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SUMMARY

We consider the problem of determining an appropriate model set on which to design a set of controllers for
a multiple model switching adaptive control scheme. We show that, given mild assumptions on the
uncertainty set of linear time-invariant plant models, it is possible to determine a "nite set of controllers such
that for each plant in the uncertainty set, satisfactory performance will be obtained for some controller in the
"nite set. We also demonstrate how such a controller set may be found. The analysis exploits the
Vinnicombe metric and the fact that the set of approximately band- and time-limited transfer functions is
approximately "nite-dimensional. Copyright ( 2000 John Wiley & Sons, Ltd.

KEY WORDS: band-limited; epsilon-entropy (e-entropy); "nite covering; multiple model control; time limited;
Vinnicombe metric

1. INTRODUCTION

One of the more recent approaches to adaptive control is termed multiple model adaptive control
[1}6]. The concept is as follows. There is an unknown plant P which belongs to a set P which is
usually not a "nite set. A set of controllers MC

1
, C

2
,2, N is available, and assumed to have the

property that each plant in the set P will be satisfactorily controlled by at least one of the
controllers C

i
.

The adaptive control algorithm starts with one of the C
i
being connected to P, and based on

measurements on the closed-loop structure, switching among the controllers takes place until
a satisfactory one is obtained. Of course it could be that the initially chosen C

i
is satisfactory, and

no switching actually occurs. Also, after a satisfactory C
i
is obtained, it may be (locally) tuned to



further improve performance [4]. These issues are considered in this work to be a matter of detail.
This paper is concerned with the key preliminary question: which sets that contain the unknown
plant are susceptible to treatment by multiple model adaptive control? In particular, how many
controllers are needed and how may they be found?

It is not necessary to stipulate at the outset that the controller family is "nite (see, for example
Reference [1]). However, there are good reasons to work with a "nite family of controllers. Such
reasons include ease of the implementation; tractability and e$ciency of the minimization
procedure; and tractability of stability analysis. In supervisory control, the estimators typically
cannot be implemented in cases where there is a continuum of uncertainty unless a certain
separability condition is met [1]. Also, a minimization procedure is used to "nd the controller to
use at each instant of time, and minimization over an in"nite set of controllers is more di$cult to
perform, if indeed possible. Stability analysis too, is simpler in the "nite case for obvious reasons.
All these issues provide motivation for the desire that a set of controllers MC

1
, C

2
,2, C

N
N that is

"nite, be found. This problem is the focus of this particular paper. We also point to a companion
paper [7], which deals with the design of a controller switching algorithm once a "nite set of
controllers has been found. Earlier work [6], also tackles the "nite covering problem in a setting
very similar to the one discussed in this paper.

The problem of how to determine an initial set of controllers is obviously quite an important
one in terms of the practical implementation of multiple model adaptive control. In addition, in
order to keep the computational burden to within tractable limits, consideration needs to be
given to the question of what is the minimum number of controllers (or plant models) which is
needed in order to give satisfactory performance. Consideration of such problems is necessary
since many works on such control algorithms [1}4, 7] begin with the assumption that such a set
has already been found and concentrate attention on the issue of the switching algorithm.
Fortunately these two subproblems of multiple model adaptive control are reasonably indepen-
dent and so work on each subproblem can proceed in isolation from that on the other.

In addressing the above question, we shall consider three types of set.

1. The set of unknown plants is characterized by a parameter uncertainty: P"MP(j) : j3"N
Here, j is a real parameter and " is a subset, usually compact, of Rm for some m, and P(j) is
continuous in j, in a sense to be de"ned shortly. A useful image is a &line' of plants (Figure 1)
for m"1.

2. The set described in the "rst item is mildly fattened, by allowing some unstructured
uncertainty around P(j) for each j3". When m"1, we can think of a thin &tube' of plants
(Figure 2).

3. The set described in the previous item is substantially fattened, with unstructured uncer-
tainty, to the extent that even if j is known, there may be no single controller that achieves
satisfactory robust performance for all plants described by the uncertainty set. An extreme
case could arise when j is a singleton, and all the unknownness is non-parametric.

These three possibilities are dealt with in separate sections of the paper. We regard the "rst item
as the core problem, and so develop the ideas in the most detail for that, including an example
showing calculations giving rise to a speci"c "nite set of j

i
on which to base controller design. The

remaining items are dealt with as extensions to the "rst.
In the following section we review the Vinnicombe metric as a measure of the distance between

models of linear time-invariant plants, and give su$cient conditions for the existence of a control-
ler that gives satisfactory performance for several plants models. In Section 3, we then investigate
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Figure 1. &Line' of plants.

Figure 2. &Tube' of plants.

the "rst type of uncertainty set mentioned above: where the plants are parametrized by a para-
meter from within a compact set. Using the concepts developed in the immediately preceding
section, we describe explicitly how to construct a "nite set of plants so that each plant in the
uncertainty set may be satisfactorily controlled by a controller designed for one of the plants in
the "nite set. This is followed by a simple numerical example where the uncertainty set is
described by an unknown scaling of a nominal plant. We then extend the uncertainty set to
permit a limited amount of unstructured uncertainty in addition to the parametric uncertainty,
and show that if the unstructured uncertainty is su$ciently small, then a relatively minor
extension to the theory presented in Section 3 is required.

Finally we look at the more general case where there is no a priori bound on unstructured
uncertainty. We show that some commonly used uncertainty set models are not susceptible to
"nite approximation in a way that gives the desired su$cient conditions for the existence of
a "nite set of controllers that yields satisfactory performance. Using the concept of e-entropy
developed earlier in Reference [8], we demonstrate that, with modest and physically realistic
restrictions on the uncertainty set, the desired "nite approximation can be achieved.
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Figure 3. Closed-loop system (P(j), C(j)).

2. THE BASIC MULTIPLE MODEL PROBLEM: EXISTENCE

In this section, we consider the following problem. Let P(j) be a set of plants, indexed by
a parameter j in a compact set ", with the elements of the set P(j) depending continuously on j.
The sense in which continuity is to be interpreted will be explored further nearer the end of this
section. Suppose that for each j, a stabilising controller C(j) can be identi"ed which, in
conjunction with P(j) achieves a desirable performance. For the purposes of this paper, we
assume that C(j) is a family of one degree of freedom controllers, see Figure 3. The ideas presented
here can readily be extended to two degree of freedom controllers. We can then ask the following
question. Under what circumstances does there exist a "nite set of controllers C(j

1
),2, C(j

N
)

such that each P(j) is &satisfactorily' controlled by at least one of the C(j
i
)? An explanation of

&satisfactory performance' appears below. Assuming a positive answer to this existence question,
the relevant follow-up question is: how may the required number of controllers, N and the set of
C(j

i
) be determined?

An object playing a key role in our approach to these questions is the closed-loop-generalized
sensitivity transfer function matrix (see References [9, 10], denoted by ¹(P(j), C(j)), which links
the inputs r

1
, r

2
to the loop signals u and y in Figure 3, and is important in de"ning the

generalized stability margin [10]). We have

¹(P(j), C(j))"C
P(j)

I D [I!C(j)P(j)]~1[!C(j) I] (2.1)

A measure of the closeness of linear plants or controllers is provided by the Vinnicombe distance
[10]. This metric induces the same topology as the earlier gap metric [11}13], but has more
desirable properties in that it is less conservative than the gap metric in the following sense. If
proximity in the Vinnicombe metric is unable to guarantee that a perturbed plant will be stabilized
by a controller which results in a certain minimum performance level for a given original plant,
then there exists some controller which achieves that minimum performance level on the original
plant, and some plant which achieves the Vinnicombe proximity condition, which is also
destabilised by that controller [14, see Chapter 4]. Such lack of conservatism is not a property
which is enjoyed by the gap metric, and hence we argue that the Vinnicombe metric is a more
control relevant metric than the gap metric.

For two plants with the same input and output dimension, the Vinnicombe distance (Vin-
nicombe metric, or l-gap metric) is de"ned by

dl (P1
, P

2
)"E(I#P

2
P*
2
)~1@2 (P

2
!P

1
) (I#P*

1
P
1
)~1@2E

=
(2.2)
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provided the following winding number condition is satis"ed

det(I#P
1
P*
2
)( ju)O0, ∀u

and

wno det(I#P
1
P*
2
)#g(P

1
)!g8 (P

2
)"0 (2.3)

If Equation (2.3) is not satis"ed then dl(P1
, P

2
)"1. Here g(P

i
) denote the number of poles of P

i
in

the open right half complex plane Re[s]'0 and g8 (P
j
) is the number of poles of P

j
in the closed

right half-plane Re[s]*0, counted according to multiplicity, and wno denotes the winding
number evaluated on the standard Nyquist contour indented into the right half-plane around any
imaginary axis poles of P

1
and P

2
. The notation X*(s) denotes the conjugate system XM T(!s6 )

which, for real rational systems equals XT(!s) and EXE
=

denotes the L
=

norm of the transfer
matrix X, given by EXE

=
"supu|R p

.!9
[X( ju)], where p

.!9
(X) denotes the maximum singular

value of a matrix.
Now let PM be an arbitrary plant with

dl(PM , P(j))(
1

E¹(P(j), C(j))E
=

(2.4)

It is known that if C(j) stabilizes P(j), then C(j) also stabilizes PM (see Reference [10]). Moreover,
a simple calculation set out in the appendix (see Appendix A.1) yields

E¹(PM , C(j))!¹(P(j), C(j))E
=
)

E¹(P(j), C(j))E2
=

dl(PM , P(j))

1!E¹(P(j), C(j))E
=

dl(PM , P(j))
(2.5)

With Equation (2.4), we can identify a range of plants P(k) for k near j which are stabilized by
C(j), and with (2.5) we can identify a range of plants which give similar performance as the one
achieved on P(j) when connected in closed loop with C(j). Here, we are implicitly identifying
performance with the achievement of a particular target shape for ¹(P, C(j)). We might agree for
example that an acceptable performance with PM occurs provided

E¹(PM , C(j))!¹(P(j), C(j))E
=
)r E¹(P(j), C(j))E

=
(2.6)

for some r with 0(r(1. Noting that the following two conditions are equivalent:

E¹(P(j), C(j))E
=

dl(PM , P(j))(r(1#r)~1"r( (2.7)

E¹(P(j), C(j))E
=

dl(PM , P(j))

1!E¹(P(j), C(j))E
=

dl(PM , P(j))
(r

It is easy to see, using the fact that Equation (2.5) holds, that Equations (2.6) and (2.7) are also
equivalent conditions. (Note that if r@1 then rL+r). Either condition (2.7) or (2.6) also automati-
cally assures (2.4), and therefore any PM satisfying Equation (2.7) is certainly stabilized by C(j).
Thus when we tighten up condition (2.4)*which only guarantees that when C(j) stabilizes P(j) it
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will then stabilize PM 2then we actually obtain the property that the [P(j), C(j)] loop and the
[PM , C(j)] loop will exhibit similar performance. This allows us to state the following desirable
result.

¹heorem 2.1
For any given controller performance threshold r in Equation (2.6), there exists a "nite set of

controllers C(j
i
), such that each plant in the set, parametrized by j, given by P"MP(j) : j3"N is

controlled satisfactorily by some C(j
i
) in the sense that Equation (2.6) is satis"ed. In the de"nition

of P, the set " is understood to be a compact set, and the plants P(j) depend continuously on the
parameter j.

Proof. Given any r, by the previous arguments, we see that there exists an open ball B(j)
around each j such that for any k3B(j) Equation (2.7) with P(k) substituted for PM is satis"ed and
so an in"nite cover of " exists. Because the set " is compact, we may appeal to the Heine}Borel
property [see Reference [15, p. 214]) to conclude that the set " may be covered by a "nite set of
balls, B(j

1
),2,B(j

N
) say, with the property that if k3B(j

i
), then P(k) is satisfactorily controlled

by C(j
i
). The result follows immediately. K

The above arguments provide su$cient conditions only, that is, there may well be plants PM not
so close in the Vinnicombe metric to P(j) as indicated by (2.7) for which C(j) provides satisfactory
performance. There is, in fact a comparatively easy way to obtain a less conservative result. Let

dl
Y (P

1
, P

2
, ju)"p

.!9
M[I#P

2
( ju)P*

2
( ju)]~1@2[P

2
( ju)!P

1
( ju)][I#P

1
( ju)P*

1
( ju)]~1@2N

(2.8)

Then provided that the winding number condition (2.3) is satis"ed C(j) will also stabilize PM if
instead of (2.4), one has

dl
Y (P, P(j), ju)(

1

p
.!9

M¹(P(j), C(j), ju)N
for all u

and acceptable performance in the sense that

p
.!9

M¹(P, C(j), ju)!¹(P(j), C(j), ju)N(r ) p
.!9

M¹(P, C(j), ju)N for all u

is assured if

p
.!9

M¹(P(j), C(j), ju)N dl
Y (P, P(j), ju)(r( for all u.

In short, one may replace dl and E¹E
=

by frequency-dependent quantities and invoke (2.4) and
(2.7) on a point-wise in frequency basis. Further reduction of conservatism can be obtained by
introducing frequency weighting terms in the above calculations (see References [14, 16]).
Particularly if the parametric uncertainty is simply a scaling factor, then the appropriate
frequency weighting is approximately proportional to the frequency-dependent Vinnicombe
metric dl

Y between the central plant and those plants corresponding to the neighbourhood of the
uncertain parameter. Another, quite di!erent way of obtaining a less conservative result is to
restrict the complexity [17] of the controllers C(j

i
).
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Let us now begin to explore what we mean by continuity. It is clear from the above analysis
that we actually want continuity in the Vinnicombe metric. Equivalently [18] one would need to
think about continuity in the graph topology.

There are a number of su$cient conditions for this which re#ect common situations. First, if
P(j) is stable for all j, and P(j, ju) is continuous in j in the H

=
norm, then we have continuity in

the Vinnicombe metric because dl (P(j),P(k)))EP(j)!P(k)E
=
. This can be seen from (2.2).

Next, suppose that P(j)"N(j)D~1(j) is a fractional description of P(j) using a normalized
coprime realization [19]. Suppose also that [N(j)T D(j)T]T is continuous in j in the H

=
norm, in

the sense that given arbitrary e'0, there exists d(e) such that

KK C
N(j)

D(j)D!C
N(k)

D(k)D KK=(e

for all k with Dk!jD(d (2.9)

Note that if j lies in a compact set, then continuity is uniform. If a particular factorization is given
which is not normalized, but the transformation to a normalized fraction is achieved in a manner
depending continuously on j, again, the requisite continuity in Equation (2.9) is guaranteed. To
understand why this gives continuity in the Vinnicombe metric, note that one characterization of
dl(P(j),P(k)) is

dl (P(j),P(k))" inf
Q,Q~1|RL

=
8/0$%5(Q)/0

KKC
N(j)

D(j)D!C
N(k)

D(k)DQKK
=

If it holds that

KK
N(j)!N(k)

D(j)!D(k) KK=(e (2.10)

then (by choosing Q"I, rather than the in"mum)

dl (P(j),P(k)))KK
N(j)!N(k)

D(j)!D(k) KK=(e

In summary, continuity of the normalised coprime fraction description in the H
=

norm is
su$cient for continuity in the gap metric.

As a third example, related to the previous one, suppose that P(j)"n(j, s) d~1(j, s) where n(j, s)
and d(j, s) are polynomials in s with coe$cients depending continuously on j with d(j, s) monic.
Suppose that there does not exist j3" with the property that n(j, s) and d(j, s) have a common
zero in Re[s]*0. Then the continuity condition is able to be ful"lled.

A special case is P(j)"n(j, s) d~1(j, s) where n(j, s) and d(j, s) are polynomials in s with
coe$cients depending continuously on j, and P(j) is stable for all j3".

3. BASIC MULTIPLE MODEL PROBLEM: CONSTRUCTIVE ASPECTS

In the previous section, we observed that if a set of plants P(j) indexed by a parameter j in
a compact set " obeys a continuity condition, then one can determine a "nite set of controllers
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C(j
i
), i"1,2, N such that each plant is stabilized, and even satisfactorily controlled, by one of

these controllers. The argument depends on a covering of the set P by a "nite set of balls.
The basic multiple model construction problem is then to determine what that covering should

be, that is, to determine both what is an acceptable value of N and what values the j
i
should

assume?
The argument already given in the last section indicates what size a ball around j

i
can be, once

a controller has been determined. The determination of a single controller for P(j
i
) of course

depends on the purpose of the controller design. It is the controller which will determine
¹(P(j

i
, C(j

i
)) and its norm. There is, however, one important point to make, which is that, for

a "xed P(j
i
), there is an under-bound for E¹(P(j

i
, C(j

i
))E

=
, when C(j

i
) ranges over all stabilizing

controllers. This is obtained as follows [19, 20]. Let P(j)"N(j)D(j)~1 where [N, D] constitute
a normalised right coprime factorization of the transfer matrix P(j). Then

inf
C *4 45!"*-*;*/'

E¹(Pj, C)E
=
"C1!KK

N(j)

D(j) KK
2

H
D
1@2

(3.1)

where E ) E
H

denotes the Hankel norm and evaluates to be the largest magnitude Hankel singular
value. The in"mum is attained by a "nite-dimensional controller.

In the case that " is a "nite interval in R, say ""[j
.*/

, j
.!9

] it is comparatively easy to outline
how N and the j

i
should be chosen.

f For each j determine an acceptable C(j) and the associated E¹(P(j), C(j))E
=

. Note that the
value of Equation (3.1) could be used.

Note that in practice, because P(j) is continuous in j, it may be su$cient to investigate
only a "nite set of P(j

k
). It is possible to choose the density of the j

k
according to the d of

equation (2.9) to guarantee that P(j
k
) approximates P(j) for Dj

k
!jD(d within an arbitrarily

chosen e degree of accuracy.
f Determine the value of dl(P(j), P(k)) for values of j, k near j

.*/
. Choose j

1
, so that for all

j3[j
.*/

, j
1
], the controller C(j

1
) satisfactorily controls P(j):

j
1
"maxMjM : dl(P(j), P(jM ))E¹(P(jM ), C(jM ))E

=
)r( , ∀j3[j

.*/
, jM ]N

Remark
If stability rather than &satisfactory control' is needed, the rL bound in the inequality above may

be replaced by 1!e for some arbitrarily small e.

f Notice that C(j
1
) will also satisfactorily control each plant P(j) with j'j

1
for which

dl(P(j), P(j
1
))E¹(P(j

1
), C(j

1
))E

=
)rL

Let

jK
1
"maxMjM : dl(P(j), P(j

1
))E¹(P(j

1
), C(j

1
))E

=
)r( ∀j3[j

1
, jM ]N

Then we choose j
2

to ensure that all plants with j3[jK
1
, j

2
] are satisfactorily controlled:

j
2
"maxMjM : (P(j), P(jM ))E¹(P(jM ), C(jM ))E

=
)rL , ∀j3[jK

1
, jM ]N
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f More generally, having chosen j
i
, we have

jK
i
"maxMjM : dl (P(j), P(j

i
))E¹(P(j

i
), C(j

i
))E

=
)rL , ∀j3[j

i
, jM ]N

j
i`1

"maxMjM : dl (P(j), P(jM ))E¹(P(jM ), C(jM ))E
=
)rL , ∀j3[jK

i
, jM ]N

f We stop when j
.!9

3[jK
i
, jK

i`1
] and set N"i#1. The above procedure assures that C(j

i
)

satisfactorily controls plants P(j) for j3[jK
i~1

, jK
i
].

Obvious variations to the above can take place when " is not single-dimensional, but still
"nite-dimensional.

4. NUMERICAL EXAMPLE

We examine a set of plants which has already been investigated in earlier works (see, for example
References [1, 2]). The set of plants is

P"GP(j)"j
s!1

(s#1)(s!2)
, j3[1, 40]H (4.1)

With the aim of developing a multiple model control algorithm, a set of values j
i
was sought, so

that the controllers C(j
i
) could be found such that each P(j) would be controlled &satisfactorily' by

one of the C(j
i
).

Because the parametric uncertainty in this system is a very simple scalar multiplicative gain, it
is possible, and indeed straightforward, to work with an in"nite continuum of controllers. In this
example, it is easy to design a parameterized family of controllers, with one controller for each
possible value of the parameter, even though the parameter takes in"nitely many values. In fact
we just need to design one controller for j"1 (by whatever method we like best) and then,
controllers for di!erent values of j are automatically obtained by normalizing the gain of the
original controller by j.

In this sense, then the use of a "nite number of "xed controllers for this particular system is
actually hard to justify. However, in the general case, when the unknown parameter enters the
model in a more complicated fashion, it may be very di$cult to design a parameterized family of
controllers as the parameter takes values in an in"nite set. Thus, the choice of a "nite set of
controllers for this simple model of scalar multiplicative uncertainty is merely to illustrate that
such a scheme is possible, despite the fact that, for this example, it is not absolutely necessary.

A trial and error approach, which is necessarily tedious and non-systematic, led to the
conclusion that 21 values of j

i
would su$ce, with j

i
"(1.2)i~1 for i"1, 2,2, 21. A family of

controllers C
i
was also proposed [1], with

C
i
"j~1

i

448s2#450s!18

31s(s!9)
(4.2)

Using Vinnicombe metric techniques, we verify that this was a good solution. Table I shows
the results of these calculations. The second column shows the j

i
corresponding to each plant in

the model set, and the next column shows a range of j which corresponds to plants deemed to be
&close to' j

i
(these were calculated as

N
j"(1.2)i~0.5 and

&
j"(1.2)i`0.5). The Vinnicombe distance

between P(j
i
) and the plants corresponding to the lower and upper bounds of the corresponding
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Table I. Data for P using the Optimal Stability Margin Controller.

i j
i

[j
N
, j
&
] dl (Pj, PjN)

]10~2

dl (Pj, Pj&)

]10~2

b
015

]10~2

dl
N

b
015

dl
&

b
015

sup
u

dl
NY

bK
015

sup
u

dl
&Y

bK
015

1 1.00 [0.91,1.10] 3.54 3.74 7.45 0.48 0.50 0.48 0.50
2 1.20 [1.10,1.31] 3.94 4.10 8.55 0.46 0.48 0.46 0.48
3 1.44 [1.31,1.58] 4.26 4.38 9.66 0.44 0.45 0.44 0.45
4 1.73 [1.58,1.89] 4.47 4.53 10.70 0.42 0.42 0.42 0.42
5 2.07 [1.89,2.27] 4.56 4.56 11.60 0.39 0.39 0.39 0.39
6 2.49 [2.27,2.73] 4.56 4.56 12.24 0.37 0.37 0.37 0.37
7 2.99 [2.73,3.27] 4.55 4.55 12.56 0.36 0.36 0.36 0.36
8 3.58 [3.27,3.93] 4.55 4.55 12.52 0.36 0.36 0.36 0.36
9 4.30 [3.93,4.71] 4.55 4.56 12.14 0.38 0.38 0.38 0.38

10 5.16 [4.71,5.65] 4.55 4.56 11.46 0.40 0.40 0.40 0.40
11 6.19 [5.65,6.78] 4.56 4.56 10.57 0.43 0.43 0.43 0.43
12 7.43 [6.78,8.14] 4.56 4.56 9.56 0.48 0.48 0.48 0.48
13 8.92 [8.14,9.77] 4.56 4.55 8.51 0.54 0.54 0.54 0.54
14 10.70 [9.77,11.7] 4.56 4.56 7.47 0.61 0.61 0.61 0.61
15 12.84 [11.7,14.1] 4.55 4.55 6.49 0.70 0.70 0.70 0.70
16 15.40 [14.1,16.9] 4.56 4.56 5.60 0.81 0.81 0.81 0.81
17 18.49 [16.9,20.3] 4.55 4.55 4.79 0.95 0.95 0.95 0.95
18 22.19 [20.3,24.3] 4.55 4.55 4.08 1.12 1.12 1.11 1.11
19 26.62 [24.3,29.2] 4.56 4.56 3.46 1.32 1.32 1.31 1.31
20 31.94 [29.2,35.0] 4.56 4.56 2.93 1.56 1.56 1.55 1.55
21 38.34 [35.0,42.0] 4.56 4.56 2.47 1.85 1.85 1.84 1.84

j range appears next as dl (P(j
i
), P(

N
j)) and dl (P(j

i
), P(

N
j)). It can be seen that these distances are

quite consistent across the data set. The sixth column gives a value of the optimal stability margin
(calculated from Equation (3.1)) for each plant, and the next columns shows the quantity in
Equation (2.7). We note that for the last few examples, this quantity exceeds unity, and so
Equation (2.4) does not guarantee that there exists a controller which yields stability for all
j3[

N
j,
&
j]. The frequency-dependent quantities appear in the next two columns, corresponding to

the optimal controller of Equation (3.1). Note, however, that as may be anticipated [22], the
closed loop generalized sensitivity function corresponding to the optimal H

=
problem (3.1), is

#at. And so the optimal frequency-dependent quantities di!er little from the more conservative,
frequency-independent calculations.

We now investigate the plant-controller controller combination suggested by Equation (4.2).
The results appear in Table II. The stability margin corresponding to the plant and controller
combination is necessarily inferior to the optimal stability margin b

015
(compare the fourth

column of the Table II to the sixth column of Table I) and so the frequency-independent
quantities in the "fth and sixth columns of Table II, which display dl(P(j

i
), P(

N
j))b~1

*p,C+
and

dl(P(j
i
), P(

&
j))b~1

*p,C+
are necessarily worse than the corresponding data in Table I. However, the

frequency-dependent quantities with the controller (4.2) are better, and in fact are less than unity
for the entire range of j. Hence by Equation (2.4), stability is guaranteed for all plants with
j3[

N
j,
&
j]. The fact that the frequency-dependent ratios vary little with i also suggests that the

choice of j
i
is a reasonable one.

We note that the above is still a conservative result, since it does not take into account
restrictions on controller complexity [14, See Chapter 6].
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Table II. Data for P using the Suggested Controller (Equation (4.2).

i j
i

[j
N
, j
&
] b

*P,C+
]10~2

dl
N

b
*P,C+

dl
&

b
*P,C+

sup
u

dl
NY

( ju)

bK
*P,C+

( ju)
sup
u

dl
&Y

( ju)

bK
*P,C+

( ju)

1 1.00 [0.91,1.10] 6.14 0.58 0.61 0.51 0.51
2 1.20 [1.10,1.31] 7.14 0.55 0.57 0.52 0.52
3 1.44 [1.31,1.58] 8.02 0.53 0.55 0.53 0.53
4 1.73 [1.58,1.89] 8.28 0.54 0.55 0.54 0.54
5 2.07 [1.89,2.27] 8.27 0.55 0.55 0.55 0.55
6 2.49 [2.27,2.73] 7.99 0.57 0.57 0.56 0.56
7 2.99 [2.73,3.27] 7.51 0.61 0.61 0.57 0.57
8 3.58 [3.27,3.93] 6.85 0.66 0.66 0.58 0.58
9 4.30 [3.93,4.71] 6.12 0.74 0.75 0.59 0.59

10 5.16 [4.71,5.65] 5.37 0.85 0.85 0.60 0.60
11 6.19 [5.65,6.78] 4.64 0.98 0.98 0.60 0.60
12 7.43 [6.78,8.14] 3.97 1.15 1.15 0.61 0.61
13 8.92 [8.14,9.77] 3.36 1.36 1.35 0.61 0.61
14 10.70 [9.77,11.7] 2.84 1.60 1.60 0.61 0.61
15 12.84 [11.7,14.1] 2.39 1.90 1.90 0.62 0.62
16 15.40 [14.1,16.9] 2.01 2.27 2.27 0.62 0.62
17 18.49 [16.9,20.3] 1.68 2.71 2.71 0.62 0.62
18 22.19 [20.3,24.3] 1.40 3.25 3.25 0.62 0.62
19 26.62 [24.3,29.2] 1.17 3.89 3.89 0.62 0.62
20 31.94 [29.2,35.0] 0.98 4.66 4.66 0.62 0.62
21 38.34 [35.0,42.0] 0.82 5.58 5.59 0.62 0.62

5. MULTIPLE MODEL PROBLEM IN THE PRESENCE OF PARAMETRIC AND
SMALL UNSTRUCTURED UNCERTAINTY

In Section 2, we introduced a set P of plants P(j), which depend continuously on j3" for
a compact set ". It was shown that various forms of continuity are su$cient to be able to derive
the results on robust stability and performance. What is necessary is continuity in the Vin-
nicombe metric. Given any e'0, there must be a d such that dl (P(j), P(k))(e whenever
Dj!kD(d. In this section, we postulate that the set of plants of interest is wider again, allowing
unstructured uncertainty around P(j). There are various ways of doing this. For example, we
could allow PM ( ju) to vary such that

DPM ( ju)!P(j, ju)D(e (j, ju) (5.1)

where some appropriate point-wise norm is used in the multi-variable case. Alternatively, we
could use

EPM !P(j)E
=
)e(j) (5.2)

and require PM !P(j) to be stable. This would permit unstable P(j), but the unstable (anti-causal)
parts of P(j) and PM would have to be identical. One way that is particularly tailored for proving
stability results is to require

dl (PM , P(j))(e(j) (5.3)
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We assume that e (j) is continuous with j. Note that the metrics in Equations (5.2) and (5.3) can be
related. For example, if PM and P(j) are stable, then

dl (PM , P(j)))EPM !P(j)E
=
)KK

PM

I KK= KK
P(j)

I KK= dl(PM , P(j))

Also, as noted in Section 2, virtually the whole of the Vinnicombe theory can be carried through
on a frequency-by-frequency basis. This involves using a quantity dl

Y (PM , P(j), ju) with the
property dl(PM , P(j))"supu dl

Y (PM , P(j), ju) and allows us to connect Equations (5.2) and (5.3) to
Equation (5.1).

Our task is to choose a "nite set of controllers C(j
1
),2,C(j

N
) such that each plant PM satisfying

(5.3) for some j3" is satisfactorily controlled by one of the C(j
i
). By satisfactory control or

performance, we follow Equation (2.7) in Section 2, that is, we mean that for some r(3(0, (1
2
))

dl (PM , P(j
i
)) E¹(P(j

i
), C(j

i
))E

=
(r( .

Now as before, suppose that C(j) satisfactorily stabilizes P(j). In order that C(j) stabilizes all PM for
which dl(PM , P(j))(e(j), by the main robust stability theorem of Vinnicombe [14], it is necessary
and su$cient that

e(j) E¹(P(j), C(j))E
=
(1, ∀j (5.4)

In order that C(j) satisfactorily controls all PM for which dl(PM , P(j))(e(j) it is su$cient that

e (j) E¹(P(j), C(j))E
=
(r( , ∀j (5.5)

If Equation (5.5) is not ful"lled, it means that the combination of the performance objective that
gives rise to ¹(P(j), C(j)), the performance robustness objective that gives rise to r, and the size of
the unmodelled dynamics under consideration that gives rise to e(j), are, as su$ciency conditions,
mutually incompatible, and something must be relaxed.

In this section, however, we assume that Equation (5.5) holds. We investigate the case of large
unstructured uncertainty, where this does not hold, in the following section. Since Equation (5.5)
holds, it follows that C(j) will also satisfactorily control a PM satisfying

dl (PM , P(k))(e(k) (5.6)

for some k (almost certainly close to j) if we have that Equation (5.6) implies

dl(PM , P(j))E¹(P(j), C(j))E
=
(r( (5.7)

We now "nd some su$cient conditions on k so that Equation (5.6) implies (5.7). Suppose that k is
restricted to be such that

dl(P(k), P(j)) E¹(P(j), C(j))E
=
(r(!e(k) E¹(P(j), C(j))E

=
(5.8)

Note that for k"j, the right-hand side of (5.8) is positive by (5.5) above. The continuity of P(k)
with k means that dl(P(k), P(j)) is continuous with k, and the right-hand side of (5.8) is continuous
with k. Hence around every j there is guaranteed to be an open non-trivial ball B(j) (with
non-zero radius) in " such that k3B(j) implied that (5.8) holds. Suppose that a particular k is in
this ball. It follows from (5.8) that

E¹(P(j), C(j))E
=

(dl(P(k), P(j))#e(k))(r(
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Now by the triangle inequality we have that

dl(P(k), P(j))#dl(P(k), PM )*dl (PM , P(j))

Hence by the de"nition of e(k) in (5.8), it can be seen that, for every PM such that dl(PM , P(k))(e(k)
there holds

E¹(P(j), C(j))E
=

dl (PM , P(j))(r( (5.9)

that is, every PM such that dl (PM , P(k))(e(k), with k obeying Equation (5.8), is satisfactorily
controlled not only by C(k) (by de"nition) but also by C(j).

¹heorem 5.1
Let P be a set of plants with uncertainty parametrised by j in a compact set " such that

P"MPM : dl(PM , P(j))(e(j), j3"N. The plants P(j) are understood to depend continuously on j.
For any given controller performance threshold rL , if there exists a nominal controller C(j) for each
P(j),j3" such that equation (5.5) is satis"ed, then there exists a "nite set of controllers C(j

i
) such

that each plant PM 3P is satisfactorily controlled by some C(j
i
) in the sense that Equation (2.6) is

satis"ed.

Proof. By the above arguments, for an arbitrary j there is an open ball B(j) around it such that
C(j) will satisfactorily control all PM such that dl(PM , P(jM )(e(jM ) , jM 3B(j), and hence an in"nite
cover of ", corresponding to satisfactorily performing controllers for each plant in P, exists. Once
again, arguments involving the Heine}Borel property [15] imply that there is a "nite set of j

i
such

that the associated balls cover ". Under these circumstances, the associated controllers
for i"1,2, N have the property that each plant PM 3P is satisfactorily controlled by one of the
C(j

i
). K

Again, one could also just focus on stability, and maximize the ball sizes, by replacing Equation
(5.4) by Equation (5.5) and by replacing Equation (5.7) by

dl (PM , P(j)) E¹(P(j), Cq(j))E
=
(1

with Cq(j) de"ned as the stabilizing controller achieving the in"mum in Equation (5.10) below

Cq(j)"argmin
C

E¹(P(j), C)E
=

(5.10)

6. MULTIPLE MODEL PROBLEM WITH LARGE UNSTRUCTURED UNCERTAINTY

In the last section, we considered a situation in which there was parametric plant variation
together with unstructured uncertainty. The unstructured uncertainty was limited in the sense
that for any "xed parameter value, j say, we assumed that a satisfactory controller could be found
that not only gave satisfactory performance for P(j), but also for a ball of plants around P(j) with
unstructured uncertainty, such as MPM : dl (PM , P(j))(e(j)N around P(j). We pointed out that e(j)
had to satisfy an upper bound (Equation (5.5)) for this problem to be solvable.

What if this bound is not met? Then we might ask whether we could "nd a "nite set of plants, in
the ball MPM : dl(PM , P(j))(e(j)N around P(j), such that satisfactory performance for each PM in the
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ball could be obtained by connecting a controller giving satisfactory performance for one (or
more) of the plants in this "nite set.

Note that we are not talking here about "nding a speci"c subset j
1
, j

2
,2, j

N
of the uncertain

parameter j such that for each PM with dl(PM , P(j))(e(j) there exists a j
i
such that dl(PM , P(j

i
)) is

su$ciently small. Instead, we are looking at a "nite set of plants with unstructured uncertainty
balls of radius less than e(j) around them such that these smaller balls cover
MPM : dl(PM , P(j))(e(j)N.

A slightly more abstract statement of this problem is as follows. Given a plant P
0

and a ball
MPM : dl(PM , P0

)(eN of plants PM around P
0
, is there a "nite M and a set MP

1
, P

2
,2, PMN of P

j
with

dl(Pj
, P

0
)(e such that each PM in the ball MPM : dl(PM , P0

)(eN satis"es dl (PM , Pj
)(e/2 for one or

more j, that is

GPM : dl(PM , P0
)(eNL

M
Z
j/1

MPM : dl(PM , Pj
)(

e
2H (6.1)

We will show that the answer to this question is negative; and then we argue that with additional
modest restrictions, the answer is positive.

We will actually "rst study a similar, but not identical, problem, almost as relevant as the
above, but with more intuitive content : given a stable scalar plant P

0
and an H

=
ball

MPM : EPM !P
0
E
=
(eN, is there a "nite M and a set MP

1
, P

2
,2,P

M
N of P

j
with EP

j
!P

o
E
=
(e such

that each PM in the ball MPM : EPM !P
0
E
=
(eN satis"es EP

j
!PM E

=
(e/2 for some j? The answer to

this question is in the negative.
The general reason for the negative answer is that the set MPM : EPM !P

0
E
=
(eN is not compact.

Let us understand this in more detail using a contradiction argument. Pick any frequency, say u
1
.

Then there are stable plants P`u1
and P~u1

such that

P`u1
( ju

1
)!P

0
( ju

1
)"![P~u1

( ju
1
)!P

0
( ju

1
)]"d

where

DdD"3e/4

and EPBu1
!P

0
E(e. Observe that DP`u1

( ju
1
)!P~u1

( ju
1
)D"3e/2 and evidently, there cannot exist

a single member of the set P
1
( ju

1
), P

2
( ju

1
),2, P

M
( ju

1
) such that DP`u1

( ju
1
)!P

j
D(e/2 and

DP~u1
( ju

1
)!P

j
D(e/2 simultaneously. Hence there does not exist a single P

j
3MP

1
, P

2
,2, P

M
N

such that EP`u1
!P

j
E
=
(e/2 and EP~u1

!P
j
E
=
(e/2. More generally, pick any m distinct frequen-

cies u
1
,2, u

m
and recognize that one can "nd 2m di!erent plants, call them PM

1
,2,PM

2m, that take
the values of P

0
( ju

i
)$3e/4 at the frequencies u

1
, u

2
,2,u

m
of P

0
( ju

i
)$3e/4 (in all possible

combinations), with all plants lying in EP!P
0
E
=
(e. Moreover, these require at least 2m di!er-

ent P
j
if for each i"1,2, 2m there exists j(i)3M1, 2,2, MN such that EP

j
!PM

i
E
=
(e/2. Hence

M'2m. But since m is arbitrary, this shows that a "nite set of covering P
j
can in general not exist.

This is the lack of compactness mentioned above.
Let us now return to the "rst problem we posed, embodied in Equation (6.1) for the

Vinnicombe metric. We indicate "rst the negative result.

¹heorem 6.1
Let P

0
be a plant, with an associated ball MPM : dl(PM , P0

)(eN. It is not possible to determine
a "nite M and plants P

j
, j"1,2, M in the ball such that for each PM in the ball,

MPM : dl(PM , Pj
)(e/2N for at least one j.
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Proof. We assume that PM is scalar. Recall that, subject to a winding number condition,

dl(PM , P0
)"sup

u C
DPM !P

0
D

[1#DPM D2]1@2 [1#DP
0
D2]1@2D

(with indentations into the right-half plane at frequencies where PM or P
0

has an imaginary axis
pole.) Suppose that, at some frequency u

1
, P

0
( ju

1
)"x

0
#jy

0
. Consider the set of plants for

which P( ju
1
)"j (x

0
#jy

0
) where j is a real constant. De"ne

g(j
1
, j

2
)"

D(j
2
!j

1
) (x

0
#jy

0
) D

[1#j2
1
Dx

0
#jy

0
D2]1@2 [1#j2

2
Dx

0
#jy

0
D2]1@2

As shown in Appendix A, Lemma A.1 and Corollary A.4, (L/Lj
1
)g(j

1
, 1)'0 for j

1
'1, and

limj1?=
g(j

1
, 1)"[1#Dx

0
#jy

0
D2]~1@2. When j

1
moves in a negative direction below 1, g(j

1
, 1)

increases until some negative value of j
m

such that j
m
"!Dx

0
#jy

0
D~2, where there holds

g(j
m
, 1)"1. It follows from the continuity of g(j

1
, 1) and Corollary A.4 that one can choose

a value of j
1
"j

~
(1 with such that

D(1!j
~
) (x

0
#jy

0
)D

[1#j2
~

Dx
0
#jy

0
D2]1@2 [1#j2

`
Dx

0
#jy

0
D2]1@2

"

3 e
4

Also, by taking j
1
"j

~
and increasing j

2
through 1}j

`
for some j

`
'1, the monotonic increase

of g(j
1
, j

2
) with respect to j

2
(see again Corollary A.4) gives

D(j
`
!j

~
) (x

0
#jy

0
)D

[1#j2
~

Dx
0
#jy

0
D2]1@2 [1#j2

`
Dx

0
#jy

0
D2]1@2

'

3 e
4

Now imagine a smooth perturbation of P
0
( ju) in the vicinity of u"u

1
, to see that there exist

two plants PB with PB( ju
1
)"j

B
(x

0
#jy

0
), dl(PB, P

0
)(e and dl(P`, P~)'3e/4. From this

point, the lack of compactness argument follows the one used for H
=

balls in the early part of this
section. K

Compactness may be secured by adding additional restrictions. The heuristic idea is that the set
of transfer functions which are simultaneously (and necessarily approximately) band- and
time-limited is approximately "nite-dimensional. We combine this idea with the fact that any
bounded set in a "nite-dimensional space is compact, and thus any covering with open sets of
such a bounded set has a "nite sub-cover. Zames [18] obtained relevant results. Let B denote the
Banach space over the real "eld of complex valued, essentially bounded functions F( ju) for

u3(!R,R) with F( ju)"F(!ju) and EFE"supu DF( ju)D. LetH(C, K, a) denote the subset of
B satisfying the following conditions

f F( ju)":=
0

f (t)e~+utdt for some exponentially bounded impulse response f (t) obtained from
the inverse Laplace Transform L~1MF(s)N, with D f (t)D)Ce~at, t*0.

f DuF( ju)D)K, ∀u3R .

It is shown in Reference [8] that given e'0, there exists a "nite integer N(e, C, K, a), and
N functions G

1
, G

2
,2,G

N
3B such that each F3H(C, K, a) lies within an e-ball of a least one of

the G
j
, that is, given arbitrary F3H(C, K, a) there is at least one j for which supu DF!G

j
D(e.
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Now the unhelpful feature of this result is that the G
j

are not themselves necessarily in
H(C, K, a), and we would like them to have this property. This defect may be remedied quite
easily.

In order to obtain such a result, let us assume that the set MG
1
, G

2
,2, G

M
N is minimal in the

sense that for each j, the ball around G
j
contains at least one plant F

j
3H(C, K, a) such that

EF
j
!G

j
E
=
(e. If the set is non-minimal, it can obviously be replaced by a smaller minimal set.

This is weaker than the condition that set MG
1
, G

2
,2, G

M
N is not redundant, in the sense that

for each j, there is some F
j
3H(C, K, a) such that EF

j
!G

j
E
=
(e, and in addition that all the

F
j
are chosen so that DF

i
!G

k
D*e for all iOk. If the set is redundant, then it can obviously also

be replaced by a smaller set which is not redundant.

Corollary 6.2
Suppose the set MG

1
, G

2
,2, G

N
N is minimal. Then, for arbitrary e there exists a "nite set

MF
1
, F

2
,2, F

N
NLH(C, K, a) such that each F3H(C, K, a) satis"es EF!F

j
E(2e for at least

one j.

Proof. There exists G
j
with EF!G

j
E
=
(e. By minimality, there exists F

j
3H(C, K, a) with

EF
j
!G

j
E
=
(e. By the triangle inequality this implies the desired result. K

Let us now identify some classes of unstructured uncertainty and restrictions on that uncertain-
ty following from Zames [8], which will recover the compactness property for the Vinnicombe
metric. First, we list the classes. Then we shall establish the claims.

f All plants PM 3P de"ned as PM such that

dl(PM , P(j))(g (6.2)

for a given P(j), g, where both PM and P(j) are restricted to be in H(C, K, a) for some given
C, K, a (and are therefore stable).

f All plants PM 3P de"ned as PM of the form

PM "(N(j)#*
N
)(D(j)#*

D
)~1 (6.3)

where

C
*
N

*
D
D3*LH(C, K, a) for some C,K, a

and

C
N(j)

D(j)D
is normalized.

Additionally, we require that * is a connected set (and is obviously bounded), and for all
u and all *

N
, *

D
3* there holds

[N(j)#*
N
]*[N(j)#*

N
]#[D(j)#*

D
]*[N(j)#*

D
]*a2I (6.4)

for some a'0. (This condition ensures that all fractional representations of the form (6.3) are
coprime, although not, of course, normalized.)
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¹heorem 6.3
Let P(j) be a given plant which de"nes a set of plants P via Equation (6.2) or (6.3) and the

associated conditions. Given any e'0, there exists a "nite set of plants P
1
, P

2
,2, P

M
with the

P
j
themselves in P such that each plant PM 3P above satis"es dl(PM , Pj

)(e for some j.

Proof. The proof for P de"ned by Equation (6.2) is an immediate consequence of results in [8]
applied to H(C, K, a) and the fact that

dl(PM , P(j)))EPM !P(j)E
=

when PM , P(jM ) are stable. We may ignore condition (6.2) and just use the fact that PLH(C, K, a).
By Corollary 6.2, there exists a "nite set of plants FK "MFK

1
, FK

2
,2,FK

M
NLH(C, K, a) such that

for all PK 3H(C, K, a) there is a FK
j
with EPK !FK

j
E
=
(e. By the above equation such a FK

j
also gives

dl(PK , FK j)(e, and so H(C, K, a) is clearly shown to be able to be covered by a "nite set of
Vinnicombe metric balls of radius e. Since the uncertainty set P de"ned by Equation (6.2) and the
associated conditions is a subset of H(C, K, a), the same assertion holds for P.

For the proof for P de"ned by Equation (6.3) and associated conditions, let P
1
, P

2
be two

plants in the set with

P
1
"[N(jM )#*

N1
][D(jM )#*

D1
]~1

P
2
"[N(jM )#*

N2
][D(jM )#*

D2
]~1

and let ; be such that

PK
1
"C

(N(jM )#*
N1

);

(D(jM )#*
D1

);D (6.5)

is normalized. Now

dl (P1
, P

2
)" inf

Q|L=

8/0$%5QE0

KK C
(N(jM )#*

N1
)

(D(jM )#*
D1

)D;!C
(N(jM )#*

N2
)

(D(jM )#*
D2

)DQ KK
=

)KK C
(N(jM )#*

N1
)

(D(jM )#*
D1

)D;!C
N(jM )#*

N2
D(jM )#*

D2
D; KK

=

Condition (6.4) ensures that E;E
=
)a~1 and hence

dl(P1
, P

2
))a~1 KK

*
N1

!*
N2

*
D1

!*
D2
KK
=

(6.6)

Now consider the set FK such that FK 3FK if

FK "C
N(jM )#*

N
D(jM )#*

D
D
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for *
N
, *

D
satisfying both Equation (6.4) and the conditions associated with Equation (6.3). Thus

by Corollary 6.2 there is a "nite set of plants FK "MFK
1
, FK

2
,2,FK

M
NLFK such that for all FK 3FK

there is a FK
j
with

EFK !FK
j
E
=
"KK

*
NF

!*
NFj

*
DF

!*
DFj
KK
=

(ae (6.7)

for the *
NF

, *
DF

, *
NFj

, *
DFj

corresponding to FK , FK
j
3F. Now let F

j
be de"ned by F

j
"F

Nj
F~1
Dj

where

FK
j
"C

F
Nj

F
Dj
D

so that F
Nj

, F
Dj

are right coprime by condition (6.4). For any P3P, it follows by Equation (6.6)
that dl(P, F

j
)(e. Thus the set of F

j
is a "nite set with the desired property. K

Remark 6.4
The above restriction of allowable uncertainty using the concept of band- and time-limited

transfer functions allows us to overcome the di$culties suggested in Reference [12] where
Theorems 4.1 and 5.1 show that there are some balls around a nominal plant (additive or
multiplicative uncertainty) which cannot be stabilized by a single linear time-invariant controller.
This occurs when there is a sequence of plants P

n
within the ball such that, as n goes to in"nity, the

Hankel norm of P
n

converges to zero. It seems, however, that the above constraints on the
uncertainty asserted by (i) the uniform exponential decay of the impulse response and (ii) by
the 20 dB decay of the Bode plot, are permitting us to avoid this possibility.

Remark 6.5
There are earlier results which are related. For example, it was shown in Reference [17] that

ball of plants in the Vinnicombe metric which also admit a given complexity bound f, that is

MPM : dl (PM , P0
)(g, sup

u1

lim
u2?u1

i(PM , ju
1
), PM , ju

2
)

u
1
!u

2

(fN

is also relatively compact in the gap topology. In the above expression for complexity
i(X, >)"p

.!9
((I#XX*)~1@2(X!>)(I#>*>)~1@2).

7. CONCLUSIONS

We have shown that given an (possibly in"nite) uncertainty set of plants where the uncertainty
satis"es certain minor conditions, it is possible to "nd a "nite set of plants such that at least one
element of a "nite set of corresponding controllers, is able to satisfactorily control each plant in
the uncertainty set. We considered uncertainty sets, where parametrized uncertainty is continu-
ous in the Vinnicombe metric for the parameters, which are constrained to a compact set, and
where unstructured uncertainty is constrained to be essentially bounded and approximately time-
and band- limited. A method for "nding one such "nite set of plants with the desired property was
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presented. This places an upper bound on the number of plant models which it is su$cient to use
for a multiple model switching adaptive control scheme. It further remains to "nd a computation-
ally e$cient method to determine such a "nite set, so that the number of models needed is not
overly conservative. The signi"cance of these results in the switching adaptive control context will
be further explored in the sequel to this paper [7].

A. CALCULATIONS

A.1. Bounds on performance change due to plant change

Proof. [Proof of Equation (2.5)] It is known (see Reference [10]), that

dl (PM , P(j)))E¹(PM ,C(j))!¹(P(j),C(j))E
=

)E¹(PM ,C(j))E
=
E¹(P(j),C(j))E

=
dl(PM ,P(j))

The second inequality implies

E¹(PM , C(j))!¹(P(j),C(j))E
=

)ME¹(PM , C(j))!¹(P(j),C(j))E
=
#E¹(P(j),C(j))E

=
NE¹(P(j),C(j))E

=
dl(PM ,P(j))

hence

E¹(PM , C(j))!¹(P(j),C(j))E
=
)

E¹(P(j),C(j))E2
=

dl (PM , P(j)

1!E¹(P(j),C(j))E
=

dl(PM ,P(j))

as required. K

A.2. Vinnicombe metric between scaled plants

¸emma A.1
Let M(f) be a positive semide"nite matrix whose entries are a continuous function of f. If at

a particular f"f
0
, (L/Lf)M is positive semi-de"nite then it follows that (L/Lf)p

.!9
(M(f))*0 at f

0
,

with strict inequality if (L/Lf)M is positive de"nite.

Proof. This can be derived from the de"nition of the maximum singular value and the
properties of positive-de"nite and positive-semi-de"nite matrices [23]. K

Proposition A.2
Let M be a complex matrix with M"P

0
( ju) and P

1
( ju)"(f#1)M with f real. Then

dl
Y (P

0
, P

1
, ju) is monotone strictly increasing with DfD on both f'0 and the interval

!1![p
.!9

(M)]~2(f(0.

Proof. Let X"M*M, XK "MM* for the complex matrix M and let

>"[I#P
0
( ju)P

0
( ju)*]~1@2[P

1
( ju)!P

0
( ju)][I#P

1
( ju)*P

1
( ju)]~1@2
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and

>K ">>*

"f2(I#XK )~1@2M(I#(f#1)2X)~1M*(I#XK )~1@2

after some algebra.

De"ne

>M "f2(I#(f#1)2X)~1

so that

>K "(I#XK )~1@2M>M M*(I#XK )~1@2.

Then

L
Lf
>M "2f[I!f(f#1)(I#(f#1)2X)~1](I#(f#1)2X)~1

"2f(I#(f#1)2X)~1(I#(f#1)X)(I#(f#1)2X)~1

L
Lf
>M G

*0 for f*0,

)0 for!1![p
.!9

(X)]~1)f)0

Hence

L
Lf
>K G

*0 for f*0,

)0 for!1![p
.!9

(P
0
( ju))]~2)f)0

By the previous lemma, Lemma (A.1) this implies that the same holds for (L/Lf)p
.!9

(>K ) and hence
for (L/Lf) p

.!9
(>) for the range of f in the proposition statement. Since dl

Y (P
0
,P

1
, ju)"p

.!9
(>) the

result follows directly.

Corollary A.3
For P

1
(s)"(1#f)P

0
(s), f3R, the Vinnicombe distance [4] dl (P0

,P
1
(s))*0, is also monotone

strictly increasing with DfD for all f in the range !1!EP
0
(s)E~2

=
(f.

Proof. We have dl(P1
, P

0
)"supu|R

dl
Y (P

0
, P

1
, ju). At each frequency dl

Y (P
0
, P

1
, ju) is mono-

tone strictly increasing with DfD for !1!p
.!9

(P
0
( ju))~2(f. The Corollary statement follows

immediately. K

Corollary A.4
For a scalar plant P

0
(s), let P

0
( ju)"p

0
be an arbitrary point in the complex plane. Let

P
1
( ju)"(1#f)p

0
with f real. As f increases from 0 to #R, the distance dl(P0

, P
1
, ju) increases

strictly monotonically to [1#Dp
0
D2]~1@2. When f decreases from unity and then through !1,

dl(P0
, P

1
, ju) increases strictly monotonically to 1 when f"!1!Dp

0
D~2.
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Proof. By substitution of fPR and 1#f"!Dp
0
D~2 into the expression for >K in Proposi-

tion A.2. K
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