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It has become widely accepted that the most dangerous cardiac arrhythmias are due to reentrant

waves, i.e., electrical wave~s! that recirculate repeatedly throughout the tissue at a higher frequency

than the waves produced by the heart’s natural pacemaker ~sinoatrial node!. However, the

complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, have made

it extremely difficult to pinpoint the detailed dynamics of these life-threatening reentrant

arrhythmias. A simplified ionic model of the cardiac action potential ~AP!, which can be fitted to a

wide variety of experimentally and numerically obtained mesoscopic characteristics of cardiac

tissue such as AP shape and restitution of AP duration and conduction velocity, is used to explain

many different mechanisms of spiral wave breakup which in principle can occur in cardiac tissue.

Some, but not all, of these mechanisms have been observed before using other models; therefore, the

purpose of this paper is to demonstrate them using just one framework model and to explain the

different parameter regimes or physiological properties necessary for each mechanism ~such as high

or low excitability, corresponding to normal or ischemic tissue, spiral tip trajectory types, and tissue

structures such as rotational anisotropy and periodic boundary conditions!. Each mechanism is

compared with data from other ionic models or experiments to illustrate that they are not

model-specific phenomena. Movies showing all the breakup mechanisms are available at http://

arrhythmia.hofstra.edu/breakup and at ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-12-039203/

INDEX.html. The fact that many different breakup mechanisms exist has important implications for

antiarrhythmic drug design and for comparisons of fibrillation experiments using different species,

electromechanical uncoupling drugs, and initiation protocols. © 2002 American Institute of

Physics. @DOI: 10.1063/1.1504242#

Cardiovascular disease remains the most prevalent cause

of death in the industrialized world. In the United States,

an estimated 10% of all deaths are sudden and are mostly

due to ventricular fibrillation, a fast-developing distur-

bance in heart rhythm that disrupts the coordinated con-

tractions and renders the heart unable to pump blood

effectively. After decades of research, researchers still are

left with an incomplete understanding of how arrhyth-

mias like ventricular fibrillation initiate and evolve. Al-

though the advent of implantable devices has yielded

much success in avoiding arrhythmic episodes in patients

diagnosed with a predisposition to ventricular arrhyth-

mia, antiarrhythmic drug therapy is not always success-

ful. In some cases drug use actually increased mortality,

findings that underscore the lack of understanding of the

mechanisms responsible for fibrillation. Experimental

work has shown that some atrial and ventricular ar-

rhythmias begin with the presence of scroll waves of elec-

trical activation that rotate at higher frequencies than the

heart’s natural pacemaker, preventing normal function.

In many cases, existing scroll waves have been found to

break and to form new waves, which in turn yield further

breakup and more waves. Many theories have been de-

veloped to explain how breakup occurs. In this paper, we

use a single mathematical model of cellular electrical

activity to demonstrate, categorize, and explain many of

the mechanisms proposed here and elsewhere and to dis-

cuss the implications of the existence of multiple mecha-

nisms. Movies showing all the breakup mechanisms are

available at http:ÕÕarrhythmia.hofstra.eduÕbreakup and

at ftp:ÕÕftp.aip.orgÕepapsÕchaosÕE-CHAOEH-12-039203Õ

INDEX.html.236

I. INTRODUCTION

Cardiovascular disease is the most common cause of

death in the industrialized world, with serious health and

economic impacts. Nearly one million deaths annually are

caused by cardiovascular disease in the United States alone,a!Electronic mail: fenton@presto.physics.neu.edu
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or over 40% of all deaths.1 Almost 25% of these are victims

of cardiac arrest,1 of whom an estimated 95% die before

reaching the hospital.1 Most of these are sudden cardiac

deaths2 attributed to ventricular fibrillation ~VF!, a fast-

developing electrical disturbance in the heart’s rhythm that

renders it unable to pump blood. While implantable cardio-

verter defibrillators have been highly successful in terminat-

ing arrhythmic episodes in patients with diagnosed heart dis-

ease, studies indicate that more than half of sudden cardiac

deaths arise in individuals with no previous symptoms.1,3

Atrial fibrillation, although not as immediately life-

threatening as ventricular fibrillation, causes an estimated

15% of all strokes due to clot formation from stagnation of

blood in the atria.1 Thus cardiac fibrillation remains a serious

health problem.

Fibrillation arises when the heart’s usual electrical

rhythm is disturbed. Whereas the heart’s muscular contrac-

tion usually is smooth and coordinated due to a single wave

of electrical excitation that signals the cells to contract, dur-

ing fibrillation the normal electrical signal is masked by

higher frequency circulating activation waves, leading to

small and out-of-phase localized contractions. Although

some cases of fibrillation may be attributed to rapid forma-

tion of impulses arising from multiple spontaneous foci,4

which is known to occur experimentally5 in cultured ven-

tricular muscle and atrial tissue,6,7 the most prevalent hy-

pothesis is that during fibrillation, at least one8–11 and possi-

bly many11–17 three-dimensional spirals or scroll waves of

electrical activation are present, which have been observed

experimentally in many preparations. Therefore, the dynami-

cal complexity that can be observed on the surface of the

heart may be due to multiple scroll waves with short and

long life spans due to collisions and various tissue heteroge-

neities, with the observed activity rendered more complex by

the high degree of rotational anisotropy in the tissue.

Although the general processes that produce fibrillation

have been characterized, the precise mechanisms responsible

for its onset and maintenance are not yet understood. The

consequences of incomplete knowledge of arrhythmia

mechanisms have been illustrated dramatically in the results

of several antiarrhythmic drug trials, most notably the

CAST18,19 and SWORD20 trials, in which mortality in-

creased for post-myocardial infarction ~MI! patients receiv-

ing pharmacotherapy compared to placebo. In the CAST tri-

als, the drugs being tested reduced the occurrence of

premature ventricular contractions ~PVCs!, phenomena that

can trigger arrhythmias under the right conditions. By reduc-

ing the number of PVCs, it was hypothesized that the likeli-

hood of arrhythmia initiation would be reduced as well.

However, this did not turn out to be the case, as those PVCs

that did occur were far more likely to induce fibrillation than

without drugs. The CAST18 trial of encainide and flecainide

was stopped after a mean follow-up of 10 months, since at

that time a total of 148 deaths, 106 in the antiarrhythmic

drug group versus 42 in the placebo group, had been regis-

tered out of the 1498 initial patients, producing a relative risk

of 2.5. Similarly, the CAST II19 trial using moricizine was

terminated after studying the effects of therapy during a 14-

day exposure period in which a total of 20 deaths, 17 with

antiarrhythmic therapy versus 3 with placebo, had occurred

out of 665 in the study group, yielding a relative risk of 5.6.

In the SWORD trial, the pure potassium channel blocker

d-sotalol was tested on the assumption that prolongation of

the action potential duration might be protective and reduce

all-cause mortality in high-risk patients with MI and left ven-

tricular dysfunction, a hypothesis based on studies using

amiodarone, a class III antiarrhythmic drug which showed

potential for improving survival rate. Previous experiments

also had shown antiarrhythmic effects for d-sotalol, such as

non-inducibility of ventricular tachycardia ~VT! in rabbit

preparations.21 The SWORD trial was terminated after a

mean follow-up of 148 days because of an increase in mor-

tality in patients taking d-sotalol ~78 deaths versus 48 for

placebo out of 3121 patients, with a relative risk of 1.65!.

From the results of these trials, it is clear that a detailed

understanding of arrhythmogenic mechanisms is needed so

that the experiences of the CAST and SWORD trials are not

repeated. In addition, the failure of the PVC suppression hy-

pothesis, as evidenced in the CAST trial results, suggests that

more than one mechanism can produce fibrillation,22,23 in

which case trying to suppress one mechanism possibly can

enhance another.

Much of our understanding of arrhythmia mechanisms

has come from experiments in different preparations, most of

which have been conducted in single cells or in small tissue

preparations using surface arrays of electrodes. Over the last

decade, optical mapping techniques24 that allow visualization

of the surface potentials at all sites have advanced substan-

tially, increasing our understanding of arrhythmia dynamics,

but intramural dynamics have remained largely hidden. Re-

cently developed transmural recording techniques such as

transillumination25 and optical fibers,26 both of which use

voltage-sensitive dyes, and fiberglass needle electrodes27

may address this limitation by allowing further investigation

of the intramural dynamics and illuminating some of the

mechanisms underlying fibrillation.

On the other hand, for over half a century, computer

simulations have complemented traditional animal experi-

ments and have contributed to the understanding of arrhyth-

mias. In the 1940s, Wiener and Rosenblueth28 began the field

of computational cardiac electrophysiology by using a

simple cellular automata model to describe action potential

dynamics and to investigate the conditions under which ar-

rhythmias could develop. Despite the simplicity of their

models, they explained how reentrant waves could circulate

around obstacles and provided a theoretical framework for

the circulating waves observed in cardiac tissue experiments

by Mines29 in 1913 and Garrey in 1914.30 @McWilliams31

first suggested the concept of reentry as one of the mecha-

nisms responsible for the onset of cardiac arrhythmias in

1887.# In the 1960s, Moe32 and collaborators33 expanded the

simple cellular automata model of Wiener and Rosenblueth

by adding more states and introducing a degree of random-

ness in the refractory period duration. Their contributions

produced a dispersion of refractoriness and under certain

conditions allowed reentrant excitations ~spiral waves! that

did not require an anchoring obstacle to rotate and that could

break into multiple wavelets reminiscent of experimentally
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observed fibrillatory patterns. By the 1960s and early 1970s,

continuous models of general excitable media were intro-

duced and were used to demonstrate the existence of spiral

waves in isotropic tissue. With increased computer power by

the early 1990s, many mechanisms of spiral wave breakup

were demonstrated in two dimensions.34 –38 By the late 1990s

and early 2000s, simulations have advanced to examine

three-dimensional effects,39 including rotational aniso-

tropy,40,41 and are beginning to investigate the contributions

of anatomical structures to arrhythmogenesis.42–45 Together,

the simulation results of the last several decades have ad-

vanced spiral wave theory by proposing various mechanisms

for the onset and evolution of spiral wave breakup.

In this paper, we discuss a number of mechanisms of

spiral wave breakup that have been hypothesized to contrib-

ute to arrhythmia initiation and maintenance in homogeneous

cardiac tissue. While some of these mechanisms ~but not all!
have been described before, each using one particular ionic

model and thus requiring the use of several different models

to show all the mechanisms, we intend to demonstrate all of

them using one single model, for two reasons. First, illustrat-

ing all the mechanisms using only one model shows that they

are model-independent phenomena. Second, analyzing how

these different mechanisms relate to parameter regimes cor-

responding to different electrophysiological properties within

the context of one model facilitates comparison of the re-

quirements for each mechanism that can underlie the transi-

tion from tachycardia to fibrillation.

The rest of this paper is organized as follows. In Sec. II

we review the restitution properties of action potential dura-

tion and conduction velocity, which are mesoscopic charac-

teristics that can help in describing cardiac tissue, along with

the different trajectories and dynamics of stable spiral waves.

In Sec. III we discuss the simplified ionic model used and its

parameters. Section IV describes six different mechanisms

for spiral wave breakup in two dimension. In Sec. V we

show a quasi-three-dimensional case where boundary effects

can become important in some regimes. Section VI describes

three different mechanisms that can occur in three dimen-

sions ~3D!. In Sec. VII we discuss the ten mechanisms de-

scribed earlier and the implications of our results. Section

VIII presents conclusions and summarizes further prospects.

Finally, in the Appendix, the equations and model parameters

for all simulations, a description of the protocol used to mea-

sure restitution curves, and a brief discussion of numerical

methods are presented. We note that although ten parameter

sets are listed and ten breakup mechanisms are presented,

there is not a one-to-one correspondence between them.

II. REVIEW

In this section we describe two mesoscopic characteris-

tics found in cardiac tissue, namely action potential duration

restitution and conduction velocity restitution. @Throughout

this paper, the term mesoscopic is used to describe properties

at scales intermediate between subcellular and whole organ.#
These restitution properties incorporate in a functional form

the ionic complexity underlying the relationship of pulse du-

ration and velocity with respect to the previous activation

state. In addition, we describe many possible types of spiral

wave tip trajectories in cardiac models.

A. Restitution of action potential duration and
conduction velocity

When the heart beats at a faster rate than normal, such as

during increased physical activity, the relative durations of

systole and diastole are adjusted to ensure that both filling of

the chambers and ejection of blood occur efficiently. An in-

crease in frequency without a change in the systole duration

would lead to a disproportionate decrease in the correspond-

ing diastole duration, and at high frequencies, the ventricles

would not be filled before contracting. For this reason, if a

second action potential is initiated soon after the first, when

not all ionic processes have recovered fully to their rest

states, the duration of the second action potential is shorter

than the first because the transmembrane current is reduced.

It follows that an action potential duration ~APD! is a func-

tion of both the previous APDs and the time between exci-

tations, also known as the recovery time or diastolic interval

~DI!. The function depends on the different characteristics of

all the ionic currents found in cardiac cells; however, the

mesoscopic dynamics of the depolarization wave front and

repolarization wave back, as well as the interaction between

these two fronts, can be obtained by using simple experimen-

tal curves relating only APDs to DIs. These curves com-

monly are referred to as APD restitution curves ~for example,

see Fig. 4 and other figures throughout the text!. Note that

distinguishing the APD from the DI requires defining a volt-

age cutoff during repolarization. In general, a percentage of

the voltage repolarization ~e.g., 80%! is used as a threshold

to separate the APD from the DI, and the cutoff is indicated

by writing the percentage as a subscript ~e.g., APD80).

Throughout this manuscript we use the 80% cutoff (APD80)

when calculating restitutions. In addition, we note that resti-

tution curves measured in a single cell can differ from those

obtained in cables or whole tissue due to the presence of

electrotonic effects, as described further in Sec. VII. All APD

restitution curves presented in this paper were obtained in

one-dimensional ~1D! cables ~see the Appendix for more de-

tails!.
A second fundamental mesoscopic property of excitable

media and thus cardiac tissue is the restitution of conduction

velocity. When a sequence of propagating pulses is pro-

duced, the influence of the preceding pulse on the subsequent

one is reflected not only in its action potential duration but

also in its propagation speed. Conduction velocity restitution,

therefore, is the direct analog of APD restitution in the sense

that it relates the speed of a pulse at a given site to the

recovery time at that site or its preceding DI ~for example,

see Fig. 5 and other figures throughout the text!. The CV

depends on the orientation of the wave front with respect to

the fiber axis of the cells. However, in a continuous medium

with straight, parallel fibers, we can arbitrarily choose to de-

fine the fiber axis parallel to a coordinate axis. Conduction

generally is slower in partially recovered tissue, so that the

CV decreases with decreasing DI to a minimum velocity

greater than zero. This means that propagation fails for any

DI shorter than the minimum DI. Like the APD restitution,
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CV restitution curves in this paper were calculated in 1D

cables. Additional details are given in the Appendix.

The APD and CV restitution curves are fundamental to

characterizing the wave dynamics of the system, since as a

first approximation they reflect the mesoscopic effects of

changes that occur in ionic currents and concentrations at the

cellular level. The importance of restitution in understanding

cardiac dynamics has been emphasized in numerous

numerical34,35,46–50 and experimental studies.51–58

B. Spiral wave tip trajectories

Spiral waves in cardiac tissue models and experiments

can follow different types of paths,9,16,59–64 from circles to

linear trajectories with sharp turns. In between there is a

wide range of different trajectories that follow a series of

winding, loop-like bends that turn upon themselves and are

known as meandering trajectories ~see Fig. 1!. Although use-

ful for analyzing the stability of spiral waves, to date no

theory explaining spiral tip trajectories has been developed

in terms of the APD and CV restitution curves, partly be-

cause tip trajectories depend not only on the wavelength64

and the excitable gap,65 both of which can be obtained from

the restitution curves, but also on the critical radius of

curvature66–68 ~i.e., tissue diffusion and excitability given by

the rate of rise and the threshold for excitation! and to some

extent on electrotonic effects69 ~produced by the action po-

tential shape and tissue diffusion!. These last two elements in

principle may be obtained by knowing the APD and CV

restitutions at all possible cutoffs or thresholds ~i.e., APD

restitution curves formed using APD90 , APD80 , APD70 ,

etc.! to allow the effects of the shape of the action potential

and interactions with neighboring cells to become apparent.

Nevertheless, predicting a spiral wave’s period of rotation

and tip trajectory as a function of model parameters is com-

plex, and at present there is no analytical theory for spiral

wave motion except in the weakly excitable limit.70,71

Despite the lack of a general theory, some insights into

which parameters can cause tip trajectories to change quali-

tatively among the different patterns of motion have been

developed. The transition from circular to meandering mo-

tion originates by a supercritical Hopf bifurcation,63,72,73

which introduces a second frequency that adds modulated

waves and whose onset has been explained rigorously in the

large core regime by Hakim and Karma.71 Within the mean-

der regime, the transition from epicycloidal to hypocycloidal

occurs as the second frequency grows larger than the original

one,63 with cycloidal occurring in between when both fre-

quencies are the same. The transition to linear core has been

argued to occur64 when the radius of rotation r produced by

the faster frequency is much smaller than the spiral wave-

length l, with a rotation of the linear core at a slow rate

proportional to r/l .

In Fig. 1, we show examples of these trajectories ob-

tained using the model described in Sec. III. Transitions such

as those depicted can be obtained by varying either the

sodium59,64,67 ~excitability! or the calcium and/or potassium

dynamics ~wavelength!.64,74 It is important to note that sev-

eral of these trajectories have been observed experimentally

in cardiac tissue,9,61,75,76 particularly linear cores @such as the

ones shown in Figs. 1~e! and 1~f!#, which apparently occur

predominantly in normal cardiac tissue with a line of block

approximately 1–2 cm long ~see, for example, Figs. 2–5 in

Ref. 16, Fig. 7 in Ref. 60, and Fig. 6 in Ref. 77!.

To trace the tip trajectory, different methods have been

used. For example, the so-called pivot method78 tracks the

spatially discretized grid points that did not cross a given

subthreshold level of voltage in a previous period. This

method only defines an unexcited region during a former

period39 and only works when the spiral wave moves very

slowly and the tip trajectory is almost circular. Biktashev

et al.39 used a method that consisted of identifying the spa-

tially discretized grid cell with neighboring nodes found in

three different states that depended on a selected constant

voltage. A similar method79 differentiates between four states

of the cells ~exciting, excited, refractory, and rest! and iden-

tifies points that have neighbors in each of the four states.

However, the accuracy of these two methods depends on the

spatial resolution. Barkley et al.80 used a method that is less

sensitive to the effect of spatial resolution, which consists of

finding the intersection between the contours of two vari-

ables. However, this method may only work for models like

the FitzHugh–Nagumo ~FHN!,81 since one of the contours

depends on the slow gate variable. Another method used ef-

ficiently for FHN-type models with two variables is to find

the point of maximum cross product for the gradients of the

two variables.82 We should mention that some of these meth-

ods do not work in three dimensions, especially when spiral

waves are not perpendicular to the x – y plane.

Throughout this manuscript, we identify spiral wave tips

as points with zero normal velocity at an arbitrarily chosen

isopotential line that defines the boundary between the depo-

FIG. 1. ~Color! Varieties of spiral wave tip trajectories. Shown are ~a! cir-

cular, ~b! epicycloidal ~also known as meander with inward petals!, ~c!
cycloidal, ~d! hypocycloidal ~also known as meander with outward petals!,
~e! hypermeandering, and ~f! linear trajectories. Spirals are obtained with the

model described in the Appendix by using parameter set 1 for ~a!–~e! with

progressively increasing excitability @~a! td50.41; ~b! td50.392; ~c! td

50.381; ~d! td50.36; ~e! td50.25] and by using parameter set 2 for ~f!.
The voltage field colors range from orange and red ~excited! to green and

blue ~refractory! to black ~quiescent!, and the levels can be compared to the

voltage values in Fig. 3. Tissue size is 6.336.3 cm, with Dx50.025 cm and

Dt50.25 ms.
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larization and the repolarization wave back. This method,

defined in Ref. 41, can be used at any given time with an

interpolation routine, so that the spiral tip trajectory is found

accurately and independently of the spatial resolution as a

continuous trajectory in space as a function of time. With this

method the trajectory of a scroll wave @three-dimensional

~3D! spiral wave# can be obtained accurately, along with

information about its curvature, twist, and torsion, which are

important characteristics when analyzing scroll wave dynam-

ics. Two other commonly used methods for determining spi-

ral tip trajectories work equally well. The first method, which

is the only method that has been used so far in both

experiments17 and numerical simulations,17,83 uses a phase

map for each recorded site as a function of time. The phase

map assigns values between 0 and 2p depending on the lo-

cation in phase space, or equivalently as a function of volt-

age as well as its time derivative, thereby avoiding the du-

plicate values of voltage found during the upstroke and

during repolarization. Points in the tip trajectory correspond

to phase singularities, which are the points where the wave

front meets the back, thus producing singularity in the phase.

This method has been shown to give the same results as the

zero-normal velocity technique.84 The second method fol-

lows the spiral wave trajectory by finding the points with

null curvature over a given isopotential.67,85 The point with

zero curvature is not very sensitive to slight changes in

waveshape as compared to other characteristic points, such

as the point of maximum curvature,67 so that an accurate

trajectory also may be obtained using this method.

Independently of the method used, the precision in posi-

tioning the spiral wave tip in cardiac tissue becomes a func-

tion of the spatially diffuse wave back because of the much

slower repolarization period compared to depolarization, as

shown in Fig. 2. This unavoidable problem slightly changes

the size of the trajectory depending on the isopotential or

percentage of repolarization used. Nevertheless, as illustrated

in Fig. 2, the basic morphology of the trajectory ~e.g., linear,

circular, or meandering! remains independent of the isopo-

tential chosen. For models such as the FHN, where the wave

front and wave back are thin boundary layers of width e, this

problem does not occur because the trajectories obtained

with different isopotential values differ by less than e.

III. IONIC MODEL

Throughout this paper, we use a previously

described41,86,87 simplified mathematical ionic model for the

cardiac action potential, whose purpose is not to replicate

faithfully the microscale ionic complexity of cardiac cells,

but rather to reproduce the action potential dynamics at a

mesoscale level where restitution properties can be mea-

sured. The model was constructed so as to incorporate only

the minimum set of ionic membrane currents necessary to

reproduce generic restitution curves, and thus consists of

three independent ionic currents. These currents can be

thought as effective sodium, calcium, and potassium cur-

rents; however, we refer to them as fast and slow inward and

slow outward currents as a reminder that they do not repre-

sent quantitatively measured currents. Despite their simplic-

ity, these currents retain enough structure of the basic cur-

rents involved in cardiac excitation that their parameters can

be varied to reproduce the restitution curves of more com-

plex ionic models41,44,69 as well as those obtained from ex-

perimental data.41,45,88 Figure 3 shows examples of the model

with parameters fitted to reproduce the action potential

shapes and APD and CV restitution curves of two different

ionic models as well as one set of experimental data.

The model consists of three variables: the membrane

voltage V , a fast ionic gate v , and a slow ionic gate w .

Therefore, we refer to the model as the 3V-SIM ~three-

variable simplified ionic model!.41,86,87 The three variables

are used to produce a total membrane current Im5Ifi(V;v)

1Iso(V)1Isi(V;w) given by the sum of the three indepen-

dent phenomenological currents. The current Ifi(V;v) is a

fast inward inactivation current used to depolarize the mem-

brane when an excitation above threshold is induced. It de-

pends on the inactivation gate variable v and on a fast acti-

vation gate modeled by a Heaviside step function. The

current Iso(V) is a slow, time-independent rectifying outward

current used to repolarize the membrane back to the resting

potential. The current Isi(V;w) is a slow inward inactivation

current used to balance Iso(V) and to produce the observed

plateau in the action potential. It depends on the inactivation

gate variable w and on a very fast activation gate variable d ,

which has been replaced by its steady-state function d`(V).

Using the steady state function keeps the model as simple as

possible; nevertheless, the variable d can be used instead of

the steady-state function in order to reproduce specific action

potential ~AP! shapes44 ~see Fig. 3! and to include more de-

tailed electrotonic effects in the model dynamics.69

In the model, the slow currents Iso(V) and Isi(V;w) are

independent of the fast current Ifi(V;v), allowing the APD

restitution curve and the CV restitution curve to be set inde-

FIG. 2. Spiral tip trajectories found using the zero normal velocity method.

~a! Trajectory found using an isopotential of 220 mV for the Fitzhugh–

Nagumo model ~Ref. 81!. Since the depolarization and repolarization times

are almost the same, it does not matter which isopotential value is chosen.

~b! Tip trajectory of the eight-variable Beeler–Reuter model ~Ref. 92! with

a speedup in calcium dynamics by a factor of 2 ~MBR model!, using isopo-

tentials at 260 mV ~solid line! and 240 mV ~dashed line!. The dashed line

is smaller because the gradual repolarization gives a shorter APD at 240

than at 260 mV. Although the specific trajectory changes slightly at differ-

ent isopotential values, the overall shape of the trajectory remains the same.
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pendently. @The APD and CV restitution curves are found to

be coupled at small diastolic intervals for small sodium con-

ductances ~low excitability!, but as the excitability increases,

the two curves decouple.87# Six model parameters are needed

to fit an arbitrary CV restitution curve: four time constants,

t
v

1 , t
v1
2 , t

v2
2 , and td , corresponding to the opening and

closing time scales for the fast variable v and the depolar-

ization time, and two voltage thresholds, Vc and Vm , which

are used to define the range of the membrane potential.

Seven model parameters are used to fit an arbitrary APD

restitution curve: five time constants, tw
2 , tw

1 , tr , tsi , and

t0 , corresponding to the opening and closing time constants

for the slow w gate variable and the time constants for the

slow current; the threshold potential Vc
si ; and the activation

width parameter k . The complete set of equations that de-

scribe the 3V-SIM in cardiac tissue is described further and

summarized in the Appendix.

All simulations were performed by discretizing the equa-

tions in the appendix on a uniform mesh using a semi-

implicit Crank–Nicholson scheme. Except where noted oth-

erwise, Neumann ~no-flux! boundary conditions were used to

ensure no current leaks at the boundaries. The integration

time step Dt and grid spacing Dx were chosen depending on

the particular parameters of the model, especially the excit-

ability, so as to give numerically resolved solutions. See the

Appendix for more details.

IV. MECHANISMS OF SPIRAL WAVE BREAKUP IN
TWO DIMENSIONS

The transition from a single spiral wave to multiple

waves is accomplished via wave break, which in the strictest

sense is always due, at least in two dimensions ~2D!, to con-

duction blocks that form whenever a wave encounters tissue

that is absolutely refractory and fails to propagate. However,

it is possible to differentiate among breakup processes based

on electrophysiological and structural tissue properties and to

classify them into different mechanisms in terms of the APD

and CV restitution curves, tissue excitability, spiral period,

and spiral tip trajectory, as well as initial conditions. In this

section, we describe six mechanisms that lead to spiral wave

breakup and analyze the source of the conduction blocks. We

note that the numbering of mechanisms here and in other

sections is made only to facilitate clarity in referencing and

discussion within this paper and not to indicate prevalence or

importance.

A. Steep APD restitution

Although the breakup of spiral waves has been known to

occur since the early numerical experiments of Wiener and

Rosenblueth28 and Moe,32 it was not until 1991 when the first

2D simulations using ionic cell models were performed.89–91

Those simulations showed that spiral breakup was possible

even in a uniform medium without heterogeneities. Courte-

manche and Winfree89 showed that speeding up the dynam-

ics of the calcium current by a factor of at least 2 in the

Beeler–Reuter ~BR! model92 could prevent spiral breakup.

This modification of the BR model is denoted as the MBR

model. Courtemanche34 later explained the breakup seen in

the BR model in terms of the steepness of the APD restitu-

tion curve.

Since the pioneering paper of Nolasco and Dahlen,93 it

has been known that steep APD restitution curves ~those hav-

ing a region with slope greater than one! can produce oscil-

lations in APD via a Hopf bifurcation.46,49,94 These alternans

can result in spiral wave breakup in 2D.34,35,95 When the

slope of the restitution curve is greater than one, small

changes in DI are magnified into larger changes in APD,

whereas changes in APD due to changes in DI are damped

out at smaller slopes. Because the minimum DI is greater

than zero, for a fixed period, a long APD produced by the

oscillations can demand a DI below the minimum and cause

conduction block, as shown in Fig. 4 @for hands-on examples

we refer to the JAVA applets in Ref. 96#. In the BR model,

the slope of the APD restitution curve becomes greater than

one at a period of about 310 ms ~corresponding to a DI and

APD of approximately 100 and 210 ms, respectively!. Figure

4 shows transient oscillations leading to steady state when

periodically pacing at a period of 320 ms ~solid line!, which

is slightly above the point at which the slope exceeds one,

using an initial DI of 205 ms. The dashed trajectory illus-

trates the transient oscillations and subsequent conduction

block ~denoted by the arrow! for a constant period of 295

ms, which is below 310 ms and thus within the region of the

curve where the slope is greater than one. ~A slightly differ-

ent initial DI of 200 ms, rather than the value of 205 ms used

FIG. 3. ~Color! Comparison of action potentials obtained using a variation of the model described in the Appendix with other models and experiments. ~a!
Three consecutive activations using the 8-variable Beeler–Reuter model ~Ref. 92! ~black! and the simplified model ~Ref. 69! ~red!. ~b! Two consecutive

activations using the 24-variable Courtemanche et al. atrial model ~Ref. 235! ~black! paced at a 300 ms cycle length and the simplified model fitted to it ~red!
~Ref. 44!. ~c! Experimental optical AP from rabbit ventricle using cytochalasin-D ~uncoupling drug! and the corresponding model fit ~Refs. 45 and 88!. The

color and grayscale bars indicate the voltage color and gray scales used throughout this paper.
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for the stable case, was used here to facilitate visualization of

the trajectories.! In categorizing spiral wave breakup mecha-

nisms, we distinguish between two types of breakup within

this regime of steep APD restitution, one occurring close to

the tip and within the first few rotations of the spiral,34,89,91

and another occurring farther from the tip and in some cases

requiring many oscillations to develop.35,95,97 In both cases,

if the spiral period ~or, for meandering tip trajectories, the

period imposed by the spiral tip throughout the tissue! is

outside the region of the APD restitution curve with slope

greater than one, restitution-induced breakup does not occur

~as in the case of the MBR model!.34

1. Mechanism 1: Steep APD restution with breakup
close to the tip

Courtemanche showed using a delay equation34 that

when the slope of the restitution curve is greater than one,

abrupt changes in pulse duration affect the relationship be-

tween recovery and excitation, thereby modifying the speed

of the wave back or ‘‘recovery front.’’ In other words, the

steepness of the restitution curve decreases the speed of the

wave back in the presence of recovery gradients, so that the

steeper the restitution curve in a given region of DIs, the

slower the velocity of the wave back in that region. Once the

DI is in the region where the APD restitution slope is greater

than one, the front and back velocities begin to separate, with

the velocity of the back slowing considerably compared to

the velocity of the front ~see Figs. 5 and 6!. Therefore, the

wave back under these conditions propagates more slowly

than the wave front, resulting in what Courtemanche called

slow recovery fronts ~SRFs!. The divergence of velocities of

the wave front and the wave back in the region where the

slope of the APD restitution curve is greater than one (DI

,100 ms) can be observed by plotting the CV restitution for

both the front and the back, as shown in Fig. 5. The wave

back CV restitution can be obtained either by a delay

equation46,98 once the APD and wave front CV restitutions

are known or directly from numerical simulation.

However, it is important to mention that the determina-

tion of the CV restitution curve is not as straightforward for

the wave back as it is for the wave front. While the front

corresponds to the steep, rapid upstroke ~on the order of 1

ms!, the wave back experiences a much more gradual change

in voltage ~on the order of tens or hundreds of milliseconds!.
Therefore, the wave back can become distorted34,50,99 as it

moves due to increased sensitivity to electrotonic effects,

which makes characterization of its velocity more difficult.

FIG. 4. Beeler–Reuter APD restitution curve obtained in a cable using the

3V-SIM illustrating the geometrical argument of Nolasco and Dahlen ~Ref.

93! for oscillations of APD and conduction block. We show two cases in

which a constant periodic stimulation is applied following an initial DI.

Because the constant period of stimulation is the sum of APD and DI, the

period T can be determined from the points at which a line at 245° inter-

sects the axes, at (0,T) and (T ,0), as shown. Two examples are shown:

steady state obtained by pacing at T5320 ms using an initial DI of 205 ms

~solid line!, and conduction block obtained when pacing at T5295 ms using

an initial DI of 200 ms ~dashed line!. The dynamics are displayed following

a cobweb similar to a logistic map ~see the text for more details!. Because

the 3V-SIM parameters are fitted to accurately represent the BR restitution

curves using parameter set 3, the curve shown here is identical ~Refs. 41, 69,

and 87! to that obtained using the full BR model. The region with slope

greater than one occurs for periods below about 310 ms (DI'100, APD

'210), and the minimum DI possible before reaching conduction block is

about 43 ms.

FIG. 5. CV restitution curve for the wave front ~solid line! and wave back

~long dashes! using parameter set 3. At large DIs ~slope less than one! the

front and back velocities are the same, but they diverge at small DIs corre-

sponding to the region where the slope of the APD restitution curve is

greater than one (DI,'100 ms). The CV is measured at the center of a 1D

cable 4 cm long. Although the velocity of the wave back is a useful theo-

retical tool, its measurement is not straightforward. When the wave back

velocity is measured in a shorter cable ~1.5 cm!, electrotonic effects induced

by the boundaries can change the curve substantially ~short dashes!.

FIG. 6. Slow recovery front in the BR model in 1D. The x-axis represents

the position along the 3.3 cm-long cable and the y-axis the voltage (290 to

10 mV!. Frames ~a!–~e! show a wave induced at the left end of the cable at

a DI of 60 ms. The front moved at a speed of 18.5 cm/s while the wave back

moved at 11 cm/s, which made the shape of the APD change in time. Frame

~f! shows a superposition of wave profiles 5 ms apart to highlight the dif-

ferent speeds of the front and back. Frames ~g!–~l! show a newly initiated

wave front interacting with the back of the previous wave. Because the front

moved faster than the slow back of the previous wave, it was blocked and

failed to propagate as it reached the minimum DI.
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An example of how electrotonic effects can alter the CV

restitution of the wave back can be seen in Fig. 5, where the

short-dashed curve was calculated using a shorter cable than

the one used to obtain the long-dashed curve, so that strong

electrotonic effects with the boundaries are introduced. Note

that the restitution of the wave front remains unaffected.

An example of propagating waves with SRFs and further

development of conduction block in a one-dimensional cable

can be seen in Fig. 6. In this case, waves were generated

using the BR model at pacing cycle lengths in the region

where the APD restitution curve is steep ~slope greater than

one!. Therefore the velocity of the wave back ~recovery

front! became slower than that of the wave front. Panels

~a!–~e! show a pulse introduced at the left edge of the cable

60 ms after a previous wave already had passed through the

cable ~i.e., a DI of 60 ms!. Because the slope of the APD

restitution curve at this small DI was greater than one, the

wave front of the second pulse moved faster than its back,

producing a slow recovery front ~SRF! and a concomitant

change in the wave shape. Figure 6~f! shows the wave fronts

at different times of this pulse superimposed so that it is

easier to observe that the front moved faster than the back.

When a SRF exists, there is a minimum period Tmin of pac-

ing in a one-dimensional cable below which it is impossible

to produce a train of waves because the SRF has not moved

enough and effectively blocks the following wave. This is

shown in panels ~g!–~l!, where the back of a previous wave

moved slowly enough to block propagation of the following

excitation. In Fig. 6, the period of excitation is T575 ms,

much less than the minimum period Tmin'296 ms, thus re-

sulting in conduction block. Note that even though the period

was short, it was still above the minimum period correspond-

ing to DImin since it was able to produce an excitation, but

the wave was blocked toward the center of the tissue due to

the SRF.

Although steep APD restitution produces oscillations of

APD even in a single cell or cable, the effects of the oscil-

lations can become more complex in 2D and 3D systems,

where the APDs vary throughout the tissue as fronts propa-

gate. For large DIs, the front and back velocities of a wave

are the same. However, once the DI is in the regime where

the APD restitution slope is greater than one, the front and

back velocities begin to separate, with the back slowing con-

siderably compared to the front.

The divergence of the velocities of the front and back is

manifested in 2D by the appearance of scalloping along the

wave back, as shown in Fig. 7. The scallop does not occur at

the tip itself due to the high curvature, slower velocity, and

smaller difference between front and back velocities there.

However, the scallop forms relatively close to the tip, typi-

cally within the first rotation of the spiral, because of the

short DI produced as the wave quickly rotates. The longer

APD and slower wave back of the scallop delay the recovery

of the tissue’s excitability. When the spiral turns and tries to

invade the region of the scallop, it encounters refractory tis-

sue, which causes conduction block and wave break. The

break generally occurs within the first rotation of the spiral

because the block tends to occur soon after the spiral turns.

In addition, since the waves break before one rotation is

completed, no spirals exist with more than one rotation.

An example of the evolution of wave break close to the

spiral tip due to scalloping is shown in Fig. 7. After the

formation of a scallop close to the tip of the spiral wave ~a!,
the spiral encountered refractory tissue and propagated along

the existing wave back until it had enough excitable tissue

available to turn ~b!–~c!. By this time a second scallop had

formed closer to the tip. As the spiral continued to rotate

~d!–~g!, it turned back toward the location of the second

scallop and finally collided with it ~h!–~i!, pinching off a

new front that formed two counterrotating spirals ~j!–~k!.
The right spiral was unable to turn, as it continued to en-

counter refractory tissue, but the left spiral turned and propa-

gated toward the scallop on the original broken front ~l!,
where it again encountered refractory tissue and broke ~not

shown!.
Panels ~m!–~n! show complex states that emerge as the

system continued to evolve through wave breaks. Ultimately,

however, the breakup was transient, as all wave fronts moved

off the tissue and left behind only wave backs ~last frame!.
This transience is not uncommon, and in fact the breakup

resulting from this mechanism often is not sustained due to

the large variation in wavelengths that eventually can leave

no quiescent areas to support continued propagation.89,91 As

the tissue size is increased, the system can support breakup

for longer periods of time.100

Breakup close to the tip produced by SRFs leading to

scalloping can occur in models with steep APD restitution

curves for spirals with periods in the slope greater than one

regime. Examples of such models are the Beeler–Reuter

model, as described in Refs. 34, 87, and 89; the four-variable

Noble model,101 as seen in Refs. 87, 91, and 102; and the

Luo–Rudy–I103 model with altered parameter settings, such

as in Ref. 104, where the maximum conductances of the

calcium current and the time-dependent potassium current

were changed.

2. Mechanism 2: Steep APD restitution with breakup
far from the tip

For APD restitution curves having a region with slope

greater than one, a range of periods can exist for which stable

oscillations of APD can be sustained before conduction

block is produced. The range of periods depends on the

steepness of the APD curve, i.e., the width of the range of

DIs for which the slope of the restitution curve is greater

than one, and on how large the oscillations can become be-

fore reaching a DI smaller than DImin , which produces con-

duction block. For example, in the 3V-SIM using parameter

set 3, corresponding to the BR model ~Fig. 4!, this region is

very narrow ~for periods between 285 and 315 ms!50,87 in

comparison to the region shown in Fig. 8, where parameter

set 4 ~see the Appendix for parameters! was used to produce

a restitution curve with a slower rate of change while still

retaining a period of slope greater than one for DIs

'<110 ms ~the region of periods with slope greater than

one having stable alternans is about 80 ms, between 180 and

260 ms, as shown in Fig. 11!.
While the cobweb diagram of Fig. 8 reflects only the

dynamics of a single cell, it has been shown in spatially
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extended systems that APD oscillations can vary throughout

the tissue. When the entire medium exhibits the same long-

short pattern in APD ~a long APD produced on one beat and

a short APD produced on the next beat, with the pattern

repeating!, the alternans is called concordant. However, due

to initial conditions50 or conduction velocity restitution,50,105

concordant APD alternans ~CA! can further develop into dis-

cordant APD alternans ~DA!, which occurs when some part

of a medium oscillates long–short, while another area oscil-

lates short–long. That is, on a given beat, there is a gradient

of APD from long to short as the wave propagates through

the medium, and on the subsequent beat, the gradient is re-

versed and becomes short to long. In this case, the APD

produced at one site varies along the tissue and the alternans

is out of phase. Both CA and DA are known to occur in

cardiac tissue and have been observed in experiments when

waves circulate along small paths or rings of tissue106 or,

equivalently, when high-frequency stimulation is applied pe-

riodically to linear strands of cardiac tissue97 or isolated

hearts.107,108 Clinically, beat-to-beat oscillations of APD cor-

relate to T-wave alternans in the ECG, which often has been

observed as a precursor to ventricular fibrillation and sudden

death.109 Alternans can play a role in spiral wave breakup, as

we describe below following a discussion of how factors

such as wave front curvature and CV restitution curve slope

affect the development and evolution of alternans.

Panels ~a!–~d! of Fig. 9 show the spatial distribution of

APDs during discordant alternans produced in a 1D cable

when pacing at a cycle length of 230 ms using parameter set

4. The APDs of all points along the cable on odd ~even! beats

are shown as a solid ~dashed! black line, and the lines rep-

resent the steady state reached after prolonged pacing. Be-

tween every two out-of-phase regions is a node, where the

APD does not oscillate on successive beats but remains the

same. Previously50 we demonstrated that along with cycle

FIG. 7. ~Color! Evolution of breakup close to the tip due to steep APD restitution using parameter set 3 in a 12.5312.5 cm domain. Wave fronts were blocked

by refractory regions due to scallops that had formed along wave backs because of the divergence of the front and back conduction velocities. Ultimately, the

breakup was transient. The numerical parameters Dx and Dt were set to 0.025 cm and 0.25 ms, respectively.

FIG. 8. APD restitution curve with slope greater than one for a model with

a larger range of DIs in the slope greater than one region ~due to reduced

steepness and decreased DImin) compared to the curve shown in Fig. 4,

allowing alternans to develop over a wider range of periods before reaching

conduction block. The circle indicates the point on the curve where the slope

is one, with a period of about 260 ms (DI'110 ms, APD'150 ms). Peri-

ods below 260 ms display alternans; two examples with periods of 240 ms

and 205 ms are shown. The dashed lines indicate the period of constant

stimulation as the x- and y-intercepts and the rectangular regions illustrate

the two alternating APD solutions. The inset shows the AP alternation re-

sulting from periodic stimulation at 205 ms. Note that while the activations

were produced at a constant period, the APD alternated between 180 and 52

ms and therefore the DI alternated between 25 and 153 ms. Note that the

range of DIs that give stable alternans here is much larger than in Fig. 8.

Parameter set 4 is used. See the text for further details.
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length, tissue size affects how many regions of opposite al-

ternans phase can exist: for a given frequency, the longer the

tissue, the larger the number of nodes. The positions and

number of nodes depend on the APD and CV restitution

curves50 as well as on electrotonic effects110,111 and tissue

heterogeneities.50 Panels ~e!–~f! of Fig. 9 show, for example,

the effect of CV restitution on the node distribution, which

can be analyzed by varying the parameter t
v1
2 in the 3V-SIM

to obtain different slopes for the CV restitution curve.87 Fig-

ure 9~f! shows in black the CV restitution curve obtained

with the original parameter set 4, while blue and green indi-

cate the curves obtained by setting t
v1
2 from 15.6 to 5 and 80,

respectively. Figure 9~e! shows that when the CV restitution

varies over a wider range of DIs, the node positions occur

closer to the stimulus site, as demonstrated previously using

iterative maps,50 and the width of the alternans regions de-

creases, allowing more nodes to be formed ~observe three

nodes, just about three nodes, and only two nodes appear as

the CV restitution is flattened!.
It is important to mention that nodes are not always sta-

tionary. In some cases they can migrate to the pacing

site,97,111 and as they disappear new nodes are formed at the

other end @the two-variable Karma model35 is a numerical

model that exhibits the migration of nodes with its original

parameter settings#. Although the behavior in shorter cables

is similar to a truncated version in longer cables, there can be

differences. For instance, a short tissue may not contain a

node, even though a node can occur in a longer tissue at a

location within the length of the short tissue.50 For example,

compare panels ~a! and ~b! in Fig. 9, where electrotonic ef-

fects in the short tissue produce CA whereas DA is produced

in a longer cable. More dramatic examples can be observed

depending on the electrotonic effects of the model.50

Wave front curvature also can affect the position and

distribution of nodes. Comtois and Vinet112 showed that

loading effects due to curvature in an activation wave can

increase its duration substantially ~more than 40% in their

simulations using the BR model!, but only at very high cur-

vatures corresponding to circles of radius 0.25–1 mm, which

can be close to the critical radius of propagation65 and thus

difficult to capture in a restitution protocol of extended sys-

tems. Our numerical simulations show less than 5% differ-

ence in APD restitution curves when using planar versus

curved wave fronts. A more important effect of curvature on

wave front propagation is the decrease in conduction veloc-

ity as a function of curvature113 ~see the eikonal

equation!.65,114 This additional variation in velocity changes

the position of the nodes, as shown in panels ~a!–~d! in Fig.

9, where the APD distribution for curved fronts is displayed

in red in a 1D cable reduction of a target wave simulation in

which the distance from the pacing site ~left edge! is the

radius.

Although longer lengths often can support more nodes,

this is not always the case. At high frequencies, the shorter

APD can be blocked as a node is being formed because the

oscillations can become so large that the wave no longer can

propagate. Where the short APD becomes blocked, only the

fronts corresponding to the long impulses far from the stimu-

lation point and produced every other beat are sustained, and

the alternans progress to what is known as 2:1 block far from

the stimulation site. Figure 10 shows how conduction block

can form at a given frequency ~here, T5212 ms) as the cable

length is increased, with longer cables developing block

sooner ~if block is generated at all!. Only CA is present for

the 6.25 cm cable, while DA develops in the 12.5 cm cable,

and conduction block occurs in cables 20 and 30 cm long.

The conduction block forms sooner in the 30 cm long cable

and takes longer to develop in the 20 cm cable. In both cases,

the block is produced far from the stimulation site, as shown

experimentally.97 Although we have shown that, CV restitu-

tion aside, electrotonic effects play a role in the development

of the block, further analysis is needed in order to quantify

its onset. We should note that the cable sizes used in these

examples are unphysiologically large, since the model pa-

rameters were tuned to facilitate explanation. Nevertheless,

the dynamics is generic, as the distribution and position of

nodes as well as the range of periods that support alternans

depend on the APD and CV restitution curves and electro-

tonic effects.69,111

The relationship between cable length, number of nodes,

and frequency of stimulation for a given model can be ob-

served in a parameter space diagram.50,115 Figure 11 shows

the different node regimes for the 3V-SIM fitted to parameter

set 4. The diagram on the left-hand-side corresponds to plane

waves and the one on the right-hand-side to 1D reductions of

target wave patterns where curvature effects are included. At

FIG. 9. ~Color! ~a!–~d! Discordant alternans in a 1D cable without ~black!
and with ~red! curvature. The steady state spatial distributions of APDs over

a cable for even ~dashed line! and odd ~solid line! beats at a basic cycle

length of 230 ms are shown for four different cable sizes ~6.25, 12.5, 20, and

30 cm! (Dx50.025 cm, Dt50.1 ms). Pacing site is at the left edge. Note

how curvature shifts the node locations closer to the pacing site. ~e! Distri-

bution of nodes in a cable without curvature as a function of CV restitution,

while keeping the APD restitution unaltered. Black shows the original dis-

tribution from ~d!, green shows a more packed distribution of nodes ob-

tained when the CV restitution varies over a wider range of DIs, and blue

shows a less packed distribution from a flatter CV restitution. Parameter set

4 was used. ~f! CV restitution curves corresponding to the plots in ~e!, where

the parameter values were varied from set 4 by changing t
v1

2 from 15.6 to 5

~blue! and 80 ~green!.
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long cycle lengths (T.'260 ms), only stable nonoscillating

solutions are obtained, while at short cycle lengths, conduc-

tion block ~dark gray! occurs in much the same way as in

Fig. 4. Alternans solutions lie between these two regimes.

For a given pacing cycle length ~constant stimulation fre-

quency!, CA ~white below 260 ms! occurs only in short

cables, while DA ~three shades of gray indicating the pro-

gression from one to two to three nodes as the color darkens!
only appears in cables greater than a minimum length, with

multiple nodes emerging as the cable length increases.50,97

Note that any number of nodes can be present before con-

duction block is formed. It is important to note, as mentioned

earlier, that the different region sizes and distributions shown

in Fig. 11 are a function of both the APD and the CV resti-

tution curves. The wider the range of DIs where the slope of

the APD restitution is greater than one, the larger the region

for alternans. Similarly, the wider the range of DIs where the

CV restitution varies, the more densely packed are the nodes

in space @see Figs. 9~e!–9~f!#. Curvature effects do not alter

the transitions between regions substantially, with the pre-

dominant effect being an increase of the 2:1 block region for

curved fronts at smaller periods. Far from the pacing site the

distribution for plane waves and circular waves coincide as

the curvature of the circular waves decreases.

Because of the spatial heterogeneity generated in APD

and the eventual possibility of 2:1 conduction block, DA can

lead to wave breaks and further generation of reentrant ~spi-

ral! waves when present in two and three dimensions, as has

been shown numerically35,95,105 and experimentally.107 Since

a spiral wave acts as a source of periodically paced waves,

breakup can occur if its period of rotation falls within the

alternans region. Figure 11 shows that this breakup is a func-

tion of both period and tissue size. Therefore, we emphasize

that depending on its period, a spiral wave can be unstable

and break into multiple waves in a large domain while re-

maining stable in a smaller domain.35 Figure 12 illustrates

how DA can lead to the breakup of a spiral wave. Parameter

set 4, used throughout this section, was designed to produce

spiral waves with circular tip trajectories and an APD resti-

tution curve with slope greater than one over a broad range

of DIs to allow a large region for alternans. Varying the size

of the circular core can change the period of rotation and can

allow the transition from stable waves to alternans and fi-

nally to conduction blocks. The tissue size is 30312.5 cm

~as mentioned earlier, the size is unphysiologically large, but

the purpose here is simply explanatory!. The first panel of

Fig. 12 shows a spiral wave with a period of 265 ms (td

50.415), which remains stable since the period is above the

largest alternans period of 260 ms ~see Fig. 11!. As the ex-

citability is slowly increased by setting td to 0.41, the spiral

wave period decreases to 220 ms and the resulting APD os-

cillations develop into discordant alternans. Early oscilla-

tions ~b! grow in magnitude until the difference in the long

and short APDs is great ~c!, with one APD much longer than

the next. After two more rotations ~d!, conduction block is

almost formed far from the tip ~stimulation site! as in Fig.

10, and two rotations later ~e! conduction block and spiral

breakup occurs. Panels ~e!–~g! show consecutive snapshots

of the wave break as it forms. Once initiated, the breakup

process continues ~h!–~j!, but the core and the three inner

rotations of the spiral remain unaffected.

The location of the initial wave break relative to the

spiral core can be changed by further decreasing the period

of rotation ~equivalent to the stimulation period, as shown in

FIG. 10. Size-induced conduction block in a cable with discordant alternans

using parameter set 4. The steady state is shown for alternate beats as solid

lines. Previous beats, before steady state is reached, are shown as dashed

and thinner lines in the longer cables. Although one node forms in a cable of

length 12.5 cm, the longer cables do not support multiple nodes because

conduction block occurs. Note that only one wave every two beats propa-

gates along the whole cable, leading to what is called 2:1 block. The cable

lengths are the same as in Fig. 9, but the period of stimulation is 212 ms

instead of 230 ms.

FIG. 11. Behavior of cables of different lengths and stimulation periods.

The first figure illustrates the locations of regimes in a 1D cable without

curvature, while the second includes curvature effects. Above the top hori-

zontal line at 260 ms, stable, nonoscillatory behavior is observed. In the dark

gray regime at the bottom, conduction block occurs. In between are regimes

of concordant alternans ~white! and discordant alternans with one ~light

gray!, two ~medium-light gray!, and three ~medium gray! nodes. For shorter

cables, alternans is concordant, while at longer lengths only discordant al-

ternans is observed, with the number of nodes increasing with size. The

figures are similar with and without curvature effects, with curvature mainly

changing the regimes by inducing block for larger cycle lengths in short

cables. Longer cables than shown here would include additional DA regions

with more nodes. We note that these plots indicate only the presence of

alternans and not the magnitude, which in general increases as the period

decreases. Parameter set 4 was used.
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Fig. 11!. Panels ~k!–~l! of Fig. 12 show breakup occurring

closer to the core, with only the first two spiral rotations

remaining intact, as the period is further decreased by slowly

increasing excitability (td50.407). An additional decrease

in period (td50.405) leaves only one rotation intact ~m!–

~n!, and finally at a period of 160 ms (td50.4) no full rota-

tions remain ~o!–~p!, with breakup pervading the entire me-

dium and only a small spiral wave circulating around a small

core that eventually disappears by colliding with another

wave. Similar behavior has been shown in the two-variable

Karma model @see Fig. 6~d! in Ref. 35#.
Spiral wave breakup far from the tip due to discordant

alternans can occur in any model having a steep APD resti-

tution curve and a spiral period in the slope greater than one

regime, provided that the spiral tip follows a circular or low

meander trajectory, or perhaps if it is pinned to a scar or

inhomogeneity that causes the period of rotation to lie in the

steep region. Models that can break in this manner include

the Karma model,35 the 1962 Noble model,101 and the Bär

model as in Ref. 116. Discordant-alternans-induced breakup

also has been observed experimentally in rapidly paced tis-

sue preparations.97,108 Recently, stable spiral waves sur-

rounded by multiple breaking waves as in panels ~h!–~n! of

Fig. 12 have been shown to occur experimentally and in

simulations;11 however, their occurrence in that case was at-

tributed to different densities in the background current be-

tween the right and left ventricle. Nevertheless, it is interest-

ing to note that such patterns can be obtained in homogenous

tissue. It is important to mention that even when the slope of

the APD restitution curve is greater than one over a wide

range of DIs ~as discussed in this section!, an abrupt change

in DI can lead to a large change in APD and breakup as in

mechanism 1 can occur.

3. APD restitution curve with one region of slope
greater than one and two regions of slope less
than one

An interesting special case of the steep APD restitution

curve slope mechanisms can occur when two regions with

slope less than one are present on either side of the steep part

of the curve. Physiologically, a second region with slope less

than one can occur in ionic action potential models where the

currents responsible for the AP plateau ~mostly calcium! do

not activate fully at very short DIs. These alterations in cell

dynamics lead to action potentials with very small plateaus at

high frequencies of stimulation. Therefore, the APDs vary

little at the shortest DIs and can produce a second region in

the restitution curve with slope less than one. The 1962

Noble model101 for Purkinje fibers exemplifies this phenom-

enon. The slope of its APD restitution curve is less than one

for periods greater than 256 ms and for periods less than 123

ms, with a region of slope greater than one at periods be-

tween 123 and 256 ms.87 It is important to note that the 1962

Noble model does not include a calcium current in its for-

mulation, since the calcium current was not discovered until

a few years later, and instead one of its potassium currents is

responsible for the plateau. Another model showing two re-

gions with slope less than one, which was developed more

recently and includes a greater number of ionic currents, is

FIG. 12. ~Color! Discordant alternans-induced breakup far from the tip in a

30312.5 cm domain using parameter set 4. Panel ~a! shows the steady state

of a stable spiral wave with a period of 265 ms. After decreasing the period

to 220 ms by slightly increasing the excitability (td50.41), as can be seen

by the change in core size, APD oscillations developed and grew over sev-

eral seconds. Panels ~b! and ~c! show the dynamics 2.652 and 3.516 s after

the parameter change. When a short APD following a long APD could not

continue to propagate, it broke, as in Fig. 10 @~d!, ~e!, ~f!, and ~g! correspond

to 3.948, 4.380, 4.392, and 4.440 s#. Additional breakup occurred, but only

far from the spiral tip, while the tip itself and the three innermost spiral

rotations remained protected, as in ~h!, ~i!, and ~j! ~7.092, 7.668, and 16.675

s!. After changing td further to 0.407, the period of rotation was shortened

and the distance beyond which wave break occurred was moved progres-

sively closer to the tip of the spiral, leaving only two rotations intact @~k! and

~l!, 9.456 and 11.856 s#. Increasing the excitability again (td50.405) de-

creased the period further, so that only one spiral rotation remained unbro-

ken @~m! and ~n!, 13.056 and 14.256 s#. A final decrease of the period to 160

ms (td50.4) left less than one full spiral rotation intact, and eventually the

entire medium was filled with broken waves @~o! and ~p!, 15.456 and 17.256

s#. Note that frames ~k!–~p! continue the time series but were created by

modifying parameters ~spiral period!. Without these modifications to td , the

breakup remains restricted to a certain region of the tissue far from the spiral

tip ~source!, as shown in Figs. 10 and 11. Simulations were performed using

Dx50.025 cm and Dt50.1 ms.
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the canine model by Fox et al.117 In that model, the slope is

greater than one for periods between 145 and 210 ms and is

less than one for all other periods, down to a minimum of

about 85 ms.

Using parameter set 5, the 3V-SIM produces an APD

restitution curve with two regions having slope less than one,

for periods greater than 375 ms and for periods less than 150

ms. Figure 13 shows the maximum and minimum APD os-

cillations as a function of cycle length obtained by simulat-

ing propagating waves in 1D rings of various sizes.87 For

periods of stimulation greater than 375 ms and below 150

ms, it is possible to obtain stable nonoscillating waves ~see

top right and left plots!, while for periods in between, oscil-

lations of APD ~see top two center plots! can be obtained

along with a region of conduction block, shown in gray,

where no propagation is possible on a ring. The dotted line in

the alternans regime denotes the unstable steady state branch,

which can be obtained using a control algorithm.118 Because

of the second region with slope less than one, the conduction

velocities of the wave front and back not only diverge, as

described earlier, but also merge back together at short DIs,

as shown in Fig. 14, where the inset indicates the difference

in the front and back velocities as a function of DI.

Under these conditions, a stable spiral wave can be sup-

ported if its period of rotation is large and falls in the region

where the APD restitution curve has slope less than one,

while breakup will occur if the period lies in the region with

slope greater than one, since there can be SRFs or DA, as in

breakup mechanisms 1 and 2. However, if the period is small

and falls in the second region with slope less than one, then

the solution can be either a stable spiral wave or breakup,

depending on the initial conditions.87

Panels ~a! and ~b! in Fig. 15 show the two possible so-

lutions obtained when the period of rotation is 75 ms, using

parameter set 5 with td50.355. In ~a!, a spiral wave was

initiated from a broken pulse89 propagating into quiescent

tissue. As the spiral rotated, SRFs led to breakup and com-

plex spatiotemporal dynamics87 in the same way as observed

in the Noble model91,102 and similarly to Fig. 7. In ~b!, a

stable spiral wave was achieved also from a broken pulse but

following a train of impulses at short intervals so that the

spiral never reached the periods between 150 and 375 ms

that can lead to conduction block and breakup. The spiral

actually was initiated in a smaller tissue ~to prevent breakup

that would result from the presence of long DIs far from the

initiating broken pulse!, following which the size was in-

creased gradually until reaching the same size as in panel ~a!.
Two aspects of these spiral wave dynamics are noteworthy.

First, at short periods two solutions are possible depending

on initial conditions and tissue size, either a stable spiral

wave in a small tissue after preconditioning pulses at small

periods or spiral breakup and complex spatiotemporal dy-

namics with no preconditioning or in a larger domain, due to

the presence of long DIs in the tissue. Second, a stable spiral

wave formed at a short period will remain stable in any tis-

sue size, unlike mechanism 2 where spiral waves may desta-

bilize and break in a large enough tissue. However, if the

period of a spiral is slowly increased, even a stable spiral will

experience breakup as in mechanism 2 when the period be-

comes larger than that corresponding to the Hopf bifurcation

~approximately 150 ms for this model!. Panels ~c!–~f! in Fig.

15 show the evolution of the stable spiral wave in panel ~b!
as the period is increased from 75 ms to about 180 ms @by

slowly changing td from 0.3547 to 0.359 ~c!, 0.37 ~d! and

finally to 0.382 in ~e!#. In ~e! the period is about 180 ms

~greater than the period for the first Hopf bifurcation

;150 ms), at which point discordant alternans begins to de-

velop, as shown in the center of the figure where the wave-

length changes abruptly. It is important to recognize that this

is not a slow recovery front or scallop, as in mechanism 1,

but is in fact a node separating the long APD region from the

short. The oscillations eventually grow and lead to breakup

and multiple spirals ~f!, following mechanism 2. Note that

the density of waves is different between ~a! and ~f!, due to

the different sizes of their tip trajectories. A denser set of

waves can be obtained at higher excitabilities ~smaller values

of td) as the tip trajectories become epicycloidal and hypo-

cycloidal ~not shown!.

FIG. 13. APD vs cycle length (APD1DI) for the 3V-SIM using parameter

set 5, which produces two regions with APD restitution curve slope less than

one and consequently two Hopf bifurcations, one at 375 ms and the other at

150 ms. The small figures on top show the voltage as a function of time for

the four cycle lengths indicated by the squares ~from left to right, 125, 188,

276, and 485 ms!. Stable behavior is observed for the smallest and largest

cycle lengths, while APD alternans occurs for the intermediate cycle

lengths. The gray area indicates periods for which conduction block occurs

in a 1D ring. The 1:1 solution branch ~dashed line! exists in this region but

is unstable.

FIG. 14. CV restitution curves for the wave front ~solid line! and wave back

~dashed line! corresponding to the APD restitution curve with two regions of

slope less than one ~parameter set 5!. While the front and back velocities

initially diverge as the DI is decreased, the difference in velocities decreases

as the second region with slope less than one is approached. Therefore,

stable pulses can occur at short as well as long DIs, as shown in the top

left-hand inset of Fig. 13.
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B. Mechanism 3: Bistability, hysteresis, and 2:1 block

Bistability in cardiac tissue is a phenomenon where a

given frequency of stimulation results in one of two possible

APDs, depending on the initial conditions. The shorter APD

is obtained naturally when pacing at a constant frequency,

with every pacing beat producing an activation ~1:1 re-

sponse!, while the longer APD occurs when only one activa-

tion is produced for every two pacing beats ~2:1 response!.
This scenario can be visualized by plotting the APD as a

function of the pacing cycle length ~period! instead of the DI.

Figure 16~a! shows an example of this bistability in APD

using parameter set 6, with the inset showing the normal

APD restitution curve as a function of DI (DImin511 ms,

APDmin561 ms, and thus the minimum period Tmin is 72

ms!. Note that for clarity of exposition and to avoid confu-

sion among different mechanisms, parameter set 6 was de-

signed to produce bistability using an APD restitution curve

with slope less than one for all DIs. Nevertheless, bistability

can occur with or without steep APD restitution and

alternans.119

The main plot in Fig. 16 shows the 1:1 response branch

~solid line! as a function of the pacing cycle length. As the

pacing cycle length is decreased gradually below Tmin , con-

duction block occurs, so that only one activation is induced

for every two pacing beats ~thus jumping into the 2:1 branch,

shown by the dashed line!. Because the period of stimulation

T is fixed, the following APD can be obtained from the APD

restitution curve ~inset! using a DI given by DImin1T. Since

this DI is large, the resulting APD also is large. As the cycle

length is decreased further, the APDs for the 2:1 response

branch can be obtained, as shown in Fig. 16 as a dashed line.

If the cycle length now is gradually increased above Tmin ,

the system remains on the 2:1 branch rather than dropping

immediately to the available 1:1 branch because the APD

produced is large and every other stimulus comes too early in

the refractory period to generate a response, thereby creating

a region of bistability. The system shifts back to the 1:1

branch only when the period of stimulation is larger than

DImin1APD from the 2:1 branch, again allowing an activa-

tion to be produced once for every beat. The difference in

dynamics depending on whether the cycle length is being

increased or decreased is an example of hysteresis, an effect

found in many nonlinear systems. Bistability and hysteresis

have been observed in a variety of cardiac experimental

preparations including sheep Purkinje fibers and papillary

muscles,120 sheep atria,121 guinea pig ventricular cells,122 and

frog119 and rabbit123 ventricular tissue. The range of cycle

lengths in the hysteresis region depends partly on the slope

of the restitution curve, but mostly on the size of the DImin

and APDmin , and has been shown experimentally to vary

from several milliseconds to as long as hundreds of

milliseconds.119

FIG. 15. ~Color! Range of possible dynamics of the 3V-SIM using param-

eter set 5, which leads to an APD restitution curve that has two regions with

slope less than one (Dx50.025 cm, Dt50.25 ms). Panels ~a! and ~b! show

two different dynamics, spiral wave breakup and a stable spiral wave,

obtained with the same parameters but using different initial conditions.

~c!–~d! The spiral wave from panel ~b! remained stable as the period was

increased. ~e!–~f! When the period is increased to about 180 ms, the spiral

wave becomes unstable, and breakup from discordant alternans leads to

various spiral waves. Tissue size is 10310 cm.

FIG. 16. Bistability and hysteresis of APD. ~a! The solid and dashed lines

show the 1:1 and 2:1 branches, respectively. The width of the region of

periods that can access two stable solutions is about 70 ms in this case. ~b!
Voltage traces obtained at two different sites from the simulation shown in

Fig. 17. Close to the core ~solid line!, every rotation of the spiral was

propagated, but farther away ~dashed line!, every other impulse was

blocked, resulting in 2:1 conduction. The 2:1 trace was shifted in time so

that the upstrokes of the 2:1 trace coincide with the upstrokes in the 1:1

trace to facilitate visualization and comparison of the resulting APDs. Note

that the APD was sufficiently long in the 2:1 region to prevent propagation

of every other impulse. Parameter set 6 was used, with td50.115 in ~a!.

865Chaos, Vol. 12, No. 3, 2002 Multiple mechanisms of spiral breakup



In a spatially extended system, it is possible for some

regions of the tissue to experience 2:1 block while the rest of

the tissue conducts every impulse. This situation can arise

when a target or spiral wave stimulus encounters a gradient

of recovery region ~DIs! produced by a previous wave.124

Figure 17 shows two rotations of a spiral wave induced by a

broken wave that demonstrate this effect. The spiral was ini-

tiated at the top of the domain, and its period fell within the

range of periods with both 1:1 and 2:1 solutions available.

Near the tip of the spiral, the small DIs produced small APDs

and waves of short wavelength, all of which propagated suc-

cessfully. However, slightly farther away from the spiral tip,

the tissue was quiescent longer before the first rotation of the

spiral arrived ~a!–~b!, producing larger DIs that resulted in

long APDs on the 2:1 solution branch and longer wave-

lengths. The second rotation of the spiral then was blocked

when it reached these sites ~c!–~f!. Therefore, away from the

tip, only every other spiral rotation propagated successfully.

The spiral continued to rotate ~g!–~i!, and after the longer

DIs occurred far from the tip, the next impulse propagated

successfully through the entire tissue ~j!–~l!. In this example,

the broken end of the wave did not generate a reentrant

wave, since the entire tissue surrounding the tip was in the

region of 2:1 block and since the boundaries were close to

the spiral tip. Similar 2:1 conduction block during the rota-

tion of a spiral wave has been demonstrated using a variation

of the Luo–Rudy–I ~LR–I! model67 and a cellular automata

model.124 We note that the CV restitution curve in this case is

relatively flat. As the restitution of the CV increases ~steeper

slope!, the conduction velocity for small DIs near the tip

decreases. Therefore, the spiral period can increase to a value

that lies outside the bistable region, preventing the breakup.

C. Mechanism 4: Bistability and Doppler shift by tip
trajectories

In Sec. IV B, we showed for a given set of parameter

values how a spiral with a very short rotation period can

propagate every rotation ~1:1 branch! close to the tip and

only every other rotation ~2:1 branch! far from the tip. When

bistability is present in a model, rotating spiral waves in

some cases can access the same state dynamically without

the need of presetting initial recovery gradients as in Fig. 17.

Transitions between the 1:1 and 2:1 branches can occur in-

stead due to Doppler shift in the spiral’s frequency induced

by meander in the tip trajectory. Essentially, the rotating and

meandering spiral functions as a moving source of periodic

waves. Because of the Doppler effect, the frequency is

higher in the direction in which the spiral is moving. Figure

18 shows an example of the Doppler effect produced by a

moving spiral wave. The cycloidal tip trajectory causes the

spiral rotations to pack together more closely in the direction

in which the spiral is moving ~to the left!, resulting in a

higher frequency along the left side of the tissue and a lower

frequency along the right. This stable spiral with a cycloidal

trajectory is obtained using the 3V-SIM with parameter set 6

but with a slight increase in its excitability (td50.365).

Similar Doppler shift behavior has been observed experi-

mentally in cardiac preparations125 and in the Belousov–

Zhabotinsky ~BZ! reaction under an electric field.126

In the case shown in Fig. 18, the smallest period pro-

duced by the Doppler effect still is greater than the minimum

period allowed for propagation ~the period obtained at

DImin), so that no conduction blocks occur and no transitions

to the 2:1 branch are present, resulting in a stable ~but non-

FIG. 17. ~Color! Spiral wave with 2:1 conduction block far from the tip. Tissue size is 16.25310 cm (Dx50.025 cm, Dt50.25 ms), and parameter set 6 is

used. Because the period of the spiral wave lies in the window of APD bistability, both 1:1 and 2:1 solutions exist. After spiral wave initiation following a

plane wave propagating from left to right, sites near the tip conducted at the same frequency as the spiral. Farther from the tip, however, longer DIs occurred

before the first rotation of the newly created spiral arrived, resulting in longer APDs. When the subsequent spiral rotation arrived at these distant sites, the

tissue had not yet recovered from the long APDs. As a result, conduction block occurred, and a 2:1 conduction pattern was initiated. Figure 16~b! shows

voltage traces for a site in the 1:1 region and for another site in the 2:1 region. The frames shown are separated by approximately 21 ms.
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stationary! spiral wave. However, certain trajectories can im-

pose larger Doppler shifts on the period and bring it below

the minimum period for propagation, which produces con-

duction block. Figure 19 shows an example of these types of

conduction blocks occurring for a spiral wave following a

small circular or epicycloidal trajectory. Panels ~a!–~d! illus-

trate the block of a wave tip that follows a tight spiral be-

cause of a very small loop ~parameter set 6, td50.38). How-

ever, for slightly larger loops (td50.385– 0.39) the spiral tip

succeeds in propagating each time the spiral makes an inner

loop ~inward petal! since the area in front of the tip now has

a large enough DI to allow the tip to propagate, but the shift

in frequency is enough to produce conduction block away

from the tip in the rotation and initiate reentry as shown in

panels ~e!–~h!. As the spiral is formed @~e!–~h!# and the tip

turns tightly ~because of its short period of rotation!, the

spiral encounters a DI smaller than DImin and is blocked.

However, the tip continues to propagate because it remains

on the 1:1 branch even while adjacent parts of the wave have

jumped to the 2:1 branch ~i!. Eventually, as more tissue be-

comes available for excitation, the two broken ends propa-

gate into areas with longer DIs that allow the resumption of

1:1 conduction, now forming new spirals because they are

able to propagate ~j!. The newly generated spirals evolve and

repeat the initial breakup process, as shown in the left lower

corner of panels ~m!–~o!. Because of the wide distribution of

refractory periods throughout the tissue, which can corre-

spond to either short or long APDs falling into the 1:1 or 2:1

regime, respectively, the dynamics become increasingly

complicated as new wave breaks continue to form. However,

for the first two beats after the break it is possible to obtain

the same type of voltage trace as in Fig. 16~b! for points

close to and far from the tip, indicating the presence of re-

gions with 2:1 conduction. Note that unlike mechanisms 1

and 2, there are no slow recovery fronts or alternans of APD

since in this case the slope of the APD restitution curve is

never greater than one, as shown in Fig. 16~a!.

FIG. 18. ~Color! Stable spiral wave with cycloidal trajectory obtained using

parameter set 6 with td50.365. The wave fronts became more closely

packed on the left-hand side of the domain because the spiral was moving in

that direction. The Doppler shift in frequency also decreased the period of

waves to the left, resulting in the observed shorter wavelength. Tissue size is

11.25311.25 cm with Dx50.025 cm and Dt50.25 ms.

FIG. 19. ~Color! Breakup of a spiral wave due to the

formation of 2:1 block by Doppler shift in a tissue

of size 11.25311.25 cm with Dx50.025 cm and

Dt50.25 ms. Parameter set 6 is used. ~a!–~d! A tight

spiral wave with a very small circular core (td50.38)

can encounter its own refractory wave back as it tries to

circulate, causing conduction block at the tip while an-

other portion of the wave continues the tip’s motion.

Panels are separated by 10 ms. ~Also see Fig. 22 for the

linear core case.! ~e!–~p! Reducing the excitability by

changing td to 0.388 enlarges the tip trajectory enough

to prevent block at the tip. The quick turning of the tip

produces a Doppler shift in frequency, resulting in 2:1

block and breakup as the spiral encounters a DI smaller

than DImin as it rotates ~e!–~h!. Despite the 2:1 block,

the original spiral tip finds enough recovered tissue

close to the core to sustain itself ~i!. Once the original

spiral has made a full rotation and the 2:1 region is

excitable again, the two broken ends are able to propa-

gate and form new spirals ~j!. The breakup process re-

peats itself, forming increasingly disorganized states

~k!–~p!.
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Breakup resulting from Doppler shift-induced 2:1 block

also can be obtained in some of the hypocycloidal trajecto-

ries when the outer loops are able to produce a large fre-

quency shift, as in the case obtained using td50.25– 0.3.

Figure 20 shows how a spiral wave in the hypocycloidal

regime breaks as the tip make an outer loop and the shift in

frequency is enough to produce conduction block ~a!–~d!
and multiple wave breaks ~e!–~h!. The broken waves in Fig.

20 do not fill the domain as densely as those in Fig. 19

because of the difference in the sizes of the hypocycloidal

trajectory and the small circular core of Fig. 19, which al-

lowed waves to break more often and to pack more closely

together than in the present case. Because of the large trajec-

tories in the hypocycloidal cases compared to the tissue size,

the breakup was transient in many of the simulations as in

the example of mechanism 1, lasting only a few seconds

before all spirals eventually extinguished from collisions

with other waves and with the boundaries. However, in the

circular core case ~Fig. 19!, breakup was continuous during

the full 10 s simulated.

Meandering trajectories are not the only types that can

produce a Doppler shift in a spiral wave leading to breakup.

In the linear core regime, where spiral waves follow long

lines of block ~for models with very flat restitutions, the lin-

ear core size is approximately CVmax3APD/2)87 with sharp

turns, Doppler shift can cause 2:1 conduction blocks and

wave breaks. Figure 21 shows such an effect when the model

is brought into the linear core regime by setting td to 0.115.

The first frame ~a! shows the spiral at the beginning of its

second rotation after initiation from a broken pulse. As the

spiral tip makes a sharp turn ~b!–~c!, the Doppler shift causes

part of the wave to get too close to the adjacent spiral rota-

tion, so that it breaks as it falls below the minimum period

for propagation ~d!–~f!, much as in panels ~e!–~h! of Fig. 19.

The two broken ends eventually recombine ~h!–~j!, but on

the next rotation the conduction block is large enough ~k!–

~m! to prevent the two waves from reconnecting, and two

new spirals are formed ~n!. Eventually new spirals break in

the same way, resulting in turbulence ~o!–~p!. Note that due

to the long linear core, the domain appears anisotropic, al-

though it is not.

An interesting case arises when the Doppler shift occurs

at the spiral tip itself. Sharp turns in the tip trajectory can

bring the tip of the spiral wave below the minimum period

and halt its propagation, as shown previously in panels ~a!–

~d! of Fig. 19 for small circular trajectories and as shown in

Fig. 22 for linear cores. After the tip is blocked, a secondary

wave of depolarization can evolve and continue the spiral’s

rotation. Leon et al.127 previously observed this behavior us-

ing a modified version of the BR model in an anisotropic

domain. They referred to this phenomenon as a secondary

wave of repolarization instead, because a pronounced repo-

larization region formed between the stopped original tip and

the newly formed one. In the example of Fig. 22, only the

new wave is observed without the repolarization island due

to the very high excitability of the system and almost flat

restitution, so that we use the term secondary wave of depo-

larization in this case. Leon et al.127 modified the BR model

by increasing the sodium conductance and eliminating the j

gate, thereby decreasing the minimum DI from 43 to 25 ms

and increasing the minimum APD. Enhanced by the anisot-

ropy of the system, these changes created a window of bista-

bility that allowed the cessation of the tip’s motion due to

Doppler shift and the formation of a secondary wave of de-

polarization.

Doppler shift due to spiral wave drift has been observed

in cardiac preparations arising from either experimentally

induced125 or naturally occurring9,128 electrophysiological

heterogeneity. In simulations, breakup by Doppler shift was

first observed and described by Bär et al.36,129 using a two-

dimensional simplified model for CO oxidation where

breakup is produced by meander. However, in some cases

additional breakup in their model is produced by a backfiring

effect that allows new waves to be generated in the wake of

previous ones, which makes characterization of the breakup

more complicated. The Luo–Rudy–I model103 also exhibits

breakup by Doppler shift with calcium dynamics speeded up

by a factor of between 2 and 2.8, as seen in Fig. 4 of Ref.

130 and in Fig. 40 in Sec. VII. It is important to indicate that

this breakup mechanism shown in different regimes corre-

sponding to various tip trajectories does not require steep

APD restitution. In fact, both the LR–I model with calcium

speedup ~2–2.8! and the Bär model have relatively flat res-

titution curves, where the slope is always less than one. We

FIG. 20. ~Color! Breakup of a spiral wave whose tip

followed a hypocycloidal trajectory using parameter set

6 with td50.3. The Doppler shift induced by the me-

andering tip caused the period to fall below the mini-

mum period for propagation, causing 2:1 block and

wave break ~a!–~c!. As the wave continued to meander,

regions with 2:1 conduction block continued to develop

~d!–~h!. Tissue size is 11.25311.25 cm with Dx

50.025 cm and Dt50.25 ms.
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note that for breakup by this mechanism to occur, a bistabil-

ity window and a tip trajectory that can reach conduction

block by a Doppler shift in frequency are necessary. This is

most easily achieved for flat restitutions where the minimum

DI is small and the minimum APD is large.

D. Mechanism 5: Biphasic APD restitution curve

So far only APD restitution curves that are monotoni-

cally decreasing functions of DI have been considered. How-

ever, some studies131–133 have found APD restitution curves

with a range of DIs for which the APD prolongs to a local

maximum as DI decreases. These biphasic APD restitutions

have been shown to lead to complex dynamics in 1D maps134

and to spatiotemporal chaos in 1D rings.135 However, the

precise ionic mechanisms responsible for the supernormal

phase still are not understood fully; furthermore, some ex-

periments have shown that their existence may depend on the

protocol used to measure the restitution curve.133,136 Never-

theless, we include a brief discussion for completeness.

Experiments have shown different possible shapes and

slopes for biphasic APD restitution curves. In addition, as

mentioned previously, the physiological phenomena that pro-

FIG. 21. ~Color! Breakup of a spiral wave following a

linear core due to the Doppler effect. As the spiral tip

turned sharply ~a!–~c!, part of it moved too close to a

previously generated wave. The Doppler effect reduced

the period below the minimum period for propagation,

and wave break ensued ~d!–~f!. The break mended ~h!–

~j!, but when the break occurred again during the next

rotation ~k!–~m! new spirals were formed ~n!. As the

breakup evolved, the dynamics became increasingly

complex ~o!–~p!. Note that the linear core caused the

tissue to appear anisotropic, when in fact it was isotro-

pic. Parameter set 6 with td50.115 was used. Tissue

size was 8.838.8 cm with Dx50.016 cm and Dt

50.18 ms.

FIG. 22. ~Color! Secondary waves of depolarization

due to Doppler shift occurring at the spiral tip itself

using parameter set 7. The period at the tip fell below

the minimum necessary for propagation, causing the tip

to halt its motion ~a!. However, a second wave of de-

polarization developed ~b!–~c!, moved around the

stalled and now repolarizing original tip ~d!–~f!, and

continued the motion of the tip ~g!–~h!. Tissue size was

434 cm with Dx50.016 cm and Dt50.18 ms.
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duce the biphasic restitution curves observed experimentally

have not yet been identified. Therefore in the context of the

3V-SIM, we obtain a biphasic restitution curve by adding an

extra current that deactivates at short DIs ~see the Appendix

and paramater set 8!. We note that our intent here is only to

replicate the mesoscopic restitution characteristics observed

in experiments and not to reproduce the ionic basis. The

shape of the restitution presented here is based on those ob-

tained in rabbit ventricle preparations;131 however, biphasic

restitutions also have been measured in humans.133

When the supernormal part of the restitution curve has a

region with slope greater than one in magnitude, the complex

dynamics134,135 naturally would lead to spiral breakup in 2D,

as shown for negatively sloped restitution curves with slope

greater than one in magnitude.137 However, even when the

magnitude of the restitution curve never exceeds one, the

biphasic shape of the restitution curve can produce small

variations in recovery ~i.e., values of DIs! that can lead to

conduction block, as shown in Fig. 23.

In 2D, the conduction block generated by the biphasic

portion of the APD restitution curve at certain DIs can cause

spiral wave breakup. Figure 24 shows an example of how

breakup can develop under these conditions. An initially uni-

form spiral ~a! develops a thicker wavelength as it turns and

finds smaller DIs ~b! and eventually breaks as a result of 2:1

block ~c!–~d!, as described in Fig. 23. The local maximum in

APD due to the biphasic restitution can lead to different

wavelengths, large depressions in the wave back, and subse-

quent occurrences of 2:1 block ~e!–~l!.

E. Mechanism 6: Supernormal conduction velocity

Like the APD restitution curve, the conduction velocity

restitution curve also has been found in some experiments

not to be a monotonically decreasing function. In the cardi-

FIG. 23. Oscillations due to a biphasic APD restitution curve. The shape of

the restitution curve was based on observed restitution curves obtained from

rabbit ventricular preparations ~Ref. 131!. Even when the slope of the res-

titution curve never exceeds one in magnitude ~see the inset!, conduction

block can form and lead to breakup. ~a! For a period of 200 ms, a stable

fixed point can be obtained even when using an initial condition with a large

DI. ~b! For the shorter period of 190 ms ~dashed line shows the period and

twice the period!, two different initial conditions can result in either a stable

solution ~solid line! or in 2:1 block ~dotted line!. Parameter set 8 was used.

FIG. 24. ~Color! Spiral wave breakup due to a biphasic

APD restitution curve using parameter set 8. Although

the spiral initiated uniformly ~a!, its wavelength in-

creased as it turned and encountered smaller DIs ~b!.
Soon after, conduction block formed and caused

breakup ~c!–~d!. As the breakup evolved ~e!–~l!, large

variations in wavelengths, wide depressions in the wave

back, and subsequent occurrences of 2:1 block oc-

curred. Tissue size is 535 cm with Dx50.025 cm and

Dt50.25 ms.
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ology literature, such CV restitution curves are called super-

normal ~rather than biphasic!. Supernormal CV also can be

expressed as supernormal excitability, which is commonly

represented as the dependence of excitation threshold on di-

astolic interval.138 Experiments have demonstrated supernor-

mal conduction in the His–Purkinje system,138 papillary

muscles,139 and the outflow tract of the right ventricle,140,141

as well as in a related excitable system, the 1,4-

cyclohexanedione BZ reaction.142,143 Simulations using su-

pernormality have produced chaotic dynamics in 1D maps138

and spiral wave breakup in a modified FHN model.38 Al-

though measurement protocols often are indirect and its ex-

istence in most regions of the heart is questionable,144 we

include supernormality as a possible arrhythmogenic mecha-

nism, as in the case of biphasic resitutions, mostly for com-

pleteness.

Supernormal conduction, if it exists in cardiac tissue,

may be arrhythmogenic by producing conduction blocks due

to rapidly moving waves that collide and stack together at

small DIs, as shown in the BZ reaction.142 The solid curve in

Fig. 25~a! shows an example of a supernormal CV restitution

obtained using the 3V-SIM with parameter set 9, while the

dashed line illustrates a normal curve for comparison ~using

t
v2
2

515). Figure 25~b! shows the corresponding APD resti-

tution curve, whose slope never exceeds one. The rapid

waves generated by supernormality rush toward relatively

slow-moving wave backs and practically slam into them,

breaking and generating new waves, as shown in Fig. 26.

The breaks tend to develop fairly near the spiral tip because

the small DIs at the tip produce waves that conduct super-

normally. Scalloping also develops and leads to wave break,

but in this case the scallops form because the supernormal

conduction velocity generates heterogeneity of refractori-

ness, rather than from the steep APD restitution mechanism,

since the slope of the APD restitution curve never exceeds

one in this example @see Fig. 25~b!#. In addition, because the

DImin is very small in this case, some second waves of repo-

larization as in Fig. 22 can occur once breakup has started

@see Figs. 26~c! and 26~d!#. To demonstrate that the breakup

is due to the supernormality, we show in Fig. 26~i! a stable

spiral wave obtained using the same parameters but exclud-

ing supernormality ~see the dashed lines in Fig. 25!.

V. MECHANISM OF SPIRAL WAVE BREAKUP IN
QUASI-3D

Mechanism 7: Periodic boundary conditions with
hypermeandering tip trajectories

To this point, only rectangular shapes with no-flux

boundary conditions have been used in all the simulations

and no anatomical structure has been considered. However,

periodicity is an important feature of cardiac structure and

can affect the stability of spiral waves. Using periodic

boundary conditions along two parallel edges of a 2D surface

essentially forms a cylinder, which represents to a first de-

gree a simplified geometry for some of the regions in the

heart ~such as the area between a valve rim and a blood

vessel, or a ventricle and the septum!, while still retaining

the computational simplicity of a 2D plane. Figure 27 illus-

trates how a 2D plane with periodic boundary conditions on

the left and right can be wrapped into a cylinder. Because

such a cylinder is constructed from periodic conditions on a

plane and not from cylindrical coordinates in space, surface

curvature effects are not included. Although experimental re-

sults from chemical spiral waves on spherical surfaces145

have shown that spiral tip dynamics are not affected by the

curvature of the surface, curvature may induce breakup due

to loading effects in some situations.146

The dynamics of a spiral wave on a cylinder depend on

the size of the tissue relative to the wavelength of the spiral.

If the perimeter of the cylinder ~i.e., the distance between the

edges with periodic boundary conditions! is large compared

to the spiral wave tip trajectory, the boundaries play no role

in the tip dynamics and the trajectory is the same for both

periodic and no-flux boundary conditions, as shown in panels

~a! and ~b! of Fig. 28 using parameter set 1 @same spiral as in

Fig. 1~e!#. However, the interaction between colliding fronts

~coming from both sides due to periodicity! produces some

regions with different patterns of refractoriness using peri-

odic boundary conditions compared to no-flux. The disper-

sion of refractoriness changes as the perimeter is decreased

further @Fig. 28~c!#, but the spiral wave trajectory remains

protected and unperturbed until the perimeter becomes com-

parable to the wavelength of the spiral @panels ~d!–~e! of Fig.

28#, at which point the spiral tip becomes perturbed by self-

generated incoming waves. In related previous work, Yerma-

kova et al.147 studied the dynamics of spiral waves periodi-

FIG. 25. CV ~a! and APD ~b! restitution curves for parameter set 9, which

produces supernormal conduction velocity. Solid lines indicate the restitu-

tion curves used with supernormal conduction velocity, while the dashed

lines are associated with a more usual CV restitution curve ~by using pa-

rameter set 9 but with t
v2
2

515). The slope of the APD restitution curve

never exceeds one, as shown in the inset of ~b!.
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cally perturbed with plane waves and showed that when the

pacing frequency is higher than that of the spiral wave, a

drift is induced on the spiral wave tip. The same results are

obtained using periodic boundary conditions when the cylin-

der perimeter is comparable to the wavelength of the

spiral,99,148 since the wave front generated by the spiral

propagates outward and is forced to collide with the spiral
periodically as the spiral rotates, with the collision period

dependent on the conduction velocity and the cylinder’s pe-

rimeter.

Figure 29 shows how periodic boundary conditions and

the size of the domain affect the evolution of a spiral wave

following a circular core. The two plots in panels ~a! and ~b!
show four snapshots during one rotation for two domains

that are identical except that ~b! has periodic boundary con-

ditions at the left and right edges; all other boundary condi-

tions are no-flux, and parameter set 1 is used with td

50.415. Because the spiral wave interacts with itself under

periodic boundary conditions, differently shaped quiescent

regions form at the right-hand side of the domain depending

on the boundary conditions. When periodic boundary condi-

tions are used, the quiescent region develops sooner because

it was stimulated earlier by an encroaching wave that passed

across the periodic boundary. As the perimeter of the cylin-

der is decreased from 4.74 to 4.55 cm in Fig. 29~c!, the spiral

FIG. 26. ~Color! Breakup due to supernormal conduction velocity using

parameter set 9. ~a!–~d! Breakup occurred as the spiral sped toward the

wave back in several locations, including at the left, where the spiral caught

up to and collided with the previous wave back, and at the right of the

medium, where boundary effects also played a role. Additional wave breaks

occurred as the medium evolved. ~e!–~f! The wave in the upper right sped

up and collided with the back of the previous wave, resulting in a wave

break. ~g!–~h! As the wave in the upper right central portion of the domain

sped toward the scalloped back of another wave, it began to break. ~i! Stable

hypermeandering spiral wave with no breakup obtained when the supernor-

mal component of the CV restitution curve is excluded @dashed line in Fig.

25~a!#. Tissue size is 8.8538.85 cm with Dx50.022 cm and Dt50.2 ms.

FIG. 27. ~Color! Periodic boundary conditions along two parallel edges of a

2D sheet transform it to the topological equivalent of a cylinder. The voltage

plot shown with its tip trajectory on the cylinder in ~a! and rotated by 120°

in ~b! depicts the same data as shown in the rectangular domain in ~c!.
Hereafter, the domains are shown only as 2D sheets. The height of the

cylinders was reduced by 40% to aid in visualization. Parameter set 1 is

used as in Fig. 1~e!. Tissue size is 7.336.32 cm with Dx50.0316 cm and

Dt50.2 ms.

FIG. 28. ~Color! Effects of periodic boundary conditions on domains of

decreasing length using the 3V-SIM with parameter set 1. ~a! Tip trajectory

and voltage image with no-flux boundary conditions imposed on all four

boundaries ~size 12.64 cm36.32 cm). ~b! Tip trajectory in a tissue of the

same size as ~a! using periodic boundary conditions at the left and right

edges and no-flux boundary conditions on the top and bottom. ~c!–~e! Tip

trajectories using periodic boundary conditions in progressively shorter do-

mains ~perimeter decreased from 12.64 cm to 9.5, 7.9, and, 7.3 cm, respec-

tively!. Although the trajectories are the same for ~b! and ~c!, differences in

repolarization are apparent. Note that for the shortest perimeters ~d! and ~e!
the tips and their trajectories begin to diverge from the originals and start to

drift. Spatial and temporal resolutions are set to Dx50.0316 cm and Dt

50.2 ms throughout.
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wave tip is perturbed by incoming waves ~since the period of

rotation is smaller than the time required to travel once

around the cylinder! and a drift in the tip trajectory develops.

This drift is purely an effect of the boundaries and is inde-

pendent of the type of tip trajectory @i.e., circular or mean-

dering, see Fig. 29~d!# and of the model used.87 The only

requirement is that the cylinder perimeter is smaller than the

spiral wavelength, so that the spiral tip can interact with the

waves it generates. If the perimeter is small enough, drift can

cause the spiral tip to migrate to a no-flux boundary anddis-

appear, leaving only a plane wave as shown in the last panel

of Fig. 29~d!.

Once drift is present, a further decrease in the cylinder’s

perimeter makes the spiral wave encounter its own incoming

waves sooner, equivalent to pacing a spiral wave at a fre-

quency much faster than its own and resulting in an increase

in the drift velocity.147 Once the perimeter is smaller than the

tip trajectory, no spiral wave activity can be sustained. How-

ever, for spiral waves in the hypermeandering linear regime,

there is a window of cylinder perimeters between drift and

termination for which spiral waves will break.99,148 The

breakup is produced because the hypermeandering wave tip

repolarizes some regions along the cylinder unevenly.87

Therefore, the incoming waves produced by the spiral itself

can block the tip trajectory and form new spiral waves. Ac-

tivations can disappear when the spirals annihilate with the

no-flux boundaries. Figure 30 shows a sequence of voltage

plots of spiral wave breakup on a small cylinder with perim-

eter 7.11 cm using parameter set 1. The spiral wave shown in

~a! collides with a portion of itself moving to the right across

the periodic boundary in ~b!. The new and old fronts merge

~c!, but interaction with the wave back causes only a small

fragment of the original spiral to remain ~d!. As the spiral

FIG. 29. ~Color online! Effects of periodic boundary conditions on spiral tip

trajectories. Parameter set 1 is used with td50.415 @except in ~d!#, Dx

50.0316 cm, and Dt50.2 ms. ~a! Four snapshots during one rotation of a

spiral wave with circular core in a square domain with no-flux boundary

conditions. ~b! Same as in ~a!, but with periodic boundary conditions on the

left and right edges. ~c! Drift induced by incoming waves in the periodic

case once the length was decreased from 4.74 to 4.58 cm and the period of

rotation was longer than the time required to travel along the entire length.

Under these conditions, waves interacted with the spiral tip and produced

drift. ~d! The first three panels show an unperturbed meandering spiral wave

following an epicycloidal trajectory using td50.35. When the length was

decreased slightly to 4.55 cm, the spiral drifted, which caused it to vanish at

the boundary ~as shown by the trajectory remaining in the last panel!, leav-

ing a stable planar wave front that circulated around the cylinder indefi-

nitely.

FIG. 30. ~Color! Evolution of periodic boundary condition-induced breakup of a spiral wave with a hypermeandering tip trajectory in a 7.1136.32 cm

domain. Because the tip meandered, regions were repolarized unevenly, allowing conduction blocks and subsequent wave breaks to develop, as described in

the text. The tip trajectory is shown in frames ~a!–~i! but is discontinued in the remaining frames because multiple spiral waves are present. Ultimately, the

breakup was transient, as all the wave fronts eventually were absorbed by the no-flux boundaries ~top and bottom! ~q!. As shown in the last panel, no breakup

occurred when no-flux boundary conditions were used on all edges in the same size domain. Parameter set 1 was used with Dx50.0316 cm and Dt

50.2 ms.
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continues to turn ~e!–~f!, it encounters the wave back and

fragments into multiple waves ~g!–~i!. These two fronts

merge again ~j!, but further breakup occurs as the fronts con-

tinue to interact with the wave backs ~k!–~p!. Ultimately, the

no-flux boundary conditions, at the top and bottom of the

cylinder, absorb all the wave fronts ~q!, leaving behind only

quiescent tissue. The last frame of Fig. 30 shows how the

same initial condition in the same size domain but with all

no-flux boundary conditions results in a stable hypermean-

dering spiral wave. Similar breakup due to periodic boundary

conditions has been obtained in Ref. 87 using both the FHN

model with linear cores59,60 on a cylinder with a perimeter of

280 grid points and using the BR model on small cylinders

with the speed of calcium dynamics increased by a factor of

two ~MBR!, which in 2D tissues using no-flux boundary

conditions generates stable spiral waves.34,89

VI. MECHANISMS OF SPIRAL WAVE BREAKUP IN 3D

While atrial tissue may be thin enough to be considered

effectively two-dimensional ~leaving aside its complex ge-

ometry, fiber structure, and regional variations in conduction

velocity and action potentials!,23,149 the ventricles are sub-

stantially thicker and three-dimensional effects may need to

be considered. In particular, since the early experiments of

Garrey30 in 1914, who showed using canine hearts that fibril-

lation in the thinner right ventricle ceased when it was dis-

connected from the thicker left ventricle, the inclusion of a

third dimension presents what has been since then a contro-

versial open question: is ventricular fibrillation purely a

three-dimensional effect?

The issue of whether ventricular fibrillation is intrinsi-

cally three-dimensional is a fundamental claim largely sub-

stantiated by the concept of a minimum mass necessary for

fibrillation ~more specifically perhaps, would be a minimum

size in relation to wavelength! first hypothesized by Garrey.30

Among other things, he showed that pieces of ventricular

muscle with a surface area of less than 4 cm2 that had been

shaved from the left ventricle stopped fibrillation, whereas

the remaining portion of the left ventricle continued to fib-

rillate until 75% of the ventricle had been removed. Dillon

et al.150 and Kavanagh et al.151 found comparable results

also in canine ventricles when part of the ventricles were

inactivated by a transmural infarct, leaving the rest of the

tissue quasi-2D. Zipes et al.152 suggested that fibrillation

emanated only from the thicker left ventricle after they

chemically depolarized the left ventricles of canine hearts

and observed that fibrillation transitioned to sustained mono-

morphic tachycardia with a period of about 160 ms. Simi-

larly, conversion from fibrillation to tachycardia in

Langendorff-perfused rabbit hearts was obtained by Allessie

et al.,153 Breithardt et al.,154 and Schalij et al.155 when the

intramural layers of the ventricles were eliminated by necro-

sis coagulation caused by freezing the endocardium with liq-

uid nitrogen. This procedure left a surviving epicardial layer

about 1 mm thick154 ~quasi-2D!, and in contrast to the

infarction-induced thinning experiments, freezing seemed to

preserve the electrophysiological properties155 that otherwise

potentially could alter the dynamics of electrical waves.

More recently, two experiments of tissue reduction in por-

cine hearts, one10 using freezing and the other75 using se-

quential cuts of 234 cm portions of the fibrillating tissue

parallel to the epicardium, also found evidence supporting

the critical mass hypothesis, with a minimum mass of about

20 g needed to support fibrillation and a decreasing number

of spiral waves as the tissue mass was decreased. The main

conclusion of ventricular thinning experiments, emphasized

by Winfree,156,157 is that hearts below a critical electrically

active muscle thickness do not fibrillate, but instead support

stable forms of tachycardia that can be associated with a

single spiral wave. The minimum thickness, however, needs

to be determined with respect to the wavelength158 and per-

haps the size of the tip trajectory.64

In numerical simulations, the inclusion of a third dimen-

sion has been shown to widen the range of parameters that

produce breakup for some of the 2D breakup

mechanisms,87,159 although the parameter ranges increase

only by 5%–10%. More importantly, however, simulations

in 3D have shown the existence of purely three-dimensional

breakup mechanisms39–41,86 that have no analogs in 2D. In

the following sections we discuss three mechanisms of 3D

scroll wave breakup: negative tension in homogeneous tis-

sue, twist instability in the presence of rotational anisotropy,

and low coupling and discrete effects, also in the presence of

rotational anisotropy.

A. Mechanism 8: Negative tension in the low
excitability regime

In 3D, while a spiral wave becomes a scroll wave, the

spiral tip expands from a single point to a one-dimensional

line called a vortex line or filament. The simplest form of a

scroll wave is a straight vortex obtained trivially when 2D

spiral waves are stacked perpendicular to their plane of rota-

tion over a finite thickness. Scroll waves like this both were

first found in experiments with the Belousov–Zhabotinsky

chemical reagent and were proposed to exist in myocardium

by Winfree in 1973,160 and were first observed in ventricles

extending upright 10–20 mm from endocardium to epicar-

dium by Chen et al.161 in 1988 and by Frazier et al.162 in

1989. Vortex filaments, however, need not be straight lines,

but instead can curve, bend, and twist,16,163–165 and some-

times form closed rings confined inside the medium without

touching any boundaries.166,167 Figure 31 shows an example

FIG. 31. ~Color! Three-dimensional scroll wave. A 2D slice showing the

voltage profile of a spiral wave is shown on the right-hand side. The gold

scroll-shaped surface tracks the wave front in 3D, and the red circle shows

the instantaneous location of all spiral wave tips in all slices, otherwise

known as a filament or vortex line. Half the domain is shown for clarity.
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of such a scroll ring. In Fig. 31 the wave front, shown in gold

~over half the domain for clarity!, forms a scroll-shaped sur-

face. Note how the spiral tip evolves from a point to a line

~or vortex!, which in this case closes to create a ring ~vortex

ring!, shown in red. On the right-hand side, the 2D colored

voltage image showing a spiral corresponds to what is seen

throughout the tissue as a plane is rotated about the axis

pictured in black.

Numerical simulations of vortex rings have shown a

wide range of dynamical behavior in various parameter re-

gimes. While twisted and knotted scroll rings can be

stable,168,169 untwisted scroll rings drift along the ring sym-

metry axis as they shrink or expand with velocities inversely

proportional to the ring’s radius.170,171 They shrink, contract,

and disappear when the excitability of the system is normal

or high and expand when the excitability is low.170 There are

some small parameter regimes in which boundaries can stop

drift or even reverse the initial drift direction.87,172–174 3D

calculations of a scroll ring can be performed in 2D cylin-

drical coordinates ~r and z) whenever the ring symmetry

axis is aligned with the z-axis since, due to the symmetry

involved, all angular dependencies become zero (]/]f
50). Examples of scroll ring drift using the 3V-SIM for the

high and low excitability limits are shown in Fig. 32, where

two-dimensional cuts on the r–z-plane similar to the 2D

voltage color contour shown in Fig. 31 are used with the axis

of symmetry on the left. Figure 32~a! shows four snapshots

during the contraction of a scroll wave in the normal-high

excitable limit and in a regime where spiral waves follow

hypocycloidal meander patterns. As the scroll radius ~plotted

on the horizontal axis! decreases ~scroll contraction!, the vor-

tex ring follows the hypocycloidal trajectory and drifts along

the z axis. The last frame shows the moment before the ring

collapses. Panels ~b!–~c! show the evolution of two scroll

waves, following epicycloidal and circular trajectories re-

spectively, in the opposite regime, the low excitability limit,

where scroll waves expand. In both cases, the expanding

rings also drift along the z-axis. It is important to note that,

as mentioned in Sec. I, tip trajectories can be modified by

changing either the excitability or the wavelength, so that a

tip trajectory does not necessarily indicate tension regime

~for example, circular core regimes can exist for both the

high and low excitability limits!.
Biktashev et al.,39 based on Keener’s asymptotic theory

for reaction-diffusion systems,175,176 obtained a vortex fila-

ment evolution equation for the no-meander limit and intro-

duced the concept of filament tension to describe the radial

growth of an untwisted circular filament. The filament ten-

sion is the proportionality coefficient g in the local radial

velocity of a circular filament (Vr5dr/dt52g/r). When g
is positive ~high excitable limit!, scroll rings shrink and any

perturbation to a straight filament tends to disappear. On the

other hand, when g is negative ~low excitability!, scroll rings

expand and any small perturbation to an initial straight fila-

ment grows exponentially.39 Therefore, the term positive ten-

sion can be applied for g.0 where small perturbations de-

FIG. 32. ~Color online! Examples of contracting and expanding scroll rings. Each row shows four snapshots of a 2D plane ~parallel to the scroll axis of

symmetry as in Fig. 31, with the left edge corresponding to zero radius! showing the evolution of a scroll wave. The ring in ~a! is in the negative tension

regime and follows a hypocycloidal trajectory as it drifts along the z-axis, contracts and eventually disappears ~frames at 1.216, 3.832, 5.48, and 5.568 s!. The

rings in ~b! and ~c!, which are in the negative tension regime, expand rather than contract as they also drift along the z-axis @frames in ~b! at 1.12, 2.16, 3.1,

and 4.22 s; frames in ~c! at 1.036, 2.772, 3.262, and 4.55 s#. Sometimes boundary effects can stabilize a scroll ring, so that a shrinking ring does not collapse

but equilibrates with its mirror image in the z-direction ~Ref. 87!, and an expanding ring can change direction and shrink once it reaches the boundaries.

Parameters correspond to parameter set 1 using td50.35, 0.39, and 0.416 in ~a!, ~b!, and ~c!, respectively, with tissue size 1037.5 cm, Dx50.025 cm and

Dt50.1 ms.
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cay and negative tension for g,0 where small perturbations

grow.

When a straight scroll wave is induced in the negative

tension regime, it remains straight unless a small perturba-

tion is applied. Biktashev et al.39 showed, using the FHN

model in a low excitability regime, that if a perturbation is

applied to a straight vortex filament, the vortex will elongate

and curve until it collides with the boundaries, thereby

breaking up and generating a second vortex. These vortices

subsequently will produce new vortices by expanding and

touching the boundaries or by encountering conduction

blocks that form new vortex rings ~or ring fragments when

touching boundaries!. On the surface of the medium, the

evolution of these vortices produces complex voltage activa-

tion patterns. Figure 33 shows an example of how a trans-

mural filament evolves under these conditions, using the 3V-

SIM with the parameters from Fig. 32~c!. From the initial

perturbation ~a!, the filament elongates ~b!–~d! until it hits

the boundary ~e! and forms a second filament. Both filaments

continue to elongate ~f! and at times can disappear from one

or both surfaces of the tissue and become intramural ~g!–~h!.
Further evolution yields additional filaments, some by con-

duction blocks and some by collisions ~i!–~k!. Negative ten-

sion can substantially elongate a vortex ~l!–~n! before it frag-

ments again into multiple waves ~o!.
In cardiac tissue, the low excitability limit is reached

when not enough oxygen is being supplied to the cells. This

generally occurs during hypoxia or ischemia produced, for

example, soon after a coronary occlusion.

B. Mechanism 9: Fiber rotation with twist instability

Ventricular muscle is composed of elongated cells ar-

ranged roughly end-to-end to form fibers that conduct about

three times faster along their axes than across. The fibers are

arranged in sheets roughly parallel to the epicardial and en-

docardial surfaces, but their fiber axis rotates continuously

from epicardium to endocardium.177,178 Peskin’s179 deriva-

tion of the ventricular fiber architecture from mechanical

principles predicts a total fiber rotation of about 180° be-

tween walls, which is in close agreement with what has been

measured in dissection experiments.180 According to experi-

ments, this high angle of rotation seems to remain roughly

constant for the right and left ventricles, despite the differ-

ences in thickness, and occurs in many mammalian

species.156

In previous numerical studies41,86,87 of vortex dynamics

in parallelepipedal slabs of ventricular muscle with various

wall thicknesses and fiber rotation rates, it was found that

rotational anisotropy can have a destabilizing effect on scroll

waves in the high excitability limit. One of the effects of

fiber rotation on scroll waves is the induction of a phase

delay on the waves across the layers forming the thickness of

the tissue. Figure 34 shows an example of this delay for a

FIG. 33. ~Color! Evolution and

breakup of a three-dimensional verti-

cal scroll wave due to negative tension

in the low excitability limit in a slab of

dimensions 6.3236.3232.21 cm. A

small perturbation was applied to the

initial filament. The voltage is shown

for the bottom of the tissue and semi-

transparently for the top to allow fila-

ment visualization throughout the tis-

sue. Note that as the vortex elongated

because of the negative tension, it

touched the boundaries and formed

multiple scroll waves. The vertical di-

mension has been stretched by a factor

of 1.4 to allow easier visualization of

the filaments. Parameter set 1 was

used with td50.416, Dx

50.0316 cm, and Dt50.25 ms.

876 Chaos, Vol. 12, No. 3, 2002 Fenton et al.



scroll wave in the circular core regime in a slab 0.22 cm

thick and with a total of 26° in fiber rotation. Superimposed

are the trajectories of the scroll wave produced at the simu-

lated top ~epicardium! and bottom ~endocardium! portions of

the slab during one period of rotation. The anisotropy ~which

is modeled by a conductivity tensor where propagation is

about three times faster along the fibers axes than across and

transmurally, see Ref. 41 for further details! transforms the

circular trajectories into ellipses, which are not perfect be-

cause of diffusion in the z-direction. A voltage contour ~at

85% of repolarization! of the scroll wave ~spiral wave! at

each surface is also plotted at one instant in time. Figure 34

shows that while the spiral wave on the epicardium has al-

ready completed the pivot turn on the curved section of the

distorted elliptical trajectory, the spiral on the endocardium is

just starting its pivot turn. Each time there is a pivot turn in

the scroll trajectory ~twice per period for a circular core that

has been elongated!, this phase lag induces a twist in the

vortex line that is not uniformly distributed along its length,

as in the case of sproing,78,181 but rather is highly

localized.41,86,87 The magnitude of the localized twist grows

as the fiber rotation rate is increased, and the twist can pro-

duce elongation of the vortex filament as it travels along

it.41,86,87

For scroll waves in the high excitability limit, where

spiral waves tend to follow hypermeandering or linear core

trajectories with high angle pivot turns, twist can produce

large enough elongations to cause the filament to collide with

boundaries and to produce new vortices. Figure 35 illustrates

this process, with twist represented by plotting the normal

vectors (N5¹V/u¹Vu, shown in blue! of the spiral wave tip

equally spaced along the vortex line.41 In the first panel the

normal vectors at the top of the vortex are pointing to the

right while those at the bottom are pointing to the left, indi-

cating that the spiral at the top surface has already rotated

around the pivot turn while the one at the bottom has not ~as

shown in Fig. 34!. The change in orientation occurs in the

tissue between the top and bottom layers, where a highly

localized transition denoted by a large degree of twist devel-

ops. This twisted section of the filament travels transmurally

along the filament as the lagging phase of the scroll wave

finishes the pivot turn ~b!–~c!, resulting in elongation and

curving of the filament that cause it to collide with a bound-

ary and generate a new vortex ~d!. Although the breakup

mechanism is different from the negative tension mecha-

nism, the observed vortex elongation and collisions with

boundaries are similar. This twist-induced destabilization of

vortex filaments occurs above a critical thickness that de-

pends on the tissue fiber rotation rate. In Refs. 41 and 86, the

relation between fiber rotation rate, thickness, pivot turn

angle of spiral wave tip trajectory, and breakup was dis-

cussed in great detail. It was shown that while fiber rotation

induces twist, the total amount of twist accumulated ulti-

mately is determined by the trajectory of the spiral wave tip.

For a given rotation rate, the sharper the pivot turn in the tip

trajectory, the larger the twist induced by the lagging phase.

Therefore, models that are in parameter regimes where their

spiral waves show pronounced ‘‘petals,’’ in which the trajec-

tory makes a loop and crosses its own path as in the MBR

model ~which exhibits short petal distance ;2 – 3 mm, with

a high total angle of rotation ;180°),86 require a lower fiber

rotation rate to induce breakup in 3D compared to models

with faster sodium kinetics like the LR-I model ~with the

speed of calcium dynamics increased by a factor of three to

produce stable spirals!, whose trajectories also have sharp

turns but have smaller pivot angles.87,130 Compare, for ex-

ample, the trajectories in panels ~e! and ~f! of Fig. 1, which

are similar to the MBR and LR-I models with faster calcium

dynamics,87,130 respectively.

FIG. 34. Different timing of turns in 3D tissue with rotational anisotropy.

Elliptical trajectories ~produced by anisotropy! of a scroll wave are shown

for the top ~solid line! and bottom ~dashed line! of a slab with 26° in fiber

rotation. While the spiral on the epicardium ~solid line! has passed the pivot

turn already, the spiral on the endocardium ~dashed line! has not yet started

its pivot turn. As a result, the vortex has developed a twist in its phase

intramurally ~as shown in Fig. 35!. Parameter set 1 is used with td

50.416, using an anisotropy ratio of 5:1.

FIG. 35. ~Color! Intramural twist and vortex elongation. Four snapshots of

a transmural vortex using the 3V-SIM fitted to the MBR model ~parameter

set 1! in a slab 0.75 cm thick, using an anisotropy ratio of 5:1 with a fiber

rotation rate of 12°/mm ~Ref. 41!. The normal vectors shown in blue illus-

trate the direction of the spiral wave tips along the vortex and indicate an

intramural highly localized twist ~shown in red! produced by a phase differ-

ence ~see the text and Fig. 34!. As the twist propagated through the vortex

line ~at about 20 cm/s!, it elongated and collided with a boundary, splitting

the original filament into two segments, one that remained transmural and

one corresponding to a half vortex ring. Spatial and temporal resolutions

were Dx5Dy50.025 cm, Dz50.0125 cm, and Dt50.2 ms.
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To emphasize that twist-induced breakup in tissue with

fiber rotation is a function of the fiber rotation rate and the

spiral wave trajectory,41,86,87,130 and not of the rotation rate

and the slope of the APD restitution curve, as argued in Ref.

74, we illustrate this mechanism using parameter set 10,

which produces spiral waves with linear core and has an

APD restitution curve with slope less than one ~see Fig. 36!.
Figure 37 shows breakup of an otherwise stable 2D spiral

wave ~see Fig. 36, inset! in a 3D slab (4.334.3 cm and 0.645

cm thick! with 180° of total fiber rotation (28°/mm rotation

rate!. The simulation was performed using Dx5Dy

50.0214 cm, Dz50.0107 cm, and Dt50.115 ms, and the

results were verified by using Dz50.00535 cm to ensure that

breakup was not due to inadequate resolution of the fiber

rotation. Because the pivot turn is not as pronounced as in

the MBR model, a higher fiber rotation rate is needed for

breakup compared to the MBR model.41,130 A straight scroll

wave is used as an initial condition ~a!. As the scroll wave

rotates and evolves, the filament buckles as it elongates due

to the traveling twiston41,86 ~b!–~f!, forming a target pattern

at the lower surface as the bent part of the filament ap-

proaches until it breaks into two vortices, one transmural and

one half ring, when it touches the lower boundary ~g!. Half

rings can expand further and break as they touch other

boundaries ~h!–~j!. As time progresses the activity becomes

increasingly irregular as more vortices are created and anni-

hilated either by elongations or by conduction blocks ~k!–~r!.
Note the creation of a single intramural scroll ring ~m!–~n!,
which in an isotropic medium would collapse and disappear,

but which here elongates and breaks at the boundaries due to

the anisotropy, producing more vortices that sustain the

fibrillatory-like behavior. Because the minimum APD pro-

duced in this model is larger than that of the MBR model, the

density of scroll waves is smaller than in the MBR130 and

MBR-like simulations.41

C. Mechanism 10: Decreased cell coupling and
discrete effects

While so far we have considered cardiac tissue as a con-

tinuous medium, experimental evidence accumulating since

the 1980s has suggested that the discrete nature of the cells

and the anisotropic distribution of intracellular

connections182,183 can lead, in some cases, to discontinuous

effects in propagating waves. In particular, it has been shown

that cellular discreteness can affect the excitability and safety

factor for propagation that can lead to reentry without the

presence of spatial differences in refractory periods.52,184,185

These types of discrete effects become stronger as tissue be-

comes ischemic186,187 or when cell density is nonuniform.188

For instance, cultured monolayers of chick embryo cells as

well as cellular automata studies have shown that spiral wave

breakup can occur when cell coupling is decreased.188

Panfilov and Keener40,189 made the first studies of scroll

waves in parallelepipedal slabs with rotational anisotropy

where low coupling was considered. Using a piecewise lin-

ear FHN-model, they observed that rotational anisotropy

could destabilize scroll waves and produce breakup.40 The

scroll wave instability resulted from the discrete anisotropic

refractoriness, which can produce patchy propagation failure

at low coupling strengths ~or, equivalently, coarse spatial

resolutions!.190–193 In 3D tissue, the introduction of fiber ro-

tation can allow patchy propagation failure to develop at

slightly higher coupling strengths. Like the twist instability,

breakup occurs as a function of tissue thickness for a given

fiber rotational rate and cell coupling strength,40 but other-

wise the two mechanisms are quite different. In this case,

propagation failure due to discrete effects occurs preferen-

tially in the transverse and transmural directions and is am-

plified by the rotational anisotropy.

To show this effect, we use the same parameters as for

the twist mechanism ~set 10! in a slab of similar thickness as

that shown in Fig. 37, but with a much smaller rotation rate

in which breakup due to twist does not occur. In this case the

slab size is 1.731.7 cm and 0.77 cm thick, with a total of

100° of fiber rotation. Therefore, the fiber rotation rate is

13°/mm, which is less than half of that used in the twist

breakup example, and the spatial coupling used

(0.00062 cm2/s) is much smaller than in the twist example

(0.001 cm2/s). The spatial resolution used to demonstrate

both mechanisms is the same, 0.0214 cm ~although in this

case we use Dx5Dy5z since the rotation rate is smaller!.
Figure 38 shows five equally spaced layers of the slab as a

column at one instant in time, with the top voltage contour

plot corresponding to the epicardium. The first column ~a!
shows the initial intramural scroll wave. As the scroll wave

evolves, propagation failure begins to occur ~b!–~d!, eventu-

ally leading to multiple waves ~e!–~h!. Because this breakup

is due to low coupling, the breakup disappears at larger cou-

pling values ~e.g., larger than twice the value used here!,
leaving a stable scroll wave,40 since twist-induced breakup

for this thickness and rotation rate ~almost the same thick-

ness and half the rotation rate as in Fig. 37! does not occur

for this parameter set. We note that unlike mechanism 9, no

specific tip trajectory is necessary for breakup to occur.

The same effect can be achieved by using a coarser spa-

tial resolution, as in Ref. 40, rather than by decreasing the

coupling, since what is important is a reduction in the ratio

D/Dx2. The spatial resolutions used in Ref. 40 for the FHN

model breakup were 0.09 and 0.125 cm. In our case an

FIG. 36. ~Color online! APD restitution curve with slope less than one

obtained using parameter set 10. The dotted line has slope one. The inset

shows a stable 2D spiral wave and its tip trajectory using the same param-

eter values. Tissue size is 4.334.3 cm with Dx50.0214 cm and Dt

50.115 ms.
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equivalent rescaling corresponds to 0.086 cm and produces

the same results ~note that this rescaling involves decreasing

the number of grid points used to represent the voltage!. It is

important to mention that when including discrete effects,

either by discretizing directly the cardiac cells as in Ref. 185

or by using a coarse spatial resolution, caution is required

when choosing the protocols and model parameters, since

numerical artifacts leading to unrealistic results sometimes

can be induced. As an example, Fig. 39 shows how coarse

discretization can lead to incorrect spiral trajectories due to

lattice pinning. The spiral wave from the coarse simulation

~a! pins to the computational grid, producing an almost rect-

angular trajectory instead of the correct circular one ~b! and

yielding a much longer period of rotation.

VII. DISCUSSION

A. The role of APD and CV restitution curves

Although the shape of restitution curves cannot solely

predict spiral tip trajectories @e.g., circular cores can be ob-

tained for both flat and steep APD restitution curves, as in

Fig. 1~a! and Fig. 12, respectively#, they are useful to explain

FIG. 37. ~Color! Breakup and com-

plex dynamics due to filament twist

using parameter set 10 in a 3D slab of

tissue with 180° of total fiber rotation

and using an anisotropy ratio of 5:1.

Tissue size was 4.334.330.645 cm

with Dx5Dy50.0214 cm, Dz

50.0107 cm, and Dt50.115 ms. An

initially straight filament ~a! rotated

and evolved, accumulating twist and

elongating ~b!–~d!. A target pattern ap-

peared at the lower surface as the bent

part of the filament approached it ~e!–

~f! until the filament touched the lower

boundary and broke into a transmural

filament and one half ring ~g!. Later, a

half ring expanded and became two

transmural filaments upon touching

the boundary ~h!–~j!. Elongations and

conduction blocks continued to occur

~k!–~r!, sustaining the fibrillation-like

dynamics. Using the same parameter

values in 2D produced a stable spiral

wave ~see Fig. 36, inset!. To facilitate

visualization, the vertical dimension

has been stretched by a factor of 2.
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and to determine some regimes in which certain conduction

blocks can develop and produce spiral wave breakup.

Throughout Sec. IV six different mechanisms for breakup in

2D were described depending to some extent on their APD

and CV restitutions.

1. Steep APD restitution curves

The first two mechanisms originate when the APD resti-

tution curve has a slope greater than one over some range of

DIs, which can produce APD alternans and conduction

blocks at high frequencies. While in principle both mecha-

nisms can be considered as one, we make a distinction based

on two factors: the steepness of the APD restitution curve

and the frequency of the source. If the APD restitution curve

is abruptly steep ~i.e., has a narrow range of DIs over which

the restitution is much greater than one!, then the region for

possible periods with oscillating APDs that result in stable

alternans rather than conduction block is narrow. Therefore,

spiral waves will break close to the tip as they form, since

conduction blocks will be present whenever a DI falls out of

the stable alternans region, as shown in Figs. 4 and 7. We

refer to this breakup as mechanism 1 or breakup by an

abruptly steep APD restitution.

If instead the APD restitution curve is steep but not

abruptly steep ~i.e., has slope greater than one for a relatively

large range of DIs!, then the region for stable alternans is

wider and there is a greater chance for a spiral wave to form

without generating conduction blocks. Nevertheless, under

these conditions, the conduction velocity restitution can af-

fect the behavior of the spiral wave and produce breakup. It

has been shown that when tissue is periodically stimulated at

a frequency in the alternans region, variations in velocity due

to CV restitution can induce discordant alternans50,105 along

the tissue, which in turn can lead to conduction blocks.97,108

The distribution of nodes that separates the discordant alter-

nans regions becomes a function of the CV restitution.50 In

particular, nodes occur closer to the stimulus site and pack

together more densely as the CV restitution changes over a

wide range, as shown in panels ~e! and ~f! of Fig. 10. There-

fore, for a spiral wave whose period is in the alternans re-

gion, the CV restitution curve will dictate if discordant alter-

nans and block can form in a specific tissue size.50,97 In Fig.

11 we show how, for a given frequency, conduction block

depends on the distance from the source. This means that the

stability of a spiral wave whose frequency is in the alternans

region is a function of size,35 so that a spiral wave that is

stable in a square domain of length L may not necessarily be

stable in a domain of length r*L (r.1), as illustrated in Fig.

12. Unlike mechanism 1, which occurs rather quickly and

close to the tip, the breakup due to discordant alternans de-

velops over time, requiring many beats to form and with the

distance of the breakup region from the tip depending on the

period. Therefore, we distinguish it as a separate mechanism.

It is important to note that even when the APD restitu-

tion curve is abruptly steep, breakup by discordant alternans

still can be produced ~by pacing periodically at a constant

frequency in the region of alternans!. However, since the

range of periods for stable alternans is very narrow ~for ex-

FIG. 38. ~Color! Breakup in 3D due to

discrete effects and low coupling with

rotational anisotropy, using parameter

set 10, in a 3D slab of tissue (1.7

31.730.77 cm) with 100° of total fi-

ber rotation and using an anisotropy

ratio of 5:1, Dx50.0214 cm, and Dt

50.115 ms. Voltage plots of the top

and bottom surfaces, along with three

evenly spaced interior surfaces, are

shown at eight different times ~after 0,

679, 736, 955, 1231, 1541, 1576, and

1771 ms!. The initially straight scroll

wave became distorted due to the ro-

tational anisotropy and the low cou-

pling induced breakup. Note that

breakup does not occur when the same

simulation is performed using larger

coupling values.

FIG. 39. ~Color online! Lattice pinning resulting from coarse discretization

in the low excitability regime. ~a! Spiral wave trajectory pinning to the

lattice. ~b! Spiral wave trajectory obtained by decreasing the spatial resolu-

tion by 10%. The pinning occurs because the curvature at the spiral tip

is close to the critical radius of curvature, so that only those adjacent cells

on one side of the tip become excited @causing the straight line motion seen

in ~a!# until the spiral rotation rotates enough for the tip to turn. As a result,

the trajectory is very different and the period is completely wrong.
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ample, 30 ms using parameter set 3 compared to 85 ms for

set 4!, spiral waves with abruptly steep APD restitutions are

more likely to break up by mechanism 1 than by mechanism

2. One possible exception to this hypothesis could occur if a

spiral were able to pin to an inhomogeneity of a size such

that the period lay precisely in the alternans region. Simi-

larly, breakup by mechanism 1 can occur in models with

steep ~but not abruptly steep! APD restitution curves when-

ever a large change in cycle length occurs.

2. Non-steep APD restitution curves

Without diminishing the significance of steep APD res-

titution curves as a breakup mechanism, especially since

their relevance has been shown in a number of

experiments,51,194,195 it is important to recognize that there

are a number of other mechanisms that also can cause spiral

wave breakup. In fact, one of the most widely used ionic

models for cardiac simulations, the Luo–Rudy–I,103 breaks

up with calcium dynamics speeded up by a factor of between

2 and 2.8, despite its flat APD restitution. The LR–I model

has a much faster ~and more realistic! sodium conductance

than its predecessor, the BR model,92 resulting in a smaller

DImin ~25 vs 46 ms! and a relatively high APDmin , producing

a fairly flat APD restitution. Even when the calcium is

speeded up by two ~to decrease the maximum APD from

about 360 ms to a more physiological value of about 230

ms!, the restitution curve is flat, with slope less than one

~Fig. 40!. Because of its high excitability, small refractory

period, and large wavelength, the model follows linear core

trajectories with sharp turns that can block wave propagation

due to the Doppler shift in the frequency, as shown in Fig. 21

in the discussion of mechanism 4.

Other possibilities for spiral wave breakup in two dimen-

sions that do not require steep APD restitutions are the cases

of nonmonotonically decreasing restitution curves, such as in

the cases of biphasic APD ~mechanism 5! and supernormal

CV ~mechanism 6! restitution curves. With a biphasic APD

restitution curve, even when the magnitude of the slope

never exceeds one, the prolongation of APD as the DI is

decreased ~over a certain range of DIs! can block subsequent

waves, thereby causing breakup. Similarly, a supernormal

CV restitution curve causes waves at short DIs to move more

quickly than waves at long DIs. In this way, waves can stack

and even block by collisions as spirals turn. Other mecha-

nisms that do not require a steep or otherwise specifically

shaped APD or CV restitution curves to produce breakup are

discussed below. Mechanisms not involving steep APD res-

titution may be relevant in the study of atrial fibrillation,

where extensive experimental evidence has shown that the

rate adaptation of atrial tissue diminishes or is eliminated

after prolonged periods of fibrillation.196,197

3. Quantifying restitution

While details of restitution curves such as shape, steep-

ness, and the DImin can be important in determining spiral

wave stability and are a principal tool in classifying the vari-

ous breakup mechanisms of this paper, we should mention

two important issues regarding their measurements, particu-

larly in experiments.

First, APD restitution can be measured either in isolated

cells or in intact tissue. Although both are similar since they

represent the same system, differences can arise due to cell

coupling. For example, the maximum APD measured in an

isolated cell and in a cell in a tissue preparation can vary

substantially due to electrotonic effects, especially as a func-

tion of excitability. This effect has been seen in experiments,

where the APD in isolated myocytes has been estimated to

be 10%–15% longer than in tissue,198 and can be observed

readily in numerical simulations. In the same manner, the

value of the minimum diastolic interval measured in an iso-

lated cell depends on the strength and duration of the stimu-

lus and is much shorter than the minimum diastolic interval

for propagation obtained in tissue. Therefore, the shapes ob-

tained from tissue and isolated cells may differ in the sense

that for isolated cells, the APDmax may be higher and the

DImin smaller, allowing more variation in slope. As a result,

in some extreme cases alternans can be seen in isolated cells

but not in tissue. Since arrhythmias form in tissue rather than

in single cells and electrotonic effects certainly are present,

we believe that the restitution obtained in tissue is the rel-

evant curve for this analysis.

Second, the restitution relations in real cardiac tissue do

not depend only on the previous diastolic interval, but in fact

there is memory of previous activations.199 That is, there is

an adaptation of APD to variations in cycle lengths which is

believed to be due, among other things, to changes in elec-

trochemical gradients and permeability arising from differ-

ences in accumulation of intracellular sodium and calcium

and extracellular potassium as well as the nonequilibrium

values of the ionic currents at different rates of

stimulation.55,133,200,201

FIG. 40. ~Color! Breakup in the LR–I model with calcium speeded up by a

factor of 2. The first two panels show the initial breakup as the spiral wave

turns, blocks, and breaks. The third panel shows the voltage profile after a

few more wave breaks have occurred. Because of the large wavelength and

the linear core, the breakup was transient, and eventually all waves left the

area. The lower panel shows the APD restitution curve for the LR–I model

with calcium speeded up by a factor of 2, which has slope less than one

everywhere. Similar breakup is also obtained when the calcium dynamics

are up to 2.8 times faster than with the original parameters ~Ref. 130!.

Tissue size is 434 cm with Dx50.02 cm, and Dt50.025 ms.
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Because of memory, there are different protocols com-

monly used to measure APD restitutions, and indeed one

difficulty in using APD restitution curves as a predictor of

spiral wave instability is determining an effective and useful

measurement protocol. The so-called steady-state restitution

curve is obtained by pacing the cardiac preparation at a fixed

cycle length for a large number of beats ~until the preparation

reaches a steady state!, after which the last DI and APD are

recorded at that cycle length to provide a point on the APD

restitution curve. Repeating the same protocol for various

cycle lengths and measuring one point for each cycle length

constructs the full curve. Another protocol measures the

S1–S2 restitution at a given cycle length. Here, a train of

more than 20 stimuli at a fixed cycle length ~S1! is used to

set the tissue memory to that particular cycle length. Once a

steady state is reached, a single premature stimulus ~S2! is

applied. The APD of the premature stimulus and the preced-

ing DI provide a point on the restitution curve. Repeating the

S1 train at the same cycle length and varying the time of the

premature stimulus S2 provides a full restitution curve. A

variant of the S1–S2 protocol uses a third stimulus S3136,199

~or more! designed to reach shorter DIs and APDs than are

accessible only by using successively closer stimuli. While

the steady state protocol yields one APD curve, the S1–S2

produces an entire family of restitution curves since different

S1 cycle lengths yield different restitution curves,55,202 all of

which have various slopes and shapes, bringing into question

which restitution is the relevant one. Furthermore, the

steady-state and S1–S2 protocols are limited in that they can

be used only in quiescent tissue and not during an arrhythmic

episode, which also calls into question the relevance of these

restitution curves to fibrillation initiation. During an arrhyth-

mia, the only option for measuring restitution is the so-called

dynamic protocol,194,203 in which voltage traces from many

sites are used to obtain DI, APD pairs, which are then plotted

together. A similar approach can be taken in the absence of

an arrhythmia by introducing stimuli at random intervals and

measuring all DI, APD pairs.

While the steady state and S1–S2 restitutions produce

relatively clean curves, the dynamic protocol typically yields

a cloud of points rather than a clearly discernible restitution

curve. The cloud is due in part to the fact that measuring DIs

and APDs from an extended system during an arrhythmia

can include loading effects from curved fronts as well as

double potentials with short APDs resulting from recordings

close to the core of reentrant waves.16,75

Currently it is believed that the dynamic restitution is the

most useful predictor of spiral wave behavior, since it is

measured under the conditions of arrhythmia. One possible

method of extracting useful information from the cloud of

points obtained is to plot the restitution curve using a density

plot. If the DIs and APDs are binned, the restitution curve

can take on a third dimension by plotting the number of

points falling into the given DI, APD bin as a height. In this

way, although outlying points remain in the plot, preference

is given to the DI, APD pairs that appear most often, and a

structure can emerge as points measured close to reentrant

waves and due to loading effects are reduced to the back-

ground.

Figure 41~a! shows a density plot example obtained from

5 s of simulated fibrillation ~using parameter set 6, mecha-

nism 4, shown in Fig. 19!. The data were collected from all

sites throughout the full 5 s and produced a highly scattered

distribution. To construct the density plot, the DIs and APDs

were rounded to the nearest 0.5 ms, thereby creating DI and

APD bins. The number of DI, APD pairs obtained for each

bin value were counted and plotted for that DI and APD with

a color to represent the frequency of occurrence for that DI,

APD pair. Those bins visited between 2 and 500 times are

shown as the black ‘‘dust’’ and include 17% of the total data.

~Those bins visited only once, constituting 8% of the total

data, are not shown.! Bins visited a larger number of times

are color-coded as follows: 501–1000 times, red, containing

12% of the data; 1001–2000 times, green, with 6% of the

data; 2001–2500 times, blue, with 6% of the data; and

greater than 2500 times ~up to a maximum of more than

38 000!, yellow, consisting of 51% of the data. The values

shown in the figure take on an increasingly discernible struc-

ture as less-visited DI, APD pairs are excluded. For compari-

FIG. 41. ~Color! ~a! Density plot of restitution. DI, APD pairs are gathered

from all sites over a 5 s simulation and grouped into 0.5-ms-wide bins. A

point is plotted for each DI, APD pair whose bin was visited at least twice

during the simulation, representing 92% of the total data collected. The

points appearing as a diffuse black ‘‘dust’’ were visited up to 500 times and

represent 17% of the data. Bins visited more often were color-coded: up to

1000 visits, red; up to 2000 visits, green; up to 2500 visits, blue; more than

2500 visits, yellow. Those DI, APD pairs visited most often cluster closely

around the model’s APD restitution curve, shown in black. ~b! Power spec-

trum of frequencies obtained during the same simulation. The two yellow

regions in the density plot, with cycle lengths near 100 and 200 ms, corre-

spond to the peaks in the spectrum of 10 and 5 Hz, respectively.
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son, the model’s APD restitution curve obtained from plane

waves is shown in black, and it can be seen that the density

plot clusters around this curve more and more tightly at those

DI, APD pairs visited most frequently. In particular, the

small APDs produced by curved fronts and wave tips are

eliminated, and the minimum APD and DI of the denser

clusters match those of the restitution curve. While this ex-

ample uses data from a simulation, rather than experimental

data, we believe a similar approach may be useful in clearing

up cloud-like dynamic restitution curves obtained experi-

mentally.

Figure 41~b! shows the normalized power spectrum cor-

responding to the data in ~a!, which resembles those ob-

served experimentally.17,204 A dominant frequency of about

10 Hz is present ~even in the absence of a dominant spiral

wave!, along with a secondary peak at half the value of the

first ~corresponding to the frequency of the 2:1 block region!.
These regions are visited preferentially in the restitution den-

sity plot, as can be seen by the clustering of DI, APD pairs

visited most often ~colored yellow! around the cycle lengths

corresponding to the two frequency peaks ~10 Hz and 100

ms, 5 Hz and 200 ms!. Despite the width of the large peak

and the presence of a wide range of other frequencies in

smaller amounts, use of the density plot allows a restitution

curve structure to emerge. We anticipate that a similar pro-

cedure should help to clarify a useful restitution curve from

experimental data.

The CV restitution curve205 has not been studied as

broadly as its APD counterpart, mostly because its measure-

ment becomes complicated since fiber orientation and three-

dimensional effects distort propagating fronts. Therefore, it is

still largely unknown how CV restitution depends on previ-

ous activations. Although it has been shown206 that maxi-

mum longitudinal and transverse CVs are not significantly

affected by basic cycle length in normal tissue, it is unknown

whether the shape of the curve may change. Furthermore,

during ischemia cellular coupling and thus upstroke velocity

change with cycle length,187,207 so that at least the maximum

conduction velocity becomes a function of cycle length, and

memory effects on CV may become important.

B. The role of initial conditions

Initial conditions, in many cases, are also important de-

terminants of spiral wave stability. A striking example of this

is shown in the case of steep APD restitution curves that

have a second region with slope less than one at short DIs,

such as the 1962 Noble model101 and the Fox et al.117 mod-

els. When such regions exist, periodic pacing at short or long

cycle lengths where the slope is less than one results in stable

waves ~for small domains!, while in between there is a re-

gion of cycle lengths where the slope is greater than one, and

thus alternans develops and conduction block may occur.

Therefore, spiral waves with long periods falling in the re-

gion of slope less than one with long DIs are stable, while

spirals with short periods falling in the other region of slope

less than one can be either stable or unstable depending on

initial conditions and tissue size, as shown in panels ~a! and

~b! of Fig. 15. Where panel ~a! shows a complex spatiotem-

poral pattern due to continuous wave breaks, panel ~b! shows

a stable spiral wave. In both cases, all parameters were the

same, and the only difference was the initial conditions.

While the previous example illustrates the effect of ini-

tial conditions on the onset of breakup, it requires specific

initial conditions; however, other mechanisms require only a

simple spatial gradient in DIs to produce conduction blocks.

An example is the rate-dependent bistability and hysteresis

of APD ~mechanism 3!, in which the passing of a previous

wave can lead to a gradient of recovery, causing parts of the

tissue to be on the 1:1 branch while others are on the 2:1

branch and resulting in a wave break, as shown in Fig. 17.

Discordant alternans-induced breakup ~mechanism 2!
also can depend on initial conditions, again to a lesser extent

than in the first example. When a spiral wave is initiated in

uniform tissue, the breakup typically takes many beats to

occur, as the oscillations due to conduction velocity restitu-

tion grow slowly before developing conduction block. How-

ever, discordant alternans can be generated immediately fol-

lowing a gradient of recovery;50 therefore, if the spiral wave

is initiated in tissue with an existing gradient of refractori-

ness, the oscillations can grow faster and breakup can occur

rather quickly.

The biphasic APD restitution curve ~mechanism 5! also

is sensitive to initial conditions, as seen in the cobweb dia-

gram of Fig. 23. Because of the presence of a region with

negative slope in the middle of an otherwise positively

sloped curve, different initial conditions for the same period

can produce both stable and unstable solutions for a given

frequency. Another example is negative tension ~mechanism

8!, discussed in the following section, in which the differ-

ence in obtaining a stable scroll wave or turbulence depends

on initial conditions. While a straight scroll wave will be

stable, any small deviation from that will result in breakup.

C. The role of thickness „2D vs 3D…

Even though restitution relations and initial conditions

are very important in explaining 2D conduction blocks,

structural effects manifested in 3D can have relevant conse-

quences in the destabilization of three-dimensional reentrant

waves ~scroll waves! and their vortex filaments as well. In

Sec. VI three different mechanisms for spiral wave breakup

in 3D are discussed. The first, negative tension ~mechanism

8!, develops as the excitability of the medium is decreased,

which can occur physiologically when cardiac tissue is de-

prived of oxygen and becomes ischemic. In such cases any

small perturbation applied to the vortex filament of a scroll

wave grows. Vortices can then, after many rotations, elon-

gate, curve and twist intramurally, until they collide with a

boundary and break, producing a new vortex and scroll

wave. This process can repeat itself, leading to multiple

scroll waves and turbulence. Similarly, in twist-induced

breakup ~mechanism 9!, vortices elongate and break at

boundaries. However, unlike negative tension, this mecha-

nism occurs in the high excitability limit, physiologically

corresponding to healthy tissue, and the breakup requires

many fewer rotations. It is important to note that while

mechanism 8 can arise in completely homogenous tissue,
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mechanism 9 is a consequence of the natural anisotropic fi-

ber rotation found in cardiac tissue. Mechanism 10 is en-

hanced by,40 but does not require,190–193 fiber rotation,

Breakup due to this mechanism depends on low coupling and

discrete cell effects, which grow more pronounced as the

tissue becomes ischemic.

We note that while ischemia is a complicated condition

that induces numerous physiological alterations in cardiac

tissue, some of its most important effects are reductions in

excitability and cell coupling. The reduced excitability may

possibly shift the dynamical state of the tissue into the nega-

tive tension regime, thereby activating that breakup mecha-

nism. In addition, the poor cell coupling may induce wave

breakup as in mechanism 10. The twist instability mecha-

nism, on the other hand, becomes less important in this pa-

rameter regime.

Although mechanism 10 in principle can occur in 2D

tissue but is amplified in 3D by anisotropic fiber rotation,

mechanisms 8 and 9 are purely three-dimensional and they

need a minimum thickness to develop. Vortex lines are con-

strained to be locally normal to any boundary at which they

attach ~sealed boundaries that conserve current!, and in very

thin layers this requirement can prevent elongation in both

mechanisms. Mechanism 9, in addition, has a thickness limit

as a function of fiber rotation rate,41,130 below which the

twist induced is not enough to elongate vortex filaments sub-

stantially.

It is important to note that whereas in 2D conduction

blocks are a requirement for breakup, in 3D they are not

necessary even when they occur, since breakup can be pro-

duced purely by topological changes in the vortex filaments,

which have no counterpart in 2D. Once multiple vortices are

created, the complex behavior and interactions between vor-

tices can render the system more turbulent. For example,

conduction blocks between waves can suddenly generate in-

tramural vortex rings that can eventually contract and disap-

pear @see Fig. 42~a!#, or they can expand and even fuse with

other existing vortices @see Fig. 42~b!# if they have the same

phase. Conversely, in other cases, vortex rings can be gener-

ated not by conduction block but by elongation and vortex

self-pinching, as shown in Fig. 42~c!. Even knotted twisted

rings have been shown to fuse under certain conditions.208

Although equations of motion have been derived for

scroll waves in various regimes and under certain

conditions,39,47,176,209,210 the dynamics of their interactions

remain largely uncharacterized.

D. The role of spiral tip trajectories

As noted in Secs. IV–VI, the type of tip trajectory can

be a crucial determinant of spiral wave stability for certain

mechanisms. In mechanisms 1 and 2, any tip trajectory will

produce breakup as long as the period of rotation lies in the

region of slope less than one. On the other hand, mechanism

4 requires not only a relatively flat APD restitution curve and

a small DImin , but also a highly meandering or sharply turn-

ing tip trajectory, so that the waves emitted by the moving

spiral tip will have a Doppler shift ~as shown in Fig. 18! and

see shorter cycle lengths, resulting in conduction block ~Figs.

19 and 20! whenever the shift lies below the period for

propagation.

In the presence of periodic boundary conditions ~mecha-

nism 7!, the type of spiral wave trajectory also is important.

When the wavelength of a spiral is comparable to the length

of the tissue with periodic boundaries, drift can be induced

on the spiral wave by the interaction of self-generated in-

coming waves with the spiral tip, as illustrated in Fig. 29.

Spiral wave drift along the ventricles, which can be produced

by periodicity or by other means,211 has been shown to pro-

duce fibrillation-like signals in the ECG.8,212 Furthermore,

breakup into multiple waves also can occur due to the peri-

odic boundary effects as the movement of a hypermeander-

ing spiral wave can cause complex gradients in repolariza-

tion, which can lead to conduction blocks as the spiral wave

breaks, as shown in Fig. 30.

The type of tip trajectory is also important in the 3D

breakup mechanism of filament twist instability ~mechanism

9!, where sharp pivot turns in the trajectory are required. The

rotational anisotropy of the medium causes the turn to take

place at slightly different times across layers, producing a

phase lag. Each time the pivot turn occurs, twist builds up in

the filament, which the filament tries to eliminate through

elongation ~rather than by diffusion, as in sproing78,181!.
When the turn is sufficiently sharp, enough twist can accu-

mulate to destabilize the filament, which elongates so much

that it eventually collides with the boundaries and breaks in

FIG. 42. Vortex interactions. ~a! A vortex ring is created and collapses again

without touching the transmural filament. ~b! A vortex ring is created and

fuses with an existing transmural filament because its phase matches the

filament phase at the fusion site. ~c! A vortex ring is pinched off from a

transumral filament as it elongates. All parameters are set as in Fig. 35.

884 Chaos, Vol. 12, No. 3, 2002 Fenton et al.



two. This instability decreases and has little effect for tip

trajectories with mild pivot turns and circular cores even at

high degrees of rotational anisotropy.41,86,130

It is important to note that the tip trajectory can have an

important role in determining the sustainability of breakup.

Sustained breakup is more likely to occur whenever the tip

follows small cores ~compared to the tissue size!, such as in

the Karma model,95 the Bär model,36,116 the Noble

model,87,91 some versions of the FHN model,12 and a number

of models of the BZ reaction. In contrast, breakup is more

likely to be transient when the tip trajectory is large, such as

in the meandering and hypermeandering regimes, as shown

using the BR model34,89 and the LR–I model.87 As the tissue

size is increased relative to the tip trajectory, the duration of

transient breakup also tends to increase.100

E. Limitations

A number of limitations of the present study should be

mentioned. First, this manuscript has presented a set of

mechanisms that can occur in homogeneous tissue, while in

reality, cardiac muscle contains a variety of intrinsic inhomo-

geneities. Nevertheless, this survey can serve as a foundation

and framework for the analysis of mechanisms that can occur

with or without heterogeneities. Many of the mechanisms

operative in homogeneous tissue should continue to occur in

heterogeneous tissue, but some may be enhanced or sup-

pressed, while other new mechanisms certainly occur due to

specific heterogeneities. For example, differences in cell dy-

namics have been found between the left and right ventricles,

which may be important in arrhythmia development.11 Like-

wise, different cell types exist along the thickness of the

ventricular wall ~epicardial, M, and endocardial cells!, whose

dynamics at large pacing cycles can vary greatly213–215 and

may destabilize waves under certain conditions.216–218 Fur-

thermore, natural dispersion in APD throughout the tissue

may facilitate the formation of conduction blocks219 or allow

the development of sproing when the spiral period is shorter

at one end of the vortex line, leading to breakup of scroll

waves.78,181

In addition, we do not describe effects of geometric

structure that can contribute to arrhythmogenesis, such as

curvature effects;146 nonuniform fiber orientation producing

drift;211 abrupt changes in fiber direction at sites like the

papillary muscle insertions in the ventricles,220 which can

provide anchoring sites for reentrant waves; and path struc-

tures for reentry, such as the pectinate muscles,76,221 the pul-

monary veins,42 and the Purkinje system.222 Furthermore,

we have neglected noise223 and memory effects,199,201,224,225

mechanical contraction,226 triggered activity including early

afterdepolarizations,227 randomly distributed heterogen-

eities,228 and localized heterogeneities such as scars229–231

and ischemic regions,232 all of which have been shown to

promote reentry and breakup. However, the analysis and ef-

fects of these and other types of native or illness-induced

inhomogeneities on the breakup of scroll waves is beyond

the scope of this paper.

VIII. CONCLUSIONS

This paper has shown and classified a number of differ-

ent mechanisms for spiral wave breakup in 2D and 3D tis-

sues on the basis of the conditions necessary for their occur-

rence in cardiac tissue. APD and CV restitution curves can

produce various types of breakup due to their steepness or

due to their specific shapes for certain periods, although

other mechanisms exist even when APD and CV restitution

curves are relatively flat. In some cases, initial conditions can

play a crucial role in determining whether or not breakup

will develop. The trajectory of the spiral wave tip also can be

important for some breakup mechanisms to occur, as repo-

larization differences due to tip meander can lead to conduc-

tion block, and differences in pivot turns in 3D tissue with

rotational anisotropy can destabilize transmural filaments. Fi-

nally, although spirals can break by a number of mechanisms

in 2D, fully 3D tissue is needed for certain mechanisms to

develop. All of the mechanisms discussed in this paper can

operate in fully homogeneous and isotropic tissue, except for

the 3D twist- and discreteness-induced mechanisms, which

require rotational anisotropy.

Which breakup mechanism or mechanisms are respon-

sible for the transition from tachycardia to fibrillation in the

human heart is still unclear. Experimental evidence in vari-

ous animal models can be interpreted to support several

mechanisms, including steep APD restitution51,194,195,203 and

tip trajectories,11,233 as well as one8–11 or many spirals.11–17

However, our intent here is to give a survey of possible ar-

rhythmogenic mechanisms, any number of which may be

present in a given patient or preparation. Numerous ques-

tions about how these mechanisms may operate deserve fur-

ther study, including whether one or several mechanisms

tend to underlie fibrillation, how fibrillation caused by vari-

ous mechanisms may be differentiated, which mechanisms

may be associated with other types of heart disease like is-

chemia and heart failure, and how to provide effective treat-

ment to prevent fibrillation.

The last question in particular takes on more importance

in light of the fact that multiple mechanisms may be capable

of inducing fibrillation; therefore, pharmacotherapy studies

designed to develop new drugs that target one breakup

mechanism need to ensure that they do not activate, facili-

tate, or enhance other mechanisms that may exist. For ex-

ample, flattening restitution can prevent mechanisms 1 and 2,

but we can speculate that breakup may still persist or resume

if by doing so a small refractory period and large wave-

lengths are produced, thus facilitating mechanism 4. Simi-

larly, lowering the sodium conductance may suppress

breakup by mechanisms 7 and 9 as the tip trajectory is

changed, but could in principle enhance 8 and 10 if the so-

dium change is extreme. It appears that the best way to sup-

press all of the mechanisms discussed here is conversion of

the tip trajectory to a large circular core, a conclusion simi-

larly reached by Samie et al.233,234 and Efimov et al.64 As

mentioned in Sec. II, the tip trajectory can be made circular

and increased in size by enlarging the excitability gap or by

decreasing the sodium or calcium conductances. However,

decreasing the sodium conductance, as suggested in Ref. 64,
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may have arrhythmic effects due to mechanisms 8 and 10 if

the excitability is too low. Therefore, reducing the calcium

conductance, as in Ref. 233, may be a good approach ~with

or without a concomitant small decrease in the sodium con-

ductance!, but the effects of low calcium on contraction need

to be addressed.

To validate or dispute such approaches to arrhythmia

prevention, additional studies of the dynamics of these and

other breakup mechanisms in realistic cardiac geometries in-

cluding variations in cell types is needed. In some cases, the

parameter regimes in which the breakup occurs may be wid-

ened, making the breakup easier to occur. In other cases,

structural effects may vary the roles of a breakup mechanism

and conceivably new breakup mechanisms will emerge.
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APPENDIX

In this appendix, we describe the simplified ionic model

introduced in Sec. III and used through this manuscript ~un-

less specifically noted otherwise! to simulate cardiac electri-

cal dynamics. The dynamics of the transmembrane potential

Vm is governed by the cable equation ] tV(x,t)5¹•(D¹V)

2(Ifi(V ,v)1Iso(V)1Isi(V ,w))/Cm , where the ionic cur-

rents determine cell dynamics, Cm represents the membrane

capacitance ~set to 1 mF/cm2), and the diffusion tensor D

defines tissue structure and anisotropy described in Sec. VI.

Except for the last two mechanisms, all simulations are iso-

tropic, so that D is a diagonal matrix whose off-diagonal

elements are 0 and whose diagonal elements are

0.001 cm2/ms. This is the most commonly used value in the

literature, but it assumes a surface to volume ratio of 5000/

cm, corresponding to a fairly small cell radius of around 4

mm.96 The two gate variables of the model, v and w , follow

first order equations in time:

] tv~x,t !5~12p !~12v !/t
v

2~V !2pv/t
v

1~V !,

] tw~x,t !5~12p !~12w !/tw
2~V !2pw/tw

1~V !,

where t
v

2(V)5(12q)t
v1
2 (V)1qt

v2
2 (V) and

p5H 1 if V>Vc

0 if V,Vc

, q5H 1 if V>V
v

0 if V,V
v

.

The two gate variables and the transmembrane potential vary

from 0 to 1. Therefore, when comparing with other models

or experiments, Vm needs to be rescaled, as shown in Fig. 3.

The three currents are given by the following:

Ifi~V ,v !52vp~V2Vc!~12V !/td ,

Iso~V !5V~12p !/t01p/tr , and

Isi~V ,w !52w~11tanh~k~V2Vc
si!!!/~2tsi!.

Although we refer to this model as the 3V-SIM because

it consists of three variables, there are two variations we

commonly use, one with two variables ~obtained by elimi-

nating gate variable w and the Isi current!, which produces

simple flat APD restitution models as in sets 2 and 7. The

second variation, as mentioned in Sec. III, replaces the

steady-state function d`(V) given by (11tanh(k(V2Vc
si)))

with a gate variable d , which is used to reproduce more

accurately the AP shapes of other models,44,69 as shown in

Figs. 3~a! and 3~b!.
In Sec. IV an extra current is added in order to obtain a

biphasic APD restitution curve. This current is used in con-

junction with parameter set 8 and an extra variable denoted

here as y and obeying the following:

Ibiph5pp~y !*0.355/tr ,

where pp(y)51 for y.0.1 and pp(y)50 otherwise, and

TABLE I. Parameter values used for the 3V-SIM to produce the simulations included in this study.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10

t
v

1 3.33 10 3.33 3.33 3.33 3.33 10 13.03 3.33 10

t
v1
2 19.6 10 19.6 15.6 12 9 7 19.6 15 40

t
v2
2 1000 10 1250 5 2 8 7 1250 2 333

tw
1 667 ¯ 870 350 1000 250 ¯ 800 670 1000

tw
2 11 ¯ 41 80 100 60 ¯ 40 61 65

td 0.25 0.25 0.25 0.407 0.362 0.395 0.25 0.45 0.25 0.115

t0 8.3 10 12.5 9 5 9 12 12.5 12.5 12.5

tr 50 190 33.33 34 33.33 33.33 100 33.25 28 25

tsi 45 ¯ 29 26.5 29 29 ¯ 29 29 22.22

k 10 ¯ 10 15 15 15 ¯ 10 10 10

Vc
si 0.85 ¯ 0.85 0.45 0.70 0.50 ¯ 0.85 0.45 0.85

Vc 0.13 0.13 0.13 0.15 0.13 0.13 0.13 0.13 0.13 0.13

V
v

0.055 ¯ 0.04 0.04 0.04 0.04 ¯ 0.04 0.05 0.025
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] ty~x,t !5~12p !~12y !/4002py /25.

The 13 model parameters used in the various examples are

given in Table I. Further description of model parameters and

their functions can be found in Ref. 87. We note that the

numbering of the sets is purely for convenience, and does not

indicate that a given parameter set corresponds to any par-

ticular breakup mechanism~s!.
To calculate APD restitution curves, we used an S1–S2

protocol in a 1D cable. Since the 3V-SIM does not incorpo-

rate memory effects, the restitution curve obtained is inde-

pendent of the protocol used. Therefore, restitution curves

were measured by initiating an S1 stimulus from rest, and

then the DI preceding the S2 stimulus was varied to obtain

points on the curve. Linear interpolation was used to provide

the precise time associated with the voltage cutoff of 80%

repolarization. CV restitution curves were calculated in a

similar manner in 1D cables using points away from the

stimulus site to avoid stimulus artifact. Linear interpolation

again was used in determining all times because the velocity

depends sensitively on the time measurements. In some

cases, smaller value of Dt were used to calculate CV resti-

tution curves to attain more accurate velocities.

All simulations were performed using an exact integra-

tion scheme for the gate variables and a Crank–Nicolson

scheme for the voltage as described in Ref. 41, thus allowing

larger time steps compared to the forward Euler scheme. We

have verified that similar results can be obtained using for-

ward Euler with Dt50.05 ms. However, it is important to

mention that even though all simulations ~except for mecha-

nism 10, because of the low coupling effect! are resolved, in

some circumstances, such as in the low excitability limit, the

tip trajectory regimes as a function of parameters may vary

slightly as the time constant for integration is decreased fur-

ther. That is, a small percentage shift in the range of values

of td ~excitability! may be needed to obtain results identical

to the figures as the time constants for integration are varied.

However, the results are valid at the resolutions given

throughout this paper.

For the periodic boundary cases, where a cylinder is ap-

proximated by making the horizontal direction of a 2D do-

main periodic, the solution of the tridiagonal matrix in the

Crank–Nicolson scheme acquires two additional entries at

the corners and becomes cyclic tridiagonal. We solve this

matrix by adding corrections to the Thomas algorithm ~used

in the zero flux boundary conditions! based on the perturba-

tion correction Sherman–Morrison method. Therefore, a

tridiagonal matrix of the form

A i
2V i21

1
1A i

0V i
1
1A i

1V i11
1

5F i~V i
t1Dt/2!,

A i
2V i21

2
1A i

0V i
2
1A i

1V i11
2

50,

A i
2V i21

3
1A i

0V i
3
1A i

1V i11
3

50,

where V0
1
5Vn

1
5Vn

2
5V0

3
50 and V1

2
5Vn

3
51, has a solution

of the form

V i
t1Dt

5V i
1
1~Vn

1~12V1
3!1V1

1Vn
3!V i

2
1V1

1~12Vn
2!

1Vn
1V1

2)V i
3)/@~12Vn

2!~12V1
3!2V1

2Vn
3# .

For the 1D reductions of target waves in the description

of mechanism 2 and the 2D reductions of scroll waves in the

description of mechanism 8, where radial coordinates are

used, the value at r50 is obtained by approximating the

solution of the transmembrane potential to a polynomial;

therefore, the radial Laplacian at that point can be approxi-

mated locally by 4(V1,j2V0,j)/Dx2.
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