 

utilization of models such as multiple linear regression 

or artificial neural networks has never been tested as 

tools to predict time and efficiency of SVE project. 

Multiple linear regression (MLR) attempts to fit a 

linear equation between two or more explanatory vari- 

ables and a response variable. The equation that gener- 

ally describes this model is: 
 

  

where Pi (i=0,. . .,n) correspond to the parameters usu- 

ally estimated by least squares and Xi (i=1,.. .,n) are the 

explanatory variables (Sousa et al. 2006). 

Zornoza et al. (2007) used MLR to evaluate the 

quality of soils through the analysis of several 

properties and obtained determination coefficients 

above 0.799 for the relationship between the predicted 

and the experimental data. Goudarzi et al. (2009) 

achieved accurate (root-mean-square errors of test set 

of 0.3705) predictions of soil sorption coefficients of 

pesticides. In an earlier study, Fass et al. (1999) estimat- 

ed the environmental half-life of several contaminants 

(polycyclic aromatic hydrocarbons and herbicides) in 

soils. A determination coefficient of 0.77 was obtained 

when the properties of the chemicals and soils were 

considered in the model construction. However, and as 

far as it is known, no studies were performed concerning 

MLR as a predict tool for remediation of contaminated 

soils using SVE. 

Artificial neural networks (ANN) were first intro- 

duced as a mathematical tool by McCulloch and Pitts 

in 1943, whose inspiration was the neural structure of 

the brain (McCulloch and Pitts 1943). They perform 

nonlinear transformations of the input data to approxi- 

mate the output data through learning process from 

experimental  data  and  exhibiting  ability for 

generalization beyond training data (Sousa et al. 

2006). Being non-parametric and data-driven, neural 

networks impose a few prior assumptions on the under- 

lying process what turns it less susceptible to model 

misspecification than most parametric nonlinear 

methods (Barron 1991). Feedforward Artificial Neural 

Network (FANN) is one of the most common where the 

nodes are grouped in three types of layers: input, hidden, 

and output (Fig. 1). To obtain an accurate model that 

able to represent the behavior of the system, it is impor- 

tant the choice of the network topology and the neurons’ 
processing function. 

In these models, the data is fed to the nodes of the 

input layer being transmitted to other layers (hidden and 

output). Activation functions (such as hyperbolic tan- 

gent, linear, or sigmoid) are associated with hidden and 

output nodes (Sousa et al. 2007), transforming the ANN 

structure in a nonlinear model. The construction of an 

ANN usually implies three data sets: training, 

validation, and test. The first set determines the 

network topology and the associated weights; the 

validation set is used for avoiding the problem of over 

fitting and the test set is needed to check the 

performance of the ANN using different data of the 

training and validation sets. 

Artificial neural networks have been used in sev- 

eral fields of soil studies with excellent results. 

Poznyak et al. (2007) estimated with an average error 

of  − 0 . 02 ± 0 .0795 the anthracene  dynamic   

decomposition and the estimated ozonation rate 

constant corresponded exactly to the experimental 

dynamics decomposition of anthracene. Kemper and 

Sommer (2002) estimated the heavy metal contami- 

nation in soils, obtaining coefficients of determina- 

tion between the predicted and chemically analyzed 

concentrations, ranging from 0.24 to 0.93. De la 

 
 

 

Fig. 1  Feedforward artificial neural network with three layers 



 

 

 

Torre-Sanchez et al. (2006) predicted the biodegra- 

dation profiles of hydrocarbons in a polluted soil 

using biopiles with an approximation error     below 

1.25 %. Therefore, according to the soil heterogene- 

ity and the interaction of a big number of different 

factors, the application of artificial neural networks to 

soil vapor extraction seems to be attractive. However, 

as well as the MLR and as far as it is known, ANN 

has never been used in experiments involving  SVE. 

The behavior of both models can be evaluated by 

calculation of the following performance indexes: mean 

bias error (MBE), mean absolute error (MAE), root 

mean squared error, and index of agreement (d2) 

(Sousa et al. 2006). The equations to obtain these index- 

es are: 

2 

Data 

 
2.1 Experimented Soils 

 
SVE experiments were performed in a laboratorial pilot 

installation using seven simulated soils (sandy and hu- 

mic) with different moisture (0, 2, 3, and 4 %) and 

organic matter contents (0, 4, 14, and 24 %), contami- 

nated separately with benzene, toluene, ethylbenzene, 

xylene, trichloroethylene, and perchloroethylene. The 

SVE experiments were performed under different  air- 

flow rates (2, 5, 10, and 20 L h
−1

). For each SVE 

experiment, the vapor pressure and Henry’s constant 

of the contaminant, the moisture, and the organic 

matter contents of the soils and the airflow used  were 
registered. The preparation of the soil columns as well as 

 
     

  the procedures to perform the SVE experiments is 

described in Albergaria et al. (2008). All these data were 

compiled to develop MLR and ANN models     which 

requires a significant amount of data organized in inputs 
 
 

 

 and outputs; the vapor pressure and Henry’s constant of 

 
  

   
the contaminant, the moisture, and the organic  matter 

contents of the soils and the airflow were used as inputs; 

and the calculated remediation time and the    process rffi
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  efficiency obtained after the SVE (Albergaria et al. 

2008) were used as outputs. 

SVE experiments were also made in ten real  soils 

    with properties within the range of the prepared  soils 
 
 

 and  contaminated  separately  with  the same −   
 contaminants.  The  properties  of  all experimented 

 
 soils are presented in Table 1. Altogether, 192    SVE 

experiments  were  performed.  The  properties  of all 

MBE indicates whether the observed values are over 

or under estimated. MAE and RMSE quantify residual 

error presenting an overview of the difference between 

the observed and the estimated values; finally, d2 com- 

pare the difference between the mean, the estimated, and 

the observed value (Gardner and Dorling 2000; 

Chaloulakou et al. 2003). 

Combining the need to develop a model capable of 

accurately predict the remediation time of a SVE oper- 

ation and the good results that ANN have been achiev- 

ing, it was the objective of this study to predict the 

remediation time and the process efficiency through a 

feedforward artificial neural network methodology 

based on data obtained in SVE pilot experiments and 

compare it with other mathematical model commonly 

used as basic prediction model, the multiple linear 

regression. 

the used soils are indicated in Soares et al. (2010). 

 
2.2 Software Tools 

 
The ANN models were performed using the artificial 

neural network toolbox of Matlab® (Mathworks, Inc, 

Natick, MA, USA). The MLR models were performed 

using subroutines developed in Microsoft Visual Basic 

applications for Ms-Excel created by the authors. 

 

 
3 Results and Discussion 

 
The MLR and the ANN models were used to predict 

the remediation time (tr) and the efficiency (η) of the 

SVE. As defined in Albergaria et al. (2008), the 

remediation time was the operating time required   to 



  

 

 

Table 1  Properties of prepared (sandy and humic) and real soils 
 

Soil Moisture 

content (%) 

Organic matter 

content (%) 

pH 

Sandy 1 0.0 0.0 8.8 

Sandy 2 2.0 0.0 8.8 

Sandy 3 3.0 0.0 8.8 

Sandy 4 4.0 0.0 8.8 

Humic 1 0.7 4.0 6.5 

Humic 2 2.3 14 6.1 

Humic 3 4.0 24 5.8 

Real 1 0.5 0.0 8.1 

Real 2 0.6 0.0 8.1 

Real 3 0.8 0.0 8.1 

Real 4 1.0 0.0 8.1 

Real 5 1.2 0.0 8.1 

Real 6 2.4 0.0 8.1 

Real 7 4.1 0.2 5.5 

Real 8 7.2 11 4.0 

Real 9 3.0 4.4 4.3 

Real 10 6.0 9.4 5.8 
 

 

 

 

achieve a concentration of the contaminant in the gas 
phase below 1.0 g m

−3
. The efficiency   corresponded 

to the percentage of the initial amount of contaminant 

that was removed during the SVE. This time was 

considered the remediation time. The variables 

(inputs) considered for these methods were the vapor 

pressure (Pv) and Henry’s constant (H) of the con- 

taminant, moisture (MC), and organic matter con- 

tents (OMC) of the soils and the airflow (Q). This 

choice is based on the influence of these properties 

on the SVE process. The vapor pressure and the 

Henry’s constant of the contaminant are related with 

the tendency of the contaminant to be preferentially 

distributed in the gas phase of the soil hence being 

easier to be transported by the airflow that percolates 

through the soil and, consequently, to be remove the 

contaminant from the soil matrix. The soil water 

content influences the contaminant partition in the 

soil matrix and, on the other hand, hinders the air 

movement through the soil. The organic matter con- 

tent, responsible for adsorption phenomena of con- 

taminant to the soil, hinders the SVE process because 

it difficult the mass transfer of the contaminant from 

the soil phase to the gas phase. Finally, the airflow 

rate has an important role on the mass transfer of  the 

contaminant to the gas phase during the remediation 

process (Albergaria et al.  2006). 

 

3.1 Multiple Linear Regression 

 
Two MLR models were developed: one for the predic- 

tion of tr and other for the prediction of η. The data 

obtained in the SVE experiments performed with the 

prepared soils were used to develop these models 

(Fig. 2). 

The models obtained with this method were the 

following: 

tr ¼ 18:75−88:86 x Pv þ 5552 x H þ 0:9363 x OMC−1:356 x Q 

ð6Þ 

 

 
η ¼ 90:50 þ 94:21 x Pv þ 1:490 x MC−1:202 x OMC−0:4852 x Q 

ð7Þ 

For these models, only the explanatory variables 

which presented parameters with statistical signifi- 

cance were considered. For these experiments, the 

moisture content showed to have no significant influ- 

ence on the tr while the Henry’s constant showed to 

have no significant influence on the η. The non- 

significance of the moisture content is not in agree- 

ment with other published material (Yoon et al. 2008; 

Albergaria et al. 2012; Alvim-Ferraz et al. 2006) 

where it is concluded that  the  moisture  content of 

the soil hinders the SVE process turning it more time 

consuming. A possible reason for this result can 

derive the relatively low number of experiments used 

in the model development. 

Figure 3 illustrates the comparison between the 

results obtained in the SVE experiments and the 

results predicted by the MLR models. Table 2 pre- 

sents the values of the performance indexes of MLR1 

and MLR2. As can be seen, the data set was  divided 

in two sets: training and test. The training set was 

composed of 134 experiments and the test set incor- 

porated with 34 experiments. The training set was 

used to develop the models and the test set was used 

for testing the model with experiments not used dur- 

ing the models’ development. MLR1 assumed a re- 

mediation time of 0 when the predicted value was 

negative and MLR2 assumed an efficiency of 100 % 

when the prediction was higher than  100. 



 

 

 

 

Fig. 2  Structures of the MLR models with the respective inputs and outputs 
 

Attending to Fig. 3 and Table 2, it can be concluded 

that MLR1 and MLR2 were not able to predict accurate- 

ly neither the remediation time nor the process efficien- 

cy, presenting significant errors. This is proved by the 

values of MAE and RMSE as well as the values of d2 

and R. According to the obtained values of MBE, the 

training phase of MLR1 and both test and training 

phases of MLR2 gave over-estimated predictions. In 

order to search for improvements on the results obtained 

with the MLR, new models were calculated incorporat- 

ing data obtained in the tests with real soils. However, 

worst performance results were obtained, indicating that 

no benefit is achieved by using this approach. 

 
3.2 Artificial Neural Network 

 
For the ANN model, two approaches were consid- 

ered.  The  first  approach  (ANN1)  considered the 

 

 

Fig. 3 Comparison between the predicted and experimental results of the efficiency (η) and the remediation time (tr) of SVE using the MLR 

models (training and test sets) 



  

 

 

Table 2  Performance indexes 

achieved using MLR1  and MLR2 
MBE MAE RMSE d2 R 

 

MLR1 Training 4.573E-1 6.510 10.07 0.8687 0.8080 

 Test 1.691 7.229 9.806 0.8203 0.6863 

MLR2 Training −2.131E-1 5.917 7.494 0.8920 0.8208 

 Test −0.1740 5.873 7.678 0.8971 0.8413 

 

 

utilization of the data exclusively obtained in the 

experiments with prepared soils (discarding the real 

soils) to construct the model, while the second ap- 

proach (ANN2) considered the utilization of the data 

of the real soils in the training and in the validation 

phase. The weights of ANN were obtained by min- 

imization of mean squared error (MSE) of the train- 

ing data. The cross-validation was applied to avoid 

the overfitting. For that, the data obtained with sim- 

ulated soils were divided in training, validation, and 

test data sets. The training set was composed of 100 

experiments, the validation set incorporated with 34 

experiments, and the test set also 34. The first data 

set was used to determine the weights and the sec- 

ond one to decide the time to stop the training 

procedure (when the minimum value of MSE in 

validation data set was achieved). This  procedure 

was repeated for different number of hidden neurons 

that varied from 1 to 8. The  best  ANN  model 

(Fig. 1) corresponded to the one that had minimum 

value of MSE in the training and  validation  data 

after 1,000 trials  and  corresponded  to  architecture 

of three layers with five neurons in the input layer, 

three neurons in the hidden layer, and two in the 

output layer. The variables were the same as in the 

MLR, and the outputs were also the remediation 

time and the process efficiency. Hyperbolic tangent 

and linear were the activation functions used in the 

neurons of the hidden and output layer,  respectively. 

The test data set was used to evaluate the perfor- 

mance of the ANN models. The ANN assumed a 

remediation time of 0 when the predicted value was 

negative and an efficiency of 100 % when the pre- 

diction was higher than  100. 

Table 3 presents the values of the performance pa- 

rameters of ANN1 both for the training, validation, and 

test sets. 

The values of MBE were negative except in the 

training and test sets for the prediction of tr, indicat- 

ing that in this case the values were overestimated 

unlike in the others cases, where the predicted values 

were underestimated. The obtained MAE and RMSE 

values indicate that the ANN1 present low residual 

errors. 

Figure 4 illustrates the comparison between the re- 

sults obtained in the SVE experiments and the results 

predicted by the ANN1 model, in all sets. 

Comparing Figs. 3 and 4, it is clear that the  ANN1 

predicted values accurately and with less errors than 

those obtained with the MLR models. This observation 

is confirmed with the results presented in Table 4, which 

shows the values of the performance indexes of ANN1 

for all sets. 

The positive values of MBE show that both pre- 

dictions were overestimated. Using ANN1, the values 

of MAE and RMSE were generally lower indicating 

that the residual errors were less than with MLR and 

that the observed values were closer to the   predicted 

 

Table 3 Performance indexes 

obtained for ANN1 for training, 

validation, and test sets 

 
Training Validation Test 

 tr η tr η tr η 

MBE 0.09584 −0.05450 −0.02317 −0.6245 0.6204 −0.9594 

MAE 3.116 3.176 4.357 5.117 4.420 4.394 

RMSE 4.511 3.954 7.044 6.537 6,467 5.486 

d2 0.9812 0.9758 0.9443 0.9308 0.9342 0.9633 

R 0.9639 0.9541 0.9154 0.8611 0.8775 0.9224 

 



 

 

 

 

Fig. 4  Comparison between the predicted and experimental results of the remediation time (tr) and the efficiency (η) of SVE using the ANN1 model 

 

values. This is also supported by the higher values of 

R and d2. 

A second approach (ANN2) was tested in order  to 

evaluate what was the influence of the utilization of data 

obtained in SVE performed with real soils in the training 

and in the validation phases. This aimed the possible 

inclusion of specificities of real soil in the model con- 

struction. The architecture of ANN2 was similar to 

ANN1. The training phase was performed with the 

results of 116 experiments and the validation and   the 

test phases with 38. Table 5 shows the performance 

indexes of ANN2. 

 
Table 4 Performance indexes achieved using  ANN1  for all 

data sets 
 

 

  MBE MAE RMSE d2 R   

tr 0.05531 3.483 5.337 0.9673 0.9404 

η 0.7500 4.601 7.339 0.9165 0.8360 

 



  

 

Table 5 Performance indexes achieved using ANN2 for all data sets 

MBE MAE RMSE d2 R 

tr 0.2094 3.799         6.009 0.9591         0.9238 

η        0.03344         4.067        6.504 0.9322        0.8738 
 

 

 

 

 

The values obtained with ANN2, as well as ANN1, 

were also overestimated. Comparing MAE and RMSE 

and d2 and R, it can be concluded that both models 

presented similar performance indexes presenting 

ANN2 slightly better results for η and slight worst 

results for tr. 

Finally, it can be concluded that ANN showed better 

and very accurate in the prediction of tr and η in SVE 

performed with soils similar to those experimented in 

this work and contaminated with the six contaminants 

studied, when compared with MLR. These were the first 

results involving the utilization of these models in this 

field of research. 

 

4 Conclusions 

 
The work here presented and based on SVE experiments 

performed in sandy and humic soils contaminated sep- 

arately with benzene, toluene, ethylbenzene, xylene, 

trichloroethylene, and perchloroethylene allowed con- 

cluding that: 

 
– the MLR models were not able to predict accurately 

neither the remediation time nor the process effi- 

ciency, presenting significant errors, 

– the best ANN model corresponded to an architec- 

ture of three layers with five neurons in the input 

layer, three neurons in the hidden layer, and two in 

the output layer. 

– The ANN model showed better and very accurate in 

the prediction of remediation time and the process 

efficiency, 

– No significant improvements were obtained when 

data from experiments with real soils were included 

in the ANN construction. 
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