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Multiple mating and its relationship to alternative
modes of gestation in male-pregnant versus
female-pregnant fish species
John C. Avise1 and Jin-Xian Liu

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697

Contributed by John C. Avise, September 28, 2010 (sent for review August 20, 2010)

We construct a verbal and graphical theory (the “fecundity-limitation
hypothesis”) about how constraints on the brooding space for em-
bryos probably truncate individual fecundity in male-pregnant and
female-pregnant species in ways that should differentially influence
selection pressures for multiple mating by males or by females. We
then review the empirical literature on genetically deduced rates of
multiple mating by the embryo-brooding parent in various fish spe-
cies with three alternative categories of pregnancy: internal gesta-
tion by males, internal gestation by females, and external gestation
(in nests) by males. Multiple mating by the brooding gender was
common in all three forms of pregnancy. However, rates of multiple
mating as well as mate numbers for the pregnant parent averaged
higher in species with external as compared with internal male preg-
nancy, and also for dams in female-pregnant species versus sires in
male-pregnant species. These outcomes are all consistent with the
theory that different types of pregnancy have predictable conse-
quences for a parent’s brood space, its effective fecundity, its oppor-
tunities and rewards for producing half-sib clutches, and thereby
its exposure to selection pressures for seeking multiple mates. Over-
all, we try to fit these fecundity-limitation phenomena into a broader
conceptual framework for mating-system evolution that also in-
cludes anisogamy, sexual-selection gradients, parental investment,
and other selective factors that can influence the relative proclivities
of males versus females to seek multiple sexual partners.

genetic parentage | mating systems | microsatellites | pregnancy | sexual
selection

Many selective factors can influence the evolution of differ-
ences in mating tactics between males and females. At the

ultimate level of explanation, anisogamy (the pronounced size
difference between male and female gametes) helps to set the
evolutionary stage by making females intrinsically more fecundity-
limited than males (1, 2). At a penultimate level of explanation,
this potential fertility difference between the sexes often translates
into steeper sexual-selection gradients (3) for males than for
females, meaning that males in many species tend to profit more
than females (in terms of genetic fitness) from having multiple
mates (4). Because a male’s reproductive success can increase
greatly with mate count whereas a female’s reproductive success is
limited mostly by her fecundity regardless of mate number, males
in many animal species presumably are under stronger selection
pressure than females to seek multiple sexual partners. Finally,
selection pressures on male versus female mating behaviors can
further be impacted by numerous more proximate considerations
such as operational sex ratios in local populations (5, 6), relative
levels of parental investment in offspring (7, 8), and other species-
specific ecological and genetic factors that can differentially im-
pact the two sexes’ potential reproductive rates (9, 10) or their
variances in reproductive success (11, 12).
In taxa such as Syngnathidae (pipefishes and seahorses) that

display the phenomenon of male pregnancy, some of the evo-
lutionary ground rules described above can shift dramatically
(reviewed in ref. 13). In the ≈200 extant syngnathid species,
a male in effect is fecundity-limited (sometimes even more so
than a typical female) due to the finite size of the brood pouch

within which he must incubate the embryos that he has sired with
one or more mates (14–17). This inversion from the familiar
situation in female-pregnant animals apparently has translated in
some but not all syngnathid species into mating systems char-
acterized by “sex-role reversal” (18, 19): a higher intensity of
sexual selection on females than on males and an elaboration of
sexual secondary traits mostly in females. For one such pipefish
species, researchers also have documented that the sexual-
selection gradient for females is steeper than that for males (20).
More generally, fishes should be excellent subjects for as-

sessing how alternative types of pregnancy might influence the
evolution of genetic mating systems and sexual selection on
males versus females, because most fish have high fecundities
(many embryos per brood) and because both internal male
pregnancy and female pregnancy are displayed by various taxa.
Furthermore, males in many other taxonomic families of fishes
display what can be interpreted as “external pregnancy” wherein
each “bourgeois male” (21) builds a nest in which he tends the
embryos from one or more females whose eggs he himself has
mostly fertilized (22–25). Both internal and external pregnancy
in fishes imply a substantial energetic investment in offspring
care by the brooding sex.
For any type of pregnancy, multiple successful mating by the

adult caregiver is relatively straightforward to detect in nature
via molecular parentage analyses because each resulting brood of
half-sib embryos is physically associated with its pregnant sire or
pregnant dam. By contrast, documenting the frequency of mul-
tiple mating by members of the nonpregnant sex is much more
difficult because each such individual may have parented addi-
tional broods that did not happen to be included in the genetic
assays, and thus remain undetected. Thus arises another sexual
asymmetry relevant to the current discussion: For purely logis-
tical reasons, molecular parentage analyses usually are best-
suited for assessing rates of multiple paternity within the broods
of female-pregnant species (i.e., multiple mating by the females)
and multiple maternity within the broods of male-pregnant
species (i.e., multiple mating by the males), rather than vice versa
(26, 27).
Here we take advantage of all these facts by reviewing genetic

data on multiple mating by the brooding sex in fish species with
several alternative forms of pregnancy. We define an individual’s
fecundity (or maximum reproductive potential) as the number of
gametes it produces that stand a reasonably good prospect, given
the species’ biology, of contributing to successful embryos during
a breeding season or episode. Thus, in effect, both anisogamy
and pregnancy can be thought of as fecundity-truncating phe-
nomena for the gender in question, all else being equal. In other
words, brood space constrains the number of embryos that
a pregnant individual can parent, and the effect probably is more
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extreme for internal brooders than external brooders. However,
for any kind of pregnancy, each individual’s maximum fecundity
also depends on its mating habits. For example, in species with
female pregnancy, a polygynous male clearly has a much higher
reproductive potential than a monogamous male or a monoga-
mous or polyandrous female. [Here we define a polygamous
specimen (a polygynous male or a polyandrous female) as an in-
dividual that has two or more successful mates during a breeding
season or episode, whereas a monogamous specimen has only one
such mate]. In some but not all cases, an individual’s maximum
fecundity also depends upon that of its pregnant mate(s). For
example, in any species with internal pregnancy, the maximum
fecundity of a monogamous individual (but not a polygamous one)
is physically limited by the size of its mate’s brood chamber, which
places a ceiling on the number of embryos that can be brooded
successfully. Furthermore, that number of embryos is likely to be
lower than the number of eggs a female can produce, because
embryos take up more space than do unfertilized eggs. The broader
point is that each type of pregnancy in effect can truncate the fe-
cundity component of individual fitness in a predictable way and
thereby have profound consequences with respect to selective
pressures on both male and female mating behaviors.
Another general category of explanations for multiple mating

by pregnant males or pregnant females mostly sidesteps the
fecundity issue per se and focuses instead on other potential
fitness benefits from having multiple sexual partners. Regard-
less of its number of mates, each male or female in any sexual
species presumably can enhance its genetic fitness by choosing
one or more mates of the highest possible genetic quality. Thus,
for example, despite any inherent fecundity limitations imposed
by pregnancy, any sire in a male-pregnant species or any dam in
a female-pregnant species might in theory seek multiple mates
for any of the following reasons: more “nuptial gifts”; fertil-
ization insurance against the risk that a mate is sterile; higher
genetic diversity among the resulting half-sib progeny in the
brood [sometimes called genetic “bet-hedging” (28, 29)]; better
chances of finding a genetically compatible mate for the brood;
or more opportunities to imbue at least some of the offspring
with “good genes” for viability (30, 31). For current purposes,
we will interpret all such factors to be “bonus effects” that
might elevate a polygamous individual’s fitness above the fe-
cundity plateaus otherwise imposed by pregnancy or anisog-
amy. However, none of these bonus effects seems likely to
boost the genetic fitness of a polygamous individual nearly as

much as does the greater access to opposite-sex gametes that
multiple mating provides. Of course, multiple mating by either
sex can incur costs as well, such as the time and energy required
to secure mates and the increased chance of contracting a sex-
ually transmitted disease.
In any event, to distinguish between fecundity limitations

per se and other hypotheses for any disparity between rates of
multiple mating by males versus females, it should be helpful to
compare the incidences of multiple mating in numerous related
species in which an individual’s maximum fecundity varies pre-
dictably as a function of the type of pregnancy. Here we in-
troduce this approach by comparing genetically determined mate
numbers and rates of multiple mating for (i) males in fish species
with internal versus external male pregnancy, and (ii) males in
male-pregnant fish species vis-à-vis females in female-pregnant
fishes. We review the genetic literature on rates of multiple
maternity within broods of male-pregnant fish species and rates
of multiple paternity within broods of female-pregnant fishes.
We then discuss the results in the framework of traditional
mating-system theory as amended for the special circumstance in
which brood space itself imposes specifiable limits on the fe-
cundity of pregnant individuals and their mates.

Results
Fecundity-Limitation Scenario: Pregnancy’s Potential Impacts on Multiple
Mating. Fig. 1 encapsulates our current theoretical scenario for how
alternative forms of pregnancy might limit each individual’s fecun-
dity in ways that should influence the selective pressures on males
or females to seek multiple mates. In general, the phenomenon of
pregnancy physically constrains an individual’s potential fecundity
(and genetic fitness) by placing an upper limit (available brood
space for embryos) on the number of progeny that a pregnant in-
dividual and its partner(s) can produce during each reproductive
season or episode. For a species in which the pregnant gender is
female (Fig. 1C), one effect of this truncation is to modestly lower
each dam’s fecundity below the relatively low value (compared with
a male; Fig. 1A) that already existed due to anisogamy per se.
However, for a species in which the pregnant gender is male (Fig.
1 B andD), a male’s maximum fecundity can fall dramatically below
what it otherwise might be in the absence of the male-pregnancy
phenomenon (Fig. 1A). This basic asymmetry between the sexes in
the fitness-truncating effects of internal gestation is presumably one
reason (among many) why male pregnancy is less common than
female pregnancy in the biological world. However, the truncation

polygynous male
polyandrous female

monogamous male
monogamous female

A no pregnancy

maximum individual fecundity (or fitness)

(truncation effects
due ultimately
to anisogamy)

(additional truncation effects
due to various forms of

"pregnancy")

polygynous male
polyandrous female

monogamous male
monogamous female

C internal female-pregnancy

D internal male-pregnancy
polygynous male

polyandrous female
monogamous male

monogamous female

polygynous male
polyandrous female

monogamous male
monogamous female

B external "male-pregnancy" (nests)

highest ceiling

: "bonus" fitness due to
multiple-mating per se

Fig. 1. General expectations about the maximum po-
tential fecundities (potential reproductive rates) of mo-
nogamous and polygamous males and females in species
displaying each of four different categories of preg-
nancy: (A) no pregnancy (i.e., external fertilization with
no brooding chamber for the embryos); (B) external male
pregnancy (e.g., embryos brooded in male-tended nests);
(C) internal female pregnancy (gestation inside the dam’s
body); and (D) internal male pregnancy (gestation inside
the sire’s body). In each case, anisogamy operates either
alone (A) or in conjunction with pregnancy-imposed lim-
itations on brooding space (B–D) to truncate an individ-
ual’s maximum fecundity well below the level that could
otherwise be attained in the absence of these effects.
The hatched bars indicate additional or bonus fitness
effects (see text) that might apply to polygamous versus
monogamous individuals in any of the four pregnancy
categories.
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effect on a male’s fecundity is probably less severe under external
pregnancy (Fig. 1B) than it is under internal male pregnancy (Fig.
1D), due to the likelihood that more brooding space for embryos is
available within a nest than within a male’s internal brood
chamber. Nevertheless, internal male pregnancy is ubiquitous
in the Syngnathidae.
Fig. 2 summarizes all of these theoretical expectations in an-

other format: as sexual-selection gradients for males (Upper)
versus females (Lower). For each line in each graph, the left-
hand intercept at “one mate” indicates a focal individual’s
maximum fecundity (as dictated by the various types of preg-
nancy within a species) if he or she has paired with only one
sexual partner, and each slope shows the focal individual’s po-
tential increase in fecundity as he or she acquires additional
mates. Thus, the topmost lines in the two graphs show the
steeper Bateman gradients generally expected for males than for
females in many nonpregnant species, and the intercepts and
slopes of the other lines predict how brood-space restrictions
imposed by the three different types of pregnancy should lower
these maximum fecundity potentials for particular males and
females that are monogamous or polygamous.
To make the predictions in Fig. 2 somewhat more concrete,

assume for example that the internal brood pouch of a pregnant
male or a pregnant female can hold at most 25 embryos whereas
an external nest can accommodate hundreds or more embryos

(such values are typical for many pregnant fish species in nature).
Thus, as shown in the upper half of Fig. 2, the left-hand intercept
(a monogamous male’s maximum fitness) for species with either
form of internal pregnancy is lower than that for external preg-
nancy. As also shown in the top half of Fig. 2, the flat slope of the
fecundity line for species with internal male pregnancy reflects
the fact that a pregnant male’s reproductive potential is trun-
cated at 25 (in this case), regardless of how many mates he
acquires; the moderate but similar initial slopes in the lines for
internal female pregnancy and external male pregnancy reflect
the fact that a polygynous male can expect substantial but pro-
portionately similar gains in reproductive success by acquiring
multiple mates in these two situations. With respect to the lower
half of Fig. 2, analogous arguments can be made for how a female’s
fecundity presumably varies as a function of her number of mates
in species with these various pregnancy modes. Note also, however,
that the intercepts are lower and most of the slopes are shallower
in the bottom half of the figure than their counterparts in the upper
half, due ultimately to the fact that anisogamy limits the maximum
fecundity that any female can achieve.

Empirical Data: Incidences of Multiple Mating Under Different
Pregnancy Modes. Our literature review uncovered estimates of
mate numbers and rates of multiple mating by the brooding sex
in a total of more than 760 sampled broods representing 29 fish
species with one or another mode of pregnancy (Table 1). Fig. 3
provides a pictorial overview of these findings across all broods,
and Fig. 4 further breaks down these reports for species dis-
playing the three categories of pregnancy that we wish to com-
pare. The papers included approximately equal numbers of
species (10, 8, and 11) and comparable numbers of broods (ca
295, 238, and 232) from fishes with internal female pregnancy,
internal male pregnancy, and external male pregnancy, respec-
tively. We found no reports for species with “external female
pregnancy” (which is a rare phenomenon in fishes).
Both the frequencies of multiple mating by the brooding sex

(42–89%) and the mean number of mates per brood (1.7–3.6)
were quite high for fish species in all three categories of preg-
nancy (Figs. 3 and 4; Table 1). Furthermore, the mean numbers
of mates per brood were significantly higher in nest-tending fishes
than in those with either internal male pregnancy or female
pregnancy, and also tended to be higher in fishes with female
pregnancy compared with those with internal male pregnancy
(Figs. 3 and 4; Table 2). These outcomes were statistically highly
significant when the data were analyzed on a per-brood basis (in
which case each assayed brood receives equal weighting), and the
trends were also in the same direction, albeit sometimes only
marginally significant, for data analyzed on a per-species basis (in
which case each species receives equal weight regardless of how
many broods were genotyped) (Fig. 4; Table 2).

Discussion
Although the effect of anisogamy on female fecundity is widely
acknowledged to be a key selective factor that ultimately un-
derlies the evolution of different mating behaviors by the two
sexes in most animal species, much less attention has been de-
voted to how the phenomenon of pregnancy might further im-
pact genetic mating systems. By placing a physical constraint
on the space available for brooding embryos, pregnancy can
dramatically truncate the fecundity potential of a pregnant in-
dividual and its mate(s), with sometimes major consequences—
such as in the evolution of classical polyandry in some fish
species with male pregnancy (58). Furthermore, the fecundity-
truncation effect of internal pregnancy goes beyond what an-
isogamy imposes, and it can apply to members of both sexes
depending on which sex does the brooding. Here we have used
graphical and verbal arguments to speculate how various forms
of pregnancy might impact the evolution of fish mating systems.
We have also summarized the empirical genetic-parentage lit-
erature on estimated rates of multiple mating by the embryo-
brooding parent in fish species with male pregnancy vis-à-vis

number of mates

maximum
male

fecundity

maximum
female

fecundity

no pregnancy

external male-pregnancy

internal female-pregnancy

internal male-pregnancy

internal female-pregnancy

no pregnancy or
external male-pregnancy

internal male-pregnancy

nature of pregnancy
in the species

1 2 3 ...

1 2 3 ...

Fig. 2. Theoretical sexual-selection gradients (or Bateman gradients) for
males (Upper) and females (Lower) in species displaying each of four dif-
ferent categories of pregnancy: no pregnancy (i.e., external fertilization
with no brooding chamber for the embryos); external male pregnancy (e.g.,
embryos brooded in male-tended nests); internal female pregnancy (gesta-
tion inside the dam’s body); and internal male pregnancy (gestation inside
the sire’s body). The generally lower maximum fertilities for females than for
males reflect mostly the effects of anisogamy. The “no-pregnancy” lines in
the two graphs reflect the standard situation for many species in which
Bateman gradients are expected to be steeper for males than females. The
relative heights and slopes of various other lines in the graphs depart from
these no-pregnancy baselines due to brood-space limitations for the de-
veloping embryos in the various forms of pregnancy (see also text and
Fig. 1). The positive initial slope in the Bateman gradient for females in
species with internal male pregnancy further assumes (as is true in many
syngnathid fishes) that a female can produce more eggs than a male can
fertilize and incubate.
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those with female pregnancy. Although multiple mating by the
brooding gender is not the same as multiple paternity or multiple
maternity (59), the latter do register the realized or the genetic
(as opposed to merely the social) mating system of a species and
hence should be especially germane for understanding selection
pressures that might have impacted the evolution of mating
behaviors.
Our review of genetic parentage in pregnant fish species un-

covered the following: (i) broods in all categories of pregnant
fishes routinely consist of groups of half-sib progeny, thus evi-
dencing high rates of multiple mating by the brooding parent; (ii)
fishes with external male pregnancy (the nest tenders) have sig-
nificantly higher incidences of multiple maternity than do fish
species in which males carry the embryos internally; and (iii)
incidences of multiple paternity within broods of female-pregnant
fish species are significantly higher than incidences of multiple
maternity within the broods of male-pregnant fishes.
Can these empirical observations be reconciled with the the-

oretical framework outlined earlier (Figs. 1 and 2)? Under that
theory, several qualitative predictions can be made with regard

to how the fecundity-truncating effects of pregnancy and an-
isogamy might impact the evolution of mating behaviors and
genetic mating systems in fishes. First, because of the high but
sex-specific fecundities of males and females in many fish species
with pregnancy, and because brooding space provided by the
pregnant parent can be a limiting resource in reproduction,
members of the nonpregnant sex generally should be under
strong selection to seek and welcome mating opportunities with
members of the pregnant sex. This expectation is thus consistent
with observation (i) in the preceding paragraph.
Second, due to the fact that internal brood space is more

limited than brooding space in nests, nest-tending bourgeois
males generally should be under stronger selection (as well as
have greater physical scope) for successfully rearing broods from
multiple females than should males in species with internal male
pregnancy. This expectation is thus consistent with observation
(ii) above. Third, given the fact (due to anisogamy) that gravid
females in female-pregnant species can physically accept many
more sperm cells than can males accept eggs in male-pregnant
species, opportunities for multiple mating should be higher for

Table 1. Multiple mating in microsatellite-based studies of genetic parentage of wild fishes with internal female pregnancy, internal
male pregnancy, and external male pregnancy (nest tending)

Species
No. of clutches

examined
Frequency of multiple

mating (%)
Mean no. of mates

(range) Ref.

Female-pregnant species
Swordtail, Xiphophorus multilineatus 18 28 (5/18) 1.4 (1–3) (32)
Green swordtail, Xiphophorus helleri 69 64 (44/69) 1.8 (1–4) (33)
Green swordtail, Xiphophorus helleri 14 57 (8/14) 1.7 (1–2) (34)
Guppy, Poecilia reticulata 22 95 (21/22) 3.0 (1–6) (35)
Guppy, Poecilia reticulata 101* 95 (96/101) 3.5 (1–9) (36)†

Mosquitofish, Gambusia holbrooki 50 86 (43/50) 2.2 (1–3) (37)
Least killifish, Heterandria formosa 36‡ 47 (17/36) 1.5 (N/A) (38)†

Black surfperch, Embiotoca jacksoni 12 100 (12/12) 3.6 (2–6) (39)
Striped surfperch, Embiotoca lateralis 12 100 (12/12) 3.5 (2–9) (39)
Shiner perch, Cymatogaster aggregata 27 96 (26/27) 4.6 (1–8) Table S1
Pacific ocean perch, Sebastes alutus 66 71 (47/66) 1.9 (1–4) (40)
Black rockfish, Sebastes inermis 5 20 (1/5) 1.2 (1–2) (41)

Male-pregnant species
Gulf pipefish, Syngnathus scovelli 40 3 (1/40) 1 (1–2) (14)
Dusky pipefish, Syngnathus floridae 22 73 (16/22) 1.9 (1–3) (15)
Dusky pipefish, Syngnathus floridae 52§ 85 (44/52) 2.3 (1–4) (42)
Broad-nosed pipefish, Syngnathus typhle 30 90 (27/30) 3.1 (1–6) (17)
Broad-nosed pipefish, Syngnathus typhle 38¶ 76 (29/38) 2.7 (1–5) (43)
Bay pipefish, Syngnathus leptorhynchus 7 86 (6/7) 2.1 (1–3) (44)
Barred pipefish, Syngnathus auliscus 7 86 (6/7) 2.1 (1–3) (44)
Straight-nosed pipefish, Nerophis ophidian 15 0 (0/15) 1 (1) (45)
Western Australian seahorse, Hippocampus angustus 15 0 (0/15) 1 (1) (16)
Pot-bellied seahorse, Hippocampus abdominalis 12 0 (0/12) 1 (1) (46)

Male nest-tending species
Redbreast sunfish, Lepomis auritus 25 100 (25/25) 3.6 (2–6) (47)
Spotted sunfish, Lepomis punctatus 30 93 (28/30) 4.4 (1–6) (48)
Dollar sunfish, Lepomis marginatus 23 83 (19/23) 2.5 (1–7) (49)
Tessellated darter, Etheostoma olmstedi 13 94 (15/16) 3.2 (1–4) (50)
Fifteenspine stickleback, Spinachia spinachia 25 68 (17/25) 2.6 (1–7) (51)
Sand goby, Pomatoschistus minutus 24 100 (24/24) 3.4 (2–6) (52)
Striped darter, Etheostoma virgatum 20 100 (24/24) 4.7 (2–7) (53)
Mottled sculpin, Cottus bairdi 23 74 (17/23) 2.8 (1–6) (54)
Molly Miller, Scartella cristata 23 100 (23/23) 4.9 (3–8) (55)
Channel catfish, Ictalurus punctatus 5 0 (0/5) 1 (1) (56)
Two-spotted goby, Gobiusculus flavescens 21 100 (21/21) 4.3 (2–6) (57)

N/A, not available.
*Data from 10 populations combined.
†Data not used in brood analysis.
‡Data from 3 populations combined.
§Data from 2 populations combined.
¶Data from 4 populations combined.

18918 | www.pnas.org/cgi/doi/10.1073/pnas.1013786107 Avise and Liu

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013786107/-/DCSupplemental/pnas.201013786SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/doi/10.1073/pnas.1013786107


pregnant females than for pregnant males, all else being equal.
This prediction is thus consistent with observation (iii) above. On
the other hand, similarly flat Bateman gradients (compare the
lowest lines in the upper and lower panels of Fig. 2) imply that
there is otherwise no compelling reason to suspect that male-
pregnant fish should experience pronounced differences from
female-pregnant fish with respect to selective benefits from having
multiple mates. By this reasoning, perhaps it is not surprising that
although rates of multiple mating in female-pregnant fishes were
significantly higher than those in male-pregnant fishes, the mag-
nitude of this difference was not very large (Figs. 3 and 4).
Overall, all categories of pregnancy in fishes appear to be as-

sociated with high rates of successful multiple mating by the
brooding sex. Thus, another kind of interpretation is simply that
multiple mating by the pregnant gender routinely confers im-
portant reproductive payoffs to the participants regardless of
whether it is the sire or the dam that gestates the resulting half-
sib cohorts. One possibility is that multiple mating may have
larger bonus fitness effects than we have heretofore assumed
(Fig. 1). In other words, perhaps all pregnant fish parents benefit
substantially from having two or more mates for reasons having
to do with factors such as better genes for their progeny, higher
genetic diversity within their broods, or other such reproductive
bonuses that in some cases may derive from improved offspring
viability rather than from an enhanced parental fecundity per se.
If so, selection pressures could favor the evolution of multiple-
mating tendencies by females as well as males in almost any fish
species (with or without the phenomenon of pregnancy, and
regardless of which sex might provide any gestation services).
Currently available genetic-parentage data, which have docu-
mented high rates of multiple mating by both sexes in a wide va-
riety of fish species, would not be inconsistent with this possibility.
The current study is only a first step toward understanding how

alternative expressions of pregnancy impact the evolution of

animal mating behaviors. A more comprehensive theory will
have to incorporate many considerations beyond parental fe-
cundity itself, such as how various forms of pregnancy differen-
tially affect survivorship (for example, embryonic mortality might
be much higher in nest-tending species than in those that carry
their broods internally). Another major challenge will be to
formalize how selection pressures related to pregnancy might
impact an individual’s lifetime genetic fitness (i.e., its future as
well as current reproductive success). This task too will require
examining tradeoffs: between fecundity and survival, and be-
tween natural and sexual selection.
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Fig. 4. Frequencies of multiple mating by the brooding sex and estimated
mate numbers (plus their SEs) in 765 genetically monitored “pregnancies”
representing 29 fish species that display internal gestation by females, in-
ternal gestation by males, or external gestation by nest-tending males.

Table 2. Comparisons of multiple-mating parameters (two-tailed t tests assuming unequal
variances, as calculated in Microsoft Excel) for fishes with different forms of pregnancy. Similar
statistical outcomes emerged from a one-way ANOVA followed by a post hoc Tukey test (in
XLSTAT)

Comparison t statistic Df P

No. of successful mates based on per-brood data
Internal female pregnancy vs. internal male pregnancy 3.30 531 0.00
External male pregnancy vs. internal female pregnancy 9.67 467 0.00
External male pregnancy vs. internal male pregnancy 12.94 417 0.00

No. of successful mates based on per-species data
Internal female pregnancy vs. internal male pregnancy 1.83 15 0.09 (0.04*)
External male pregnancy vs. internal female pregnancy 1.76 19 0.09 (0.04*)
External male pregnancy vs. internal male pregnancy 3.96 17 0.00

*These t statistics are significant in a directional one-tailed t test.
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Materials and Methods
Our literature review, conducted in the summer of 2010, sought to identify
all substantive papers that have reported rates of multiple paternity or
maternity, respectively, within the broods of female-pregnant and male-
pregnant fish species, as estimated from parentage analyses using highly
polymorphic molecular markers (typically microsatellite loci). For each such
paper, we summarized reported information on the proportion of broods
with multiple sires or dams as well as mate numbers for the brooding sex.

Different authors sometimes used slightly different statistical procedures (60) to

estimate the incidence of multiple mating by the brooding sex, but we have

accepted the authors’ reported values without further statistical adjustments.
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