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Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data
through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been
inaccurate prediction of cascade motifs. Cascade error is de	ned as the wrong prediction of cascade motifs, where an indirect
interaction is misinterpreted as a direct interaction. Despite the active research on various GRN predictionmethods, the discussion
on speci	cmethods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies
were not speci	cally geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors.
Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid
wrongly inferring of an indirect interaction (A→ B→ C) as a direct interaction (A→ C). Since the number of observations of
the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random
subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to
assess the e
ectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed
in this work. �e experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley
collinearity test proved that multicollinearity did a
ect the datasets used in this experiment greatly. All the tested subnetworks
obtained satisfactory results, with AUROC values above 0.5.

1. Introduction

�e GRN inference-related works have fueled many major
breakthroughs in 	nding drug targets for the treatment
of human diseases, including cancer [1–3]. �erefore,
being able to predict gene expressions more accurately
provides a way to explore how drugs a
ect a system
of genes, as well as for identifying the genes that are
interrelated in a process. Besides, rebuilding GRN from
gene expression pro	les allows the discovery of various
functions ranging over diverse domains like molecular
biology, biochemistry, bioengineering, and pharmaceutics
[2].

One of the main reasons for the reduced performance of
previous GRN methods had been inaccurate prediction of
cascade motifs. Although there are various gene prediction
methods that were developed and presented in various
leading journals before, discussion on speci	c methods of
solving problems related to cascade errors is still lack-
ing. �e study conducted by [4–11] discussed the issue of
cascade errors. However, the experiments conducted were
not speci	cally geared towards proving the ability of GRN
prediction methods in avoiding the occurrence of cascade
errors. Distinguishing between direct and indirect regulation
(cascade errors) is a well-known di�culty in GRN inference
but was never quantitatively assessed.
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Inferring GRNs remain challenging because of several
limitations: (1) the high dimensionality of living cells is
where tens of thousands of genes act at di
erent temporal
and spatial combinations; (2) one gene or gene product may
interact with multiple partners, either directly or indirectly
and thus possible relationships are dynamic and nonlinear;
(3) current high-throughput technologies generate data that
involve a substantial amount of noise [9, 12]; (4) the sample
size is extremely low compared with the number of genes
[13, 14] and the presence of hidden nodes [9]. Using the
case of a simple cascade � → � → �, when intermediate
node � is hidden, nodes � and � become isolated from
each other. �en, all indirect paths between them became
hidden, hence interrupting the prediction of the whole
GRN.

With that, this research aims to propose Multiple Linear
Regression (MLR) to infer GRN from gene expression data
and to avoid wrongly inferring of an indirect interaction (A
→ B→ C) as a direct interaction (A→ C). MLR was selected
because MLR takes into account a combination of e
ects and
simultaneous observations. �is work is di
erent from other
regression analysis-based researches such as [10, 11, 15–18] in a
way that it presents novel experimental procedures to assess
the e
ectiveness of GRN inference method in dealing with
cascade error. Lastly, this work proposes a novel experimental
procedure to assess the e
ectiveness of MLR in dealing with
cascade error. Although MLR achieved an acceptable level of
performance when dealing with cascade motifs, two main
problems had been detected from our experience in using
MLR forGRN inference.�eproblems are thatMLR is unable
to process datasets of structure � ≤ � (� = observations
and � = variables) and does not cater for multicollinearity
problem among the predictors.

2. Past Researches

Various methods have been applied in GRN construction.
We categorize themethods into nine categories. Information-
theoretic approach is dominated by methods such as Path
Consistency Algorithm based on Conditional Mutual Infor-
mation [7] and Mutual Information Test based on Dynamic
Bayesian Network [19] and Mutual Information [20]. As for
	lter-based approaches, Unscented Kalman Filter [21] and
Fractional Kalman Filter [22] were proposed. Under graph-
based category, method such as Random Forests or Extra-
Trees [23] was applied. Probability and Statistics category has
methods such as Gaussian Graphical Model [24] and Double
	-test [25]. �e emerging algorithms such as Particle Swarm
Optimization and Ant Colony Optimization [26] are cate-
gorized under nature-inspired category. For the category of
correlation and dependence, methods such as Local Expres-
sion Pattern [27] and three DC- (Distance Correlation-)
based algorithms, CLR-DC, MRNET-DC, and REL-DC [28],
were proposed. Formachine learning category,Markov Logic
network [29] was applied. We purposely categorized the
past approaches into a category called hybrid methods. �e
methods in this category incorporatedmore than onemethod
such as collaboration of Mutual Information and Regression

[30], Ordinary Di
erential Equation-based Recursive Opti-
mization (RO), andMutual Information (MI) [12] and Linear
Regression combined with Bayesian Model [31].

3. Problem Statements

�e 	ndings obtained by Salleh et al. [32] pertaining to
the topics discussed in this study proved that most of the
false positives had been due to cascade errors. Meanwhile,
researches conducted by [4, 33] were strongly a
ected by cas-
cade motifs, where these methods systematically predicted
false positive interactions [34]. In addition, studies conducted
by [10, 12, 35–37] depicted similar opinion, in which themain
source of false positive predictions had been indirect e�ects
or cascade errors. Apart from the term cascade error, other
terms, such as indirect e�ects, are also used in the manuscript
[10].

Despite the active research on various gene prediction
methods, the discussion on speci	c methods to solve prob-
lems related to cascade errors is still lacking. In fact, the
experiments conducted by the past studies were not specif-
ically geared towards proving the ability of GRN prediction
methods in avoiding the occurrences of cascade errors. Only
recently, GNW (GeneNetWeaver), which was developed by
[34], has o
ered tremendous positive impact to the area of
systems biology, especially GRN prediction. GNW has been
found to provide many features concerning GRN inference
performance assessment, including network motifs analysis.
However, one problem that hampers the network motifs
analysis is that if the GRN inference method was tested by
using complex experimental data, the results generated by
the GNW would be quite distorted. �us, the complexity in
handling complex data and predicting certain types of genes
interactions hadmotivated the researchers to design, develop,
and assess the proposed method towards solving the cascade
errors.

4. Overview of Data

In this study, real experiment datasets were utilized from
M3D [38]. M3D provided manually curated metadata for
their chip measurements. �e expression data can be
obtained from http://m3d.mssm.edu/. �e predicted E. coli
interactions were validated based on gold standard networks
of E. coli obtained from GNW [34]. �ere were 4297 genes,
with a maximum of 907 chips (observations). Other refer-
ences that were also used had been obtained from similar
datasets, such as those presented by [10, 12, 25].

5. GRN Prediction Methods by Using the
Regression-Based Technique

In recent years, methods in regression analysis category have
received ever increasing attention in the GRN inference
research area. �e existing research was conducted using the
regression models such as Multiple Regression [17], LASSO
[15], Ridge Partial Least Squares Regression [16], andANOVA
[10].

http://m3d.mssm.edu/
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Regression analysis is known as a complex math-based
method that will take some time to be applied. Nowadays,
withmany improvements done in certain so�ware, the imple-
mentation of regression analysis has been simpli	ed, though
not completely. �e success of application of regression-
based methods on modeling the gene expression and DND
microarray data depends on the choice of model and pre-
dictors that will be used as the input [15]. Reference [15]
proposed amethod namedGEMULA, which has a four-stage
method based on LASSO, used to identify and prioritize the
synergistic interaction among predictors. Reference [16] has
proposed a new method of identifying genes using Partial
Least Squares. �e estimation problem has been solved by
combining Partial Least Squares Ridge with RFE and error
Brier using two-nested CV. Ridge method has been receiving
increasing attention from researchers based on its ability
to tackle problems related to multicollinearity [39]. One of
the main issues that need to be considered in applying the
regression analysis is how to make GRN predictions with a
limited number of observations. Reference [18] stated that
the low number of samples is one of the key issues that
need to be addressed. Reference [10] emphasizes the ability of
ANOVA to be applied to gene expression data without having
to perform nonlinear discretization process. Discretization is
the process used to convert a continuous equation into a form
that can be used to calculate the numerical solution. Another
study is from [17] which aims to improve the accuracy of
forecasting large-sized networks. �is study uses MLR by
applying parallel processing techniques. However, this study
was conducted on data already in the ideal state of 1000 ×
1000 gene perturbation experiments, which means that the
number of observations does not exceed the number of genes.
�eir algorithm was parallelized to handle large problems
in a computationally e�cient manner by distributing the
overall computational burden among di
erent processors to
reduce the total execution time. However, their paper did not
explain in detail how the separate predictions were combined
to perform the complete prediction for the whole complete
set of data at one time. Apart from the study by [10, 11], all
of the studies reviewed in this manuscript do not discuss
speci	cs about how to solve the issue of cascade error. �e
next paragraph speci	cally explains the researches that cater
for cascade motif.

�e study from [9] is one of themain researches that serve
as benchmarks for the viability of the silencing method in
performing GRN prediction to the large network. Reference
[9] has proposed several formulas which further highlight
the direct relationship between genes versus indirect relation-
ship; hence, prediction of a direct relationship is more easily
done without any interference of an indirect relationship.
Apart from the e
ects of indirect relationship or cascade
error, the challenge of GRN prediction is increasing with the
availability of data that have the total number of experimental
observations very less compared to the number of genes.
Reference [11] in his study stated that the total number of
observations that are less than the number of genes in the
experimental dataset has made the estimation unable to
be performed by determining the weights to the whole set
regulator (regulators). If the complete regulator set in a GRN

is unable to be used in the calculation, some method has
to be implemented to 	gure out the best way to use only
some parts of the genes in calculation and at the same time
does not a
ect the overall GRN prediction. Reference [9]
conducted experiments on data with the number of nodes of
4,511 and 805 the number of observations.�e lack of the total
number of observations leads [9] to following a DREAM5
protocol that focuses only on correlation that happened in 141
transcription factors.

Regression analysis is a technique for modeling the
relationships between two (or more) variables [40]. �e
Multiple Regression analysis models allow one to test several
predictor variables that may explain di
erent attributes about
the response variables. �ough complex, one can test all the
factors that one thinks have an e
ect on a given response
variable. �is is unlike other inferior models that allow for
only one predictor variable. Moreover, with the use of several
variables, the accuracy of prediction is also improved. �e
terms dependent variables, response variables, and others have
been used in the existing regression literatures interchange-
ably. �e explanation on the meaning of each term, as well
as the terms used throughout this manuscript is given in
this section. Dependent variables are also known as response
variables or target variables. As for independent variables,
it is also known as regressors or predictors [41]. In order to
ensure the consistency of the document, the terms response
variables and predictors are used in the entire manuscript.
GRN represents the scenario where the predictor variables
are likely to be correlated with each other and they could all
in�uence the response variables. Moreover, questions, such
as how can we determine which variables are signi	cant and
how large of a role does each one variable play, do arise.
All these questions can be answered by using the regression
analysis. �us, the scenario of MLR in the context of GRN is
illustrated in Figure 1.

We need to consider more than 10 regression-based
methods before identifying the one that suits our experiments
data. For that purpose, we categorize the regression analysis
based on types of variables that each of the regression
methods can handle.�e categorization is based on our study
in the literature study of the theory of regression analysis
[39, 41, 42]. �e categorization tree is shown in Figure 2.
We produce the categorization tree to narrow down our
method identi	cation process. Nonlinear models represent
the relationship between a continuous response variable and
one or more continuous predictor variables.

�e determination of the appropriate regressionmethods
to be applied is highly dependent on how the researchers
de	ne the context of their GRN data. �is is because each
study involves data types and di
erent research objectives.
Apart from using the decision tree that we produced in
Figure 2 as a basic guide, we use another decision tree
shown in Table 1, presented by [43] for identifying the
regression function. We redraw the decision tree in a more
understandable form to facilitate the understanding of the
possible model that can be used for data.

Referring to Table 1, we assume that interactions among
the genes are described by the linear model [12, 44] due to
the linear interaction between the response and independent
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Predictors
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variables

G1

G2

G3

G4

Figure 1: MLR in the context of GRN. MLR predicts the variations in the response variables from the variations in the predictors.

variables. When identifying the type of response variable,
either continuous or restricted or multivariable, we classify
ours as continuous. Multivariable is a condition where multi-
variate regression may need to be applied. As for the type of
independent variables, continuous type is more suitable.

6. Methods

Multiple regression takes into account the correlations
between predictor variables and assesses the e
ect of each
predictor variable, when other variables are removed [40].
On the other hand, linear regression uses one predictor
variable to explain and/or to predict the outcome of response
variables, while Multiple Regression (MLR) uses two or more
predictor variables to predict the outcome [45] or, in other
words, the response variable is in�uenced by more than one
factor. In fact, MLR had been found to be the most suitable
as it 	ts the nature of GRN with multiple genes that could
causemultiple other genes to be activated [46]. In general, the
response variable y may be related to � predictor variables.
�e general form of MLR with � regressor or predictor
variables is shown in the following formula:

�� = �0 + �1�1 + �2�2 + ⋅ ⋅ ⋅ + ���� + ��,

= �0 +
�
∑
�=1
����� + ��, � = 1, . . . , �,

(1)

where �� is �th observed response and �� is �th coe�cient
and where �0 is the constant term/intercept in the model,��
is �th observation or level of regressor ��, and �� is �th noise
term/random error.

�e results of the program return a linear model of
the responses y, 	t to the data matrix  (observations on
predictor variables). �e predictor variables are speci	ed as
an n-by-p matrix, where � is the number of observations,
while � is the number of predictor variables. Each column
of  represents one variable, and each row represents one
observation. �e response variable (�) is speci	ed as an n-
by-1 vector, where � is the number of observations. Each
entry in � is the response for the corresponding row of
. �e least squares technique had been applied to 	t the
model to the data. �is method is the best when one is
reasonably certain of the form of the model and mainly
needs to determine the parameters [43]. �e program was

written using Matlab to apply the algorithm. Meanwhile,
the programs that performed other major operations, such
as extracting the results, assessing the performance and all
processes pertaining to the experiment, were written in other
separate 	les using Excel with embedded macro. All tests
were performed on Intel Core with 3.20GHz and 8GB main
memory that ran under the Windows 7 64-bit operating
systems.

�e predictors with rather high � values indicated that
they might be unnecessary. �e reported p value for pre-
dictors that were extremely small (less than 0.05) had been
identi	ed as the predictors that were used to create the
response data. Why had � value less than 0.05 been chosen
as the cut-o
 value? In statistics, the � value is a function
of the observed sample results that is used for testing a
statistical hypothesis. �e � value is derived from the t
statistics under the assumption of normal errors [47]. Before
the test is performed, a threshold value is chosen, called the
signi	cance level of the test, traditionally 5% or 1% [48].
Statistical signi	cance (or a statistically signi	cant result) is
attained when a � value is less than the signi	cance level.
Sharing the same opinion with [48, 49] states that as a matter
of good scienti	c practice, a signi	cance level is chosen before
data collection and is usually set at 0.05 (5%).�is fact is also
supported by [50] who suggested that “a con	dence interval
is associated with a degree of con	dence such as 0.95 (or
95%).” 95% means within 2 standard deviations of mean.
Each observation in the datasets was taken into account when
assessing the e
ect of each of the response variables.

7. Detecting the Cascade Motifs

�e experiment that assesses the performance of MLR in
predicting GRN was extended to assess the e
ectiveness
of MLR in dealing with cascade error by using a novel
experimental procedure proposed in this work. �is section
explains how the cascade motifs are detected. �e list of the
identi	ed cascade motifs were used to assess the prediction
performance.

�e terms cascade motifs and cascade errors are used
throughout the entire document. Cascade motif is de	ned
as the edges that are identi	ed by using certain methods to
represent the condition where A→ B→ C, whereas cascade
error is de	ned as an incorrect prediction of “shortcuts”
or indirect interaction misinterpreted as direct interaction,
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Independent variables/

Regression
analysis
methods

Linear

Continuous

Continuous

(10) Mixed-e�ects model

Categorical

(1) Linear reg

(2) Step-wise reg

(7) Classi�cation trees, reg
tree, ensemble method

(7) Classi�cation trees, reg
tree, ensemble method

Restricted

Continuous

Categorical
(3) Generalized

linear model

(3) Generalized

linear model

Multivariable

Continuous

(9) Multivariate regression

(10) Mixed-e�ects model

Categorical

Nonlinear

Continuous

Continuous (4) Nonlinear reg

Categorical

Restricted

Continuous

Categorical

Multivariable Continuous

Categorical

Unknown
Continuous

Restricted

Multivariable

predictors 

Dependent variables/
response

(1) Linear reg∗∗

(2) Stepwise reg∗∗

(6) Partial Least

Squares∗∗

(5) Ridge/LASSO/elastic

net regression∗∗

(8) ANOVA∗∗

Figure 2: Regression analysis methods. �e methods listed on the right are the recommended models extracted from Table 1. �e methods
that had been applied by other researchers are marked with double asterisks (∗∗).

where, in the case of A→B→C, the prediction alwaysmakes
wrong prediction by predicting A → C [9, 35]. Moreover,
the terms “directed edges,” “network,” and “node” are used
in this manuscript to represent the terms “arcs,” “graph,”
and “vertex,” which also present the same meanings but

are more commonly used for discussion in the mathematics
area. Note that the term “motif” has been used in other
contexts to represent small connected subnetworks that occur
in signi	cantly higher frequencies than in random networks
[51].



Advances in Bioinformatics 7

ihfA

ompR

fadL

bolA

ompC

ompF

ihfB

Figure 3: Cascade motifs in Table 2(b). �e dashed lines show the cascade errors.

Additionally, the measures taken by [52] in GNW devel-
opment (speci	cally network-motif analysis) were the most
relevant reference in detecting the cascade motifs task in
this study. �e di
erence between the proposed method
and the GNW in network motifs analysis had been that
GNW engaged prediction con	dence. GNW de	ned the
prediction con	dence of edges as their rank in the list of edge
predictions. Besides, GNW scaled the prediction con	dence
such that the 	rst edge in the list possessed con	dence at
100%, while the last edge in the list had con	dence at 0%
[53].

Another notable di
erence between GNW and this
research is that GNW analyzed all types of motifs, whereby
the 	rst step was de	nitely identi	cation of all three nodes
motif instances in the target network. Reference [52] used
the algorithm proposed by [51] for this purpose. Nonetheless,
since the focus of this study had been on cascademotifs alone,
the researchers had been very much interested in working
with the networks with directed edges and hence eliminated
the need to identify three nodes motif instances in the large
target network. Moreover, if determining prediction con	-
dence of motif edges is treated as an important component
in GNW, this study is di
erent in such a way that identifying
the cascademotifs had been concentrated as part of the target
network. Furthermore, the method proposed would only be
e�cient for the small motifs, 3 nodes. �is is because the
applicability of the network motifs detection algorithm was
never tested upon larger motifs.

On top of that, in order to explain how cascade motifs
were extracted from the GRN of E. coli, 	rst, one needs to
identify the directed size 3 subgraphs. More insights for the
structure of DCE (Detecting Cascade Error) are provided via
visualization shown in Table 2 and Figure 3. �e following
discussion uses some graph theoretic terminologies. Refer-
ring to Table 2, given a network � = (�, �), the edges of
this graph all are directed and have been determined. As
seen in Table 2(a), all the nodes in � are divided into two
columns: Col One and Col Two. Referring to Table 2(b), the
genes in Col One are actually the regulators, while the genes
in Col Two are the target genes. Besides, there arem directed
edges, where� = 1, 2, 3, . . ..

Table 2: Detecting cascade motifs and cascade errors: (a) shows all
the edges and (b) shows the extracted edges that have the same gene
at both columns.

(a)

Col One Col Two

hupB tyrP

crp hupA

narL dmsB

narL dmsC

ihfA ompR

ihfB ompR

ompR fadL

ompR bolA

ompR ompC

ompR ompF

(b)

Col One
Regulator

Col Two
Target Gene

ihfA ompR

ihfB ompR

ompR fadL

ompR bolA

ompR ompC

ompR ompF

Algorithm 1 (DCE).

Input. A directed graph

Output. A list of cascade motifs

For each of the directed edges m, 	nd the node that
exists in both Col One and Col Two (node �BOTH)

Take note that for the directed edge, �COL ONE →
�COL TWO ̸= �COL TWO → �COL ONE
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Table 3: Results of the experiments that used the datasets in which the cascade motifs have been removed.

Number of genes
Number of
observations

� value AUROC

Subnetwork A size 415 415 466 <0.05 0.6860

Subnetwork A size 415 415 466 <0.04 0.6795

Subnetwork A size 415 415 907 <0.05 0.6622

Subnetwork B size 893 893 907 <0.05 0.5022

Subnetwork C size 871 871 907 <0.05 0.5081

2→6

6→7

2→ 7

1→8

8→9

1→ 9

1→2

2→3

1→ 3

1→2

2→6

1→ 6

1→2

2→7

1→ 7

2→3

3→5

2→ 5

4→3

3→5

4→ 5

1

2 3

4

5

6

7

8 9

Figure 4: List of directed edges and cascade motifs. �e numbers
represent the name of genes. �e dashed arrows represent cascade
errors, while the black texts represent the cascade motifs.

Eliminate the directed edges that do not contain
�BOTH

Exclude �BOTH, pair each of the �COL ONE with each
of the �COL TWO

As depicted in Figure 3, the interactions with ompR as
both regulator and target gene had been extracted.

Figure 4 presents the application of DCE when many
subgraphs were involved.

8. Extracting Subnetworks

Since the number of observations of the real experiment
datasets was far less than the number of predictors, some
predictors were eliminated systematically by extracting the
random subnetworks from global interaction networks using
the established subnetwork extraction method proposed by
[53]. �e following paragraph explains how the subnetworks
are extracted.

�ere are numerous rules of thumb for the number of
observations needed per predictor variable. Reference [54]
suggested 10 observations for each predictor variable. In
the case of this study, since the experiment involved 4297
number of genes, the number of observations should be

42,970. Besides, as the maximum number of observations
in M3D was only 907, it was impossible for the MLR to be
employed for all the 4297 genes. Reference [41] suggested
to eliminate some predictors in order to solve problems
related to limited observations. With that, we propose the
predictors in the datasets to be eliminated by extracting the
subnetworks from the global datasets, where each of the
subnetworks consisted of less than 907 number of genes.
For all the three subnetworks used in this experiment, the
parameter seed was set to random vertex, while the neighbor
selection was set to random among top 10%. Random vertex
seed means, for each subnet, the extraction method starts
from a di
erent randomly picked seed node of the source
network. Setting some percentage for neighbor selection will
allow for tuning of the sampling strategy from pure modular
subnetwork extraction to random subnetwork extraction
[34]. �is setting adds some stochasticity to the subnetworks
as well.

9. Results of the Experiments

An experiment to assess the general performance of MLR
was conducted prior to the experiment that studied the
performance of MLR in predicting cascade motifs. �e
precascade motifs experiment was conducted to ensure that
the proposed model could at least achieve the acceptable
range of AUROC. In this work, where real complex data were
involved, AUROC ≥ 0.5 had been regarded as to achieve the
acceptable standard [55]. Table 3 shows the results of using
the datasets in natural settings, which means that the cascade
motifs were excluded on purpose.

Di
erent subnetworkswere tested to prove that, evenwith
di
erent group data, the results had been consistent. �ese
subnetworks consisted of di
erent network sizes, where the
extraction process has beendescribed in Section 8.�e results
show that all testing obtained AUROC > 0.5, which conceded
the researchers to further investigate the e
ects to the cascade
motifs. Table 4(a) shows that, out of 1348 cascade motifs in
set 1, only 10 errors (0.74%) are due to the cascade error. Set 2
does not contain any cascade error. Table 4(b) shows that Set
3 contains 94 cascade errors (7%) out of total 1348 cascade
motifs. From the results, it can be concluded that wrong
predictions due to cascade errors were very minimal, where
only two subnetworks have cascade errors and the amount is
less than 10% for both subnetworks.

Table 5 displays the AUROC values of the same exper-
iments that the results are shown in Tables 4(a) and 4(b).
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Table 4: (a) Results of the experiment that evaluated the GRN prediction performance in predicting cascade motifs. (b) Results of the
experiment that evaluated the GRN prediction performance in predicting cascade motifs.

(a)

Case
Total

cascade motifs

Total number of
“cascade motifs”

that match with GS
TRUE CASCADE

Multiple Linear
Regression

total number of
incorrect prediction
due to “cascade

errors”
CASCADE ERR

Percentage of
cascade motifs in

datasets

Set 1

gadE 105 29 3

0.16%

csgD 41 12 0

arcA 157 77 0

gadX 216 53 3

dcuR 21 15 0

marA 150 40 1

	s 658 173 3

Total 1348 399 10

Set 2

gadE 105 29 0

0.12%

csgD 41 12 0

arcA 157 77 0

gadX 216 53 0

dcuR 21 15 0

marA 150 40 0

	s 658 173 0

Total 1348 399 0

(b)

Case
Total

cascade motifs

Total number of
“cascade motifs”

that match with GS
TRUE CASCADE

Multiple Linear
Regression total

number of incorrect
prediction due to
“cascade errors”
CASCADE ERR

Percentage of
cascade motifs in

datasets

Set 3

gadE 105 29 3

0.54%

csgD 41 12 0

arcA 157 77 14

gadX 216 53 8

dcuR 21 15 5

marA 150 40 7

	s 658 173 57

Total 1348 399 94
∗∗Note:
(1) Percentage of cascade motifs in datasets ((Total cascade motifs – Total TRUE CASCADE)/Total number of possible edges) × 100.
(2) Refer to Table 4 for the total number of possible edges.
(3) Cascade motif is de	ned as A→ C for the case of A→ B→ C.
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Table 5: Characteristics of the datasets tested in the experiment and the AUROC results.

Set 1 Set 2 Set 3

Number of cascade motif genes in the tested datasets 363 360 160

Number of random genes in the tested datasets
(not redundant with cascade motif genes)

397 533 255

Total number of tested genes 760 893 415

Total number of possible edges 576,840 796,556 171,810

Total number of correct prediction (CORRECT PRED) 119 10 825

Total number of incorrect prediction 27,526 253 170,985

AUROC
0.511 0.502 0.662

Average: 0.5584
∗∗Note:
(1) Cascade motif genes (italic text) are referring to the gene itself. �is is not similar to cascade motif.
(2) Number of cascade motif genes in the tested datasets are obtained by comparing the cascade motifs genes with the genes in the datasets.
(3) Total number of possible edges = Total number of tested genes × (Total number of tested genes – 1).

Table 6: AUROC of selected methods on the M3D datasets of E. coli.

Methods References M3D Experimental data

ANOVA∗ [10] 0.798

One whole network of E. coli

Genie3∗ [56] 0.673

Pearson∗ [57] 0.646

MRNet∗ [58] 0.645

CLR∗ [59] 0.642

ARACNe∗ [60] 0.635

MLR �is article 0.558 Predetermined subnetworks that consist of expression data with added cascade motifs

Note: the results marked in ∗ are reported by [10].

�e AUROC values for all the three experiments had been
greater than 0.5, hence achieving an acceptableminimumand
surpassing the achievements of a GRN prediction method
[55]. Compare the two scenarios where (1) the prediction
is made on the entire E. coli experimental data and (2) the
prediction is applied to the subnetworks containing cascade
motifs. If the number of GRN relationships in the target
networks is 1000 and the number of wrong predictions is 10,
the percentage of correct predictions is 99%. Compared to
the second scenario (the experiment applied in this work),
with the small number ofGRN relationships, for example 100,
even though the number ofwrong predictions is similar to the
scenario (1), the percentage of correct prediction is 90% only.
Due to the large di
erence in terms of the number of genes
predicted, the results of our experiments could be said to have
achieved the acceptable level of performance.With the size of
the subnetworks involved in our experiments being 5 times
less than the size of a large network of E. coli, it is reasonable
that the acceptable level is assumed to be AUROC > 0.5.

Each of these datasets contains di
erent percentage of
cascade motifs (refer to Tables 4(a) and 4(b)) and di
erent
number of possible edges (refer to Table 5). �e mixture
of complexity level of all these datasets results in a small
di
erence betweenAUROC values achieved by all these three
datasets.�e narrow range and the consistent AUROC values
recorded by all three experiments proved that the results
of this experiment re�ected the overall ability of prediction
methods proposed in this project in resolving cascade errors.

�ree sets used in this experiment were carried out to ensure
that the study covered various subnetworks of a large network
of E. coli.

10. Comparison with the Other Methods

Table 6 shows the comparison of the method proposed with
other 6 selected methods, where the results were reported by
[10].

Compare the two scenarios where (1) the prediction is
made on the entire E. coli experimental data and (2) the
prediction is applied to the subnetworks containing cascade
motifs. If the number of GRN relationships in the target
networks is 1000 and the number of wrong predictions is 10,
the percentage of correct predictions is 99%. Compared to
the second scenario (the experiment applied in this work),
with the small number ofGRN relationships, for example 100,
even though the number ofwrong predictions is similar to the
scenario (1), the percentage of correct prediction is 90% only.
�us, the experimental results of this project could be said
to be highly comparable with other methods. �is is because
other methods of conducting experiments like scenario (1)
indeed tend to produce positive results, compared to the
prediction generated in this study. Moreover, with the size of
the subnetworks involved in the experiment being 5 times less
than the size of a large network of E. coli, it is reasonable that
the obtained AUROC value was slightly lower than that of
other methods.
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Table 7: CI and the level of collinearity [61].

Condition index (CI) Collinearity

5 < CI < 10 Weak

30 < CI < 100 Moderate to strong

CI > 100 Severe

11. Collinearity Diagnostics Test

Multicollinearity is a serious problem that may dramatically
a
ect the usefulness of a regression model [41]. �e exis-
tence of high correlations among the independent variables
in a regression model is known as multicollinearity [62].
Moreover, there are various methods for diagnosing multi-
collinearity, such as observing the values of Variance In�ation
Factors, Variance Proportions, and Principal Components
[62]. Eigensystem analysis [41] and Belsley collinearity diag-
nostics test are added to the list of diagnostics [61]. In this
study, the Belsley collinearity test was employed to determine
the degree of multicollinearity in the datasets. �e program
was run by using Matlab. Furthermore, [61] recommended
that the sources of collinearity to be diagnosed are (a) only for
those componentswith largeCI and (b) for those components
for which VDP (variance decomposition proportions) is
large (say, VDP > 0.5) on two or more variables. Besides,
numerical experiments by [61] indicated that the following
ranges (Table 7) are useful.

Table 8 shows sample of diagnostic test data. With the
Belsley method, more than 90% of the components exhibited
CIs greater than 100, indicating that the collinearity a
ected
the data severely. However, none of the VDPs had been
associated with all the large CIs that displayed values less than
0.5. Moreover, more information was sought from [62] where
they asserted that the multicollinearities in the data appear to
involve almost all variables when there is no large variance
proportion or VDP for the large CIs.

With the Belsley method, more than 90% of the com-
ponents exhibited CIs greater than 100, indicating that the
collinearity a
ected the data severely. However, none of the
VDPs had been associatedwith all the large CIs that displayed
values less than 0.5. Moreover, more information was sought
from [62] where they asserted that the multicollinearities in
the data appear to involve almost all variables when there is
no large variance proportion or VDP for the large CIs.

12. Analysis

Successful use of the mathematical model to solve prob-
lems in biological sciences requires understanding of the
theoretical underpinnings of the phenomena, the statistical
characteristics of the model, and the practical problems
that may be encountered when using these models in real-
life situations. Multiple Linear Regression (MLR) is a well-
known statistical method based on ordinary least squares
regression.�is operation involves a matrix inversion, which
leads to collinearity problems if the variables are not linearly
independent.

A�er applying MLR in this work, we identify several
limitations of MLR such as being unable to handle issue
of collinearity between independent variables (predictors),
being unable to cater for � ≤ � datasets, and MLR deal-
ing with only one response variable at a time. �e good
model for GRN inference should handles several responses
simultaneously. In MLR, the observed response values are
approximated by a linear combination of the values of the
predictors. �e coe�cients of that combination are called
regression coe�cients or�-coe�cients. In case of collinearity
among predictors, the �-coe�cients are not reliable and the
model may be unstable. MLR also tends to over	t when noisy
data is used.

�e practical problemsmost o�en encountered in regres-
sion analyses are outliers and in�uential observations, and
multicollinearity, as well as amodel with extraneous variables
[41, 62]. �e results of Belsley collinearity test performed in
this experiment proved thatmulticollinearity had a
ected the
datasets greatly. In the context of GRN, the most relevant
source of multicollinearity is the issue of an overde	ned
model. An overde	ned model has more regressor variables
than observations. �e overde	ned model is always encoun-
tered in biology experiments, where theremay be only a small
number of subjects available, and information is collected
for a large number of regressors on each subject. Reference
[41] pointed out three speci	c recommendations to eliminate
some of the regressors: (1) rede	ne the model in terms of
a smaller set of regressors, (2) perform preliminary studies
by using only subsets of the original regressors, and (3)
use principal-components-type regressionmethods to decide
which regressors to remove from themodel. As demonstrated
by our works, we eliminated some of the regressors by
extracting the subnetworks using a systematic approach (with
the help of tool named GNW). However, this approach
requires additional study that has to be conducted to ensure
that the interrelationships between the regressors are not
ignored.

13. Conclusion and Future Direction

�is research proposed an algorithm for reconstructing
GRN with the main aim to solve cascade error problem.
Nonetheless, this work di
ered from other manuscripts that
have been widely published in a way that it presented novel
experimental procedures to assess the e
ectiveness of GRN
inference method in dealing with cascade error. Besides,
from a detailed research on the nature and the source of the
data under study, regression analysis was chosen because it
establishes objective measures of relationships between the
predictor and the response variables. Based on the study
of all the regression techniques, MLR has been identi	ed
as the most suitable method to solve the cascade errors
because it takes into account the combination of e
ects
and simultaneous observations. �e resulting p value for
predictors that had been less than 0.05 was identi	ed as
the predictors that were used to create the response vari-
ables. �is study also evaluated the performance of MLR in
predicting the 3-node motifs. For path 1 → 2 → 3 as an
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Table 8: �e CIs and the VDPs of four genes from Set 3 as example of data generated from the diagnostic test.

condIdx aaeA b3241 14 aceA b4015 15 aceE b0114 15 aceF b0115 15

. . .
168.1754 0 0.0003 0 0

172.9103 0 0.0001 0.0001 0.0001

176.3094 0 0.0001 0.0001 0.0001

176.8486 0 0.0002 0 0

182.4254 0 0.0002 0 0

. . .

example, the occurrences of false prediction that suggested
the existence of a direct link between them (1 → 3) had
been investigated. �e experiment further revealed that the
number of cascade errors was very minimal at 2 out of 3
tested subnetworks. Despite the multicollinearity problem
and limited observations data, satisfactory results had been
achieved as all the tested subnetworks attained AUROC
values above 0.5.

MLR involves a matrix inversion, which leads to
collinearity problems if the variables are not linearly inde-
pendent. �e nature of GRN predictors is in contrast with
the requirements of MLR. For MLR, the ability to vary
independently of each other is a crucial requirement to
variables used as predictors. MLR also requires more samples
than predictors or the matrix cannot be inverted.

With regard to our experiment, even though MLR
appears to be able to handle cascade errors, the identi	ed
limitations detected in MLR make us recommend that other
regression technique shall be used to replace MLR with
GRN inference, particularly when � ≤ � type of datasets is
involved. Even though we have tried to eliminate some of the
predictors using a systematic approach (as proposed in this
work), that method requires more detailed study on how to
combine prediction on separated subnetworks to represent
the whole E. coli networks.
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