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SUMMARY

The purpose of this paper is to marry the two concepts of multiple model adaptive control and safe adaptive
control. In its simplest form, multiple model adaptive control involves a supervisor switching among one of
a "nite number of controllers as more is learnt about the plant, until one of the controllers is "nally selected
and remains unchanged. Safe adaptive control is concerned with ensuring that when the controller is
changed in an adaptive control algorithm, the frozen plant}controller combination is never (closed-loop)
unstable. This is a non-trivial task since by de"nition of an adaptive control problem, the plant is not fully
known. The proposed solution method involves a frequency-dependent performance measure and employs
the Vinnicombe metric. The resulting safe switching guarantees depend on the extent to which a closed-loop
transfer function can be accurately identi"ed. Copyright � 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper combines two concepts in adaptive control, namely, multiple model adaptive control
(MMAC) and safe adaptive control. We shall describe each of these concepts in turn. For
convenience, we shall restrict attention throughout to scalar plants, although the ideas have
validity for the multiple-input multiple-output (MIMO) case.
Multiple model adaptive control (see for example, References [1}9]) postulates that the

unknown true plant either belongs to a given "nite set of nominal plants, or is at least in some way
close to one (or more) members of that set. (The set, for example, might comprise a "nite set of
linear time-invariant plants, and closeness might be re#ected by a bounded, additive or multipli-
cative uncertainty model to account for possible non-linearity.)



Each nominal plant corresponds to a controller that is presumed to give satisfactory perfor-
mance in conjunction with both the nominal plant, and the associated uncertainty ball (if any).
What is meant by the term &satisfactory performance' depends on the application. However, in
general it connotes, but at the same time demands more than, closed-loop stability.
As well as the "nite set of &low-level' controllers, the adaptive controller also includes a &high

level' element, a supervisor, which switches between the implementation of controllers from the
"nite controller set in accord with some rule. The overall objective is to converge to the best
controller for the true unknown plant after some "nite time. If the true plant coincides with one of
the nominal plants, there is an obvious candidate for a good controller, although depending on
the performance evaluation criteria and the design method chosen for designing the controller set,
this may not be the &best' performing controller. If, furthermore, the true plant lies in an
uncertainty ball around one (or more) nominal plants, the notion of the best controller may be
even more ambiguous.
Like most (but not all) adaptive control algorithms, the method suggested here is initially

formulated under the assumption that the plant is time-invariant. However, there is an underlying
requirement that the adaptive controller has the capability to track time variations in the plant,
which are generally relatively slow compared to the input}output dynamics.
The above qualitative description deserves a number of qualifying remarks:

(a) It is likely that the original uncertainty set for the unknown plant is quite large, if not
in"nite. The determination of the "nite set of nominal plants is itself a non-trivial problem.
How many should there be, and where should they be located? Such questions are
addressed in Reference [1].

(b) One can regard the supervisor's "rst task as one of plant identi"cation, or more accurately,
hypothesis testing. Associated with each nominal plant P

�
, there is an hypothesis, H

�
, that

the true plant lies in the uncertainty ball around P
�
. The task of the supervisor is to

determine the most likely hypothesis, and switch in the corresponding controller. Issues
then arise regarding the e!ects of noise, errors in the hypothesis testing scheme, the time
required to make a decision (with a low probability of error) and so on. The fact that the
plant is in a closed loop is a complication. While it may be possible to estimate the
closed-loop transfer function fairly accurately, this may not convey much information
concerning the (open-loop) plant transfer function itself. The fact that the controller may be
changed in the future presents an additional complication, since this will change the
experimental conditions. The parameters of the hypothesis testing algorithm will also then
need adjustment.

(c) After convergence to a &best' nominal controller has been attained, it is possible to further
"ne tune the controller parameters with a view to improving performance [10].

We now indicate something about possible structures of the supervisor, recalling the supervis-
ory control architecture of Reference [5]. Consider Figure 1. Noise signals are omitted for
simplicity, as is the element constructing the di!erence signals (y!y

�
) from y and y

�
. The

unknown plant to be controlled is P, and there are m nominal prescribed plants, P
�
,2,P

�
, each

associated with nominal prescribed controllers C
�
,2,C

�
. At time t, the controller is C���� . The

multiestimator is a linear system driven by the unknown plant input u and output y, with
m outputs y

�
,2,y

�
. These have the special property that if P"P

�
, then y"y

�
(after decay of

initial condition e!ects, in the absence of noise, and given that all signals are bounded). Even with
these speci"cations, there is still much freedom in the design of the multiestimator [5].
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Figure 1. Outline of multimodel adaptive controller, with �3�1,2,m�.

The task of the performance evaluation and switching logic is to select the P
�
closest to P

and then to implement the corresponding C
�
. This is achieved by monitoring the signals (y!y

�
),

typically looking at an (exponentially weighted) L
�
norm over the semi-in"nite interval of past

time. More precisely, in Reference [5] the switching logic relied on a particular choice of
monitoring signals which were de"ned as follows:

�
�
"�

�

�

e������� (y
�
!y)� d� (1)

Then, at any instant of time t, the controller C� is implemented with �(t)3�1, 2, 2 , m� taken to
be argmin

�	�
�
�
(t), and controller C���� is used. A dwell-time or hysteresis may be imposed to slow

down the switching. One of the goals of this work is to investigate other possibilities for de"ning
the monitoring signals, which would be more compatible with the objective of safe switching.
As argued by Morse et al. [5], if P coincides exactly with one of the nominal plants P

�
, then,

even if the switching process produces unbounded signals, the exponentially weighted L
�
norm

of (y!y
�
) should tend to zero. This is intuitively obvious if the switching process is guaranteed to

produce bounded signals. Note that such a choice of monitoring signal �
�
, which, in e!ect gives

a measurement of the closeness between the true plant and various possible models, is somewhat
arbitrary. However, it does possess the following desirable property. Provided that the reference
signal is persistently exciting so that the monitoring signals �

�
remain non-zero for iOI, C

�
will

eventually be selected.
The motivation for switching is now clear. Each C

�
has been speci"cally designed to achieve

satisfactory performance for the model P
�
. When switching "nally stops and a particular nominal

model is settled upon, then assuming that the "nally chosen nominal model is a good representa-
tion of the true plant, the actual closed-loop performance will also be close to the designed
satisfactory performance.
Note that the switching algorithm does not rule out switching before the monitoring signal has

converged. That is, the supervisor does not simply wait until one of the �
�
, say �

�
, has "nally

converged to zero with the rest non-zero, with the result that C� is switched only once, to C
�
. This

could deny the potential of improving performance much earlier. It would also only be really
acceptable in the case that P"P

�
, and there is no possibility of the plant drifting with time,

a situation that is perhaps unlikely. Of course, if the plant P to be controlled is (slowly) time
varying, the controller may never settle down. One would hope, however, that the algorithm
would insert, for the majority of the time at least, that controller which best controls the current
plant P.
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For such a supervisory structure, the theoretical issues revolve around the design of the
multiestimator, the demonstration that all signals remain bounded irrespective of initial condi-
tions, and the demonstration that � (t) converges in "nite time. One must also consider the case
where P does not coincide exactly with any of the nominal plants.
There is an important observation to make about the latter case. Suppose that controller C

�
is

inserted, and the best controller for the unknown P happens to be C
�
, IOJ. It may not be

necessarily true that the (weightedL
�
) norm of (y!y

�
) will be the smallest among the norms of

(y!y
�
) for i"1,2,m. This is because the presence of C

�
can change the experimental condi-

tions, in the sense that it can make P
�
look very far from P, whereas with C

�
in the loop, P

�
may

look close to P. The concepts of plant identi"cation and accuracy of plant approximation only
make sense with respect to the particular controller attached to the plant, a point emphasized
strongly in References [11, 12]. Another way of looking at this observation is as follows. The
performance evaluation step really evaluates that plant in the set �P

�
, P

�
,2,P

�
� which would

perform the best with the existing controller C
�
in the set �C

�
, C

�
,2,C

�
�, rather than the

controller which would perform the best with the existing plant P. The index associated with the
best plant and the best controller need not be the same.
This issue indicates the importance of a careful choice of metric with which to measure the
&closeness' of P

�
and P. In this paper we make extensive use of the properties of the �� metric

introduced by Vinnicombe [13]. This metric has the property (also shared by the gap metric [14])
that it induces the weakest topology in operator space such that feedback stability is robust
property. The �� metric possesses an advantage over the gap metric in that it is less conservative
in a well-de"ned sense (see Chapter 4 of Reference [15]). Robust stability and performance
guarantees using the �� metric rely on a small-gain argument and impose conditions on particular
winding numbers. It has recently been shown that these conditions are equivalent to various
unstable pole count conditions which are necessary for more traditional small-gain robustness
analysis [16]. We will exploit various robust stability and performance properties that may be
guaranteed on consideration of the �� metric, in the following development.
We now make some remarks on safe adaptive control. In many adaptive control algorithms,

although the plant is initially unknown, an explicit or implicit identi"ed model of the plant is used
to design a controller which is then connected in the course of executing the adaptive algorithm.
This means both that (a) the true plant normally di!ers from the model used for controller design
purposes and (b) the controller undergoes changes. Such controller change is potentially danger-
ous, since even if the original closed loop appears to be stable (that is, no signals are expanding in
an alarming way), because the plant is not fully known, the new (frozen) closed loop may be
unstable. Of course if this were to happen, the adaptive algorithm should be able to discover the
inappropriateness of the controller and change it further after improved plant identi"cation. This
is the mechanism by which many adaptive control algorithms are able to guarantee that all
signals remain bounded. This is however, a beguiling conclusion, if at times the &frozen' control-
ler}plant combination is unstable. It is a conclusion that, for example, allows 1 MA of current in
a 1 kW motor. There even exist algorithms for which, although all signals are bounded, the "nite
bound itself may be arbitrarily large!
Safe adaptive control refers to adaptive control algorithms in which one guarantees a priori that any

controller introduced will always yield a stable frozen closed loop when combined with the only
partially known plant, that is, if the controller introduced at any time were to remain unchanged from
that time on, the resulting time-invariant system would be stable [12]. In this paper, we explore how
to achieve the safe adaptive control property for a multiple model adaptive control algorithm.
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In safe adaptive control, changes of controller will generally be small (slow) changes. (We deal
with the quanti"cation of the size of controller change later in this paper.) It may be the case that,
given a particular set of nominal plants P

�
and controllers C

�
, few or none of the theoretically

possible changes from C
�
to C

�
OC

�
are small. Such a situation would indicate the desirability of

expanding the set of nominal plants, and thus the controller set, which may or may not be
practical.
The outline of this paper is as follows. In Section 2, we review the multiple model adaptive

control framework, including the functioning of an estimator supervisor, introducing a variant to
previous work [5]. One technique for securing safe switching is described in Section 3, and an
alternative technique is given in Section 4. This is followed by an example in Section 5. Further
issues are discussed in Section 6, with concluding remarks in Section 7. The appendix recalls some
notions of robust stability and performance due in the main to Vinnicombe [13, 15].

2. PROBLEM FRAMEWORK AND ESTIMATION SUPERVISOR PROPERTIES

2.1. Assumptions

In this section, we derive some properties of the arrangement of Figure 1, investigating the
situation where the switching supervisor is disconnected and the controller remains "xed. In
order to enable better understanding of Figure 1 we make some assumptions, not all of which will
be carried over to the safe adaptive control algorithm. These assumptions are as follows:

(A1) The reference signal r is stationary with a wide band spectrum.
(A2) No noise is present (this assumption will be relaxed later).
(A3) The true plant P is linear and time-invariant.
(A4) The controller C� is linear and time-invariant (and is not switched): the lack of switching

assumption will be removed later.
(A5) There are m nominal plants P

�
which we identify with their transfer functions P

�
"n

�
/d

�
with n

�
and d

�
coprime polynomials. For some stable polynomial D, the part of the

multiestimator linking [y, u] to y
�
is depicted in transfer function terms in Figure 2. Note

that if the transfer function of P were equal to that of the nominal process model P
�
then,

in the absence of noises and disturbances, y
�
would converge to y asymptotically.

2.2. Interpretation of performance evaluation

We now analyse the performance evaluation block, partially displayed in Figure 1. For nota-
tional convenience, we drop the subscript �. Observe that the transfer function from r to (y

�
!y) is

=
�
"�

n
�
D

!

d
�
D

P�
C

1#PC
(2)

(a) In the case that (P, C) is stable and r has power spectrum �
��
(�), the spectrum of (y

�
!y) is

�
�
(�)"�

n
�
D

!

di

D
P �

�

�
C

1#PC �
�
�

��
(�) (3)
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Figure 2. Constituent part of multiestimator.

Further, 	 �
�
(y

�
!y)�d� will behave like t	 


�
�

�
(�) d�, so that the error measure of Reference

[5], namely �
�
of Equation (1), with 
 a suitably small positive constant will behave like

a multiple of the (low-pass "ltered) integrated spectrum for large t. It is clear then that �
�
is

a measure of the error between P
�
and P, involving looking at all frequencies, and

introducing a frequency weighting which is dependent on �
��
and C. The measure also

involves integrating over �, rather than alternative functionals such as, for example, taking
a supremum. To ensure stability, it may be advantageous to work with pointwise, rather
than integral, measures of frequency domain quantities (see below).

(b) In the case that the closed loop is unstable, every signal (y
�
!y) will grow at a rate exp(at)

for some a'0 (perhaps with oscillation, and disregarding the special case of polynomial
growth). It is then obvious that the value of �

�
is dominated by the e!ect of transfer function

errors between P
�
and P at only a single point (or complex conjugate pair of points) in the

(right half) complex plane. In such a case, the �
�
measures are of limited utility as a basis for

deciding which of a "nite set of transfer functions P
�
, i"1,2, m is closest to P.

(c) In the stable closed-loop case, the �
�
are bounded (or grow in proportion to t if 
"0). In the

unstable case they grow exponentially fast. This property should be the basis for deciding in
the supervisor whether the closed loop is stable. Detecting instability would imply that the
currently connected C is unacceptable, but, by the previous argument, is unhelpful for
suggesting which replacement is appropriate.

(d) In the framework of Reference [5], �
�
is a scalar measure associated with each plant (and

thus controller) possibility. In principle, however, investigating the frequency content of
(y

�
!y) would allow a more sophisticated measure of the distance between each P

�
and the

true plant to be derived. With the restrictive assumptions that we have made, plus
closed-loop stability, we could, in principle, identify the transfer function from r to (y

�
!y).

2.3. Relaxation of certain assumptions

We have "rst argued that under a set of restrictive assumptions, including an additional
assumption of closed-loop stability on the (P, C) loop, we can identify the transfer function from
r to (y

�
!y). This concept can be carried over with relaxation of the assumptions. Assumption

(A1) can be relaxed to require a wide-band property (more comments can be found in Section 6),
and (A2) can be relaxed to permit noise. Assumption (A3) can be relaxed to allow time-variation,
on a scale much slower than the time-scale for identi"cation, and (A4) can be relaxed to permit
switching of the controllers, noting that transient e!ects that might be associated with the new
initial conditions just after switching are allowed to decay. (A state-shared controller parameteriz-
ation ensuring bumpless transfer has been proposed [7].)
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The term &identi"cation' now means estimating a transfer function where the estimate is
understood to have (in general) an error associated with it. The error may be de"ned by statistics,
or by hard bounds, depending on the noise models and the particular identi"cation method used.
The term should not be taken to mean error free, or even extremely accurate identi"cation of
a transfer function (which, in a noisy situation may nevertheless be possible, given a long enough
time interval).
Our interest is rather in spending no longer than necessary on identi"cation; we need to simply

pin down the transfer function in question su$ciently accurately that, with the aim of theories
dealing with robust stability or performance, we can draw appropriate conclusions regarding
stability or performance.

2.4. Performance evaluation using transfer functions

We "rst make the following key observation.

Lemma 1. Adopt assumptions (A1)}(A6). Let=
�
( j�) be the transfer function from r to (y!y

�
) in

Equation (2), for the scheme in Figure 1. Let � (P
�
( j�), P ( j�)) be the chordal distance (see

Appendix A) between P
�
and P at s"j�, and let ¹ (P ( j�), C( j�)) be the generalized sensitivity

matrix of (P, C), (Appendix A). Then

�=
�
( j�)�"� (P

�
( j�), P ( j�))�[¹(P ( j�), C( j�))]

�C�

�1#�C�� �
D

�
D � (4)

where D
�
is a stable polynomial satisfying D*

�
D

�
"n*

�
n
�
#d*

�
d
�
.

Proof. Suppose that P"n/d, with n and d coprime. Let D be stable so that D*D"n*n#d*d.
Then

G "�
n/D

d/D�
is a right normalized coprime factorization of P. Let

GI
�
"�!

d
�
D

�

n
�
D

�
�

denote the left normalized coprime factorization of P
�
"!n

�
d��
�

. We shall use the easily veri"ed

fact that �D/d�"�1#�P��. Now

=
�
"�

n
�
D

�

!

d
�
D

�

P�
D

�
D

)
C

1#PC

"�!
d
�
D

�

n
�
D

�
� �

n

D

d

D�
D

�
D

)
C(D/d)

1#PC
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and so at each frequency, by appealing to formulae in the appendix,

�=
�
�"�GI

�
G�

�C��1#�P��
�1#PC� �

D
�
D � ,

"� (P
�
, P)� [¹(P, C)]

�C�

�1#�C�� �
D

�
D �. �

The interpretation of Equation (4) is crucial for the case when (P, C) is stabilizing. Evidently, by

inverting the multiplicative scaling e!ect of �D
�
��C�/ ( �D��1#�C��), we observe that the error

signal contains the frequency spectrum of the input shaped by � (P
�
, P)�[¹(P, C)]. This quantity

is critical for possibly allowing us to guarantee that C stabilizes P
�
, given that it stabilizes P. In

a sense, the best P
�
, given the condition that C will be retained (and a ful"lment of a winding number

condition involving P
�
and P, see the appendix), is the one that keeps �=

�
��D��1#�C��/ ( �D��C�)

small across the whole spectrum.
In the event that P3�P

�
,2,P

�
�, then of course=

�
"0 for some i. Once initial conditions in

the multiestimator have decayed, it becomes evident how to model P, irrespective of whether the
controller C

�
or any other controller completes the loop. On the other hand, if P��P

�
,2,P

�
�,

then the best P
�
is yet to be identi"ed. Although quantities �

�
provide a measure of an integrated

version of �=
�
�� weighted by �

��
(�), the above analysis indicates that if frequency by frequency

(approximate) identi"cation is possible, then a Vinnicombe distance criterion may aid choice of
the best P

�
. Robust performance, as well as robust stability may be considered in the same

framework.
An alternative construction for the multiestimator exists which is more costly in terms of

realization complexity, but which modestly simpli"es the above calculations. This alternative
involves replacing D in Figure 2 by D

�
so that, in place of (4), one has the slightly simpler

=
�
"� (P

�
, P)�[¹(P, C)]

�C�
�

1#�C�� (5)

This may be achieved at the cost of no longer allowing all the multiestimator output signals to be
constructed from a common state (with dimension twice the order of D). It will then be slightly
easier to evaluate the m possible � (P

�
, P)� [¹(P, C)], with the aim of choosing one which is the

smallest (taking into account the whole spectrum). In a rough sense, the smallest (over i) of the
functions on the left of (5) may identify the best controller in terms of performance; however, we
will focus mainly on the safety issue.
Of course, there may not be a single index i which minimizes �=

�
� given by (4) or (5), and in

a conventional multiple model adaptive control structure we cannot expect to identify the
=

�
exactly, but only to within some error bound. Further, they may be changing slowly, due to

changing P. Last, even though (as we have noted) quantities like �=
�
� measure the approximation

error between P
�
and P, given a particular controller C, rather than measuring the best C

�
to use

for P, we need to be able to use the �=
�
� for the purposes of selecting the controller to switch in.

We must focus on the safety issue in orchestrating this switching.
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2.5. Changing the controller

The goal of the estimator-based supervisor is not to "nd which P
�
3�P

�
,2, P

�
� is closest to the

true plant P with the current controller, but what would make a better controller for P than the
current one. We could select P

�
corresponding to the smallest � (P

�
, P)��¹[(P, C)]� or an

integrated version thereof, and then hope that C
�
makes a good, and certainly stabilizing,

controller for P. In order to guarantee that C
�
stabilizes P (that is, to ensure safe adaptive control,

as reviewed in the introduction, see also the appendix) more must be established. One su$cient
condition, given the hypothesis that (P, C) is stable, is that

� (C, C
�
)�[¹(P, C)](1 ∀�

It is not trivial to verify this inequality on the basis of available data. This is the issue that will be
addressed in the next section.

3. SAFE SWITCHING

Suppose that the controller C"C
�
, the nominal controller associated with the plant P

�
, is

currently connected to the unknown plant P. Suppose further that we believe, perhaps on the
basis of some performance estimation information, that it would be appropriate to use C

�
. To be

assured of safety, we would like to check that

� (C
�
, C

�
)��[¹(P, C

�
)]�(1 for all � (6)

Provided a winding number condition involving C
�
, C

�
holds in addition to (6), C

�
is certainly

stabilizing (see Lemma A2 of Appendix A.1).
Since the C

�
are all known, � (C

�
, C

�
) is also known. Thus, in order to check (6) we need only to

evaluate � �[¹(P, C
�
)]�. Although the performance estimator is not con"gured (or indeed, able to

be con"gured) to yield �[¹ (P, C
�
)] directly, even with the embellishment of operating as

a transfer function identi"er, the performance robustness results of Appendix A.1 allow us to
calculate an overbound for this quantity. The following lemma and its corollaries are variants of
the small gain theorem or theorems of optimal robustness in the �� metric [13], specialized so that
the various terms in the expressions are quantities that we can estimate.

Lemma 2. Let P be the true plant and let �P
�
,2,P

�
� and �C

�
,2,C

�
� be the collection of

nominal plants and controllers. Suppose that C
�
stabilizes P and P

�
, and that for all �

�(P
�
, P)�[¹(P, C

�
)](�

�
(7)

Then

�[¹(P, C
�
)])�[¹(P

�
, C

�
)]�1#� (P

�
, P)�[¹(P, C

�
)]�. (8)

Proof. Let us "rst note that Equation (7) implies

� (P
�
, P)�[¹(P

�
, C

�
)](1 (9)
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From Equation (23) in Lemma 6 and the fact that C
�
stabilizes both P

�
and P, we have that (for all

�):

�[¹(P
�
, C

�
)])

�[¹(P, C
�
)]

1!� (P
�
, P)� [¹(P, C

�
)]

and so

� (P
�
, P)� [¹(P

�
, C

�
)])

� (P
�
, P)�[¹(P, C

�
)]

1!� (P
�
, P)�[¹(P, C

�
)]

The above inequality and Equation (7) immediately yield Equation (9). Now using Equation (9)
and again the fact that C

�
stabilizes P

�
and P, there holds (for all �)

�[¹(P, C
�
)])

�[¹(P
�
, C

�
)]

1!� (P
�
, P)�[¹(P

�
, C

�
)]

(10)

Multiplication of the above by 1!� (P
�
, P)� [¹(P

�
, C

�
)] and rearrangement yields (8). �

The lemma may be used in the following way. With C
�
connected to P, and giving a stable

closed loop, using the multiestimator signals, one (approximately) identi"es �(P
�
, P)�[¹(P, C

�
)]

as a function of frequency for each P
�
which is stabilized by C

�
(see Section 2.4). (Note that the

information regarding whether (P
�
, C

�
) is stable is available a priori.) We then use Equation (8) to

overbound �[¹ (P, C
�
)] giving the following corollary of Lemma 2.

Corollary 1. At each frequency �,

�[¹(P, C
�
)])mini3I

�
�N [¹ (P

�
, C

�
)]�1#� (P

�
, P)�[¹(P, C

�
)]� (11)

where I
�
��I,2,m� satis"es i3I

�
if P

�
is stabilised by C

�
and Equation (7) holds.

Denote by T
�
the right-hand side of Equation (11). Of course, T

�
is something that we can

estimate, albeit with some error. Furthermore, by Lemma 5 a su$cient condition that C
�
will

stabilize P is that both wno(1#C*
�
C

�
)#� (C

�
)!�J (C

�
)"0 and that Equation (6) holds. In the

light of Equation (10) this leads to the following corollary for a more conservative su$cient
condition for stability, but one involving quantities that we can estimate.

Corollary 2. Given that the closed loop [P, C
�
] is stable, then a su$cient condition for [P, C

�
]

to be stable is that wno(1#C*
�
C

�
)#�(C

�
)!�J (C

�
)"0 and

�(C
�
, C

�
)T

�
(1 (12)
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Notice that if the set �P
�
, P

�
,2 ,P

�
� is dense enough in the set of possible unknown plants,

then Equation (7) will be straightforwardly satis"ed for some i. Likewise, if the set �P
�
, P

�
,2 ,P

�
�

is a fairly dense one, then with "xed j, the quantity � (C
�
, C

�
) will be small for some i.

Notice also that if for some particular i"I, there holds

� (P
�
, P)� [¹(P, C

�
)](� (P

�
, P)�[¹ (P, C

�
)]

for all iOI, then it would be logical to hypothesise that P is best modelled by P
�
, when C

�
is

attached. It would then be natural to check both whether � (C
�
, C

�
, )T

�
(1, together with the

winding number condition for C
�
and C

�
, in order to determine whether C

�
can be safely

implemented.
Finally, we remark that we cannot, in practice, expect measurements on the closed-loop system

to yield exact values of quantities such as �=
�
� at each frequency. It is also well known [17] that, in

the presence of noise in a stochastic framework, any method of identifying the frequency-domain
quantity=

�
is subject to variance which increases with the number of parameters to be identi"ed

and decreases with the time available for identi"cation. Reduced identi"cation variance and
hence faster identi"cation times can be achieved by reduction of the number of parameters in the
model set, but, in general, only at the expense of increased identi"cation bias.
In particular, for a least-squares transfer function identi"cation, the mean-square identi"cation

error J
��

is composed of a sum of a bias term J
�
and a variance term J

�
[17]. The variance term

is J
�
(�)J(n/N)�

�
(�)/�

	
(�) (Equation (12.35) in Reference [17]), asymptotically proportional

to the number of parameters n, inversely proportional to the number of sampled data points
(identi"cation time interval) N and inversely proportional to the signal to noise ratio
�

	
(�)/�

�
(�). The bias term, on the other hand, generally decreases with n and is asymptotically

independent of N.
Were exact values of =

�
available, however, we could, in principle, identify P and test each

C
�
with P. However, exact values are not necessary, since robust stability is ensured merely by the

satisfaction of particular inequalities. Hence, in the presence of norm bounded noise, it is in
principle possible to give hard error bounds on the identi"cation error and hence give a hard
guarantee of safe switching.
In the example of Section 5, we achieve perfectly satisfactory operation of the part of the

algorithm that ensures safe switching. This is achieved even though the identi"cation of T
�
is

subject to error due to noise, and with the checking of (12) at only a "nite number of discrete
frequency points.

4. ALTERNATIVE METHOD TO SAFETY

Alternative methods to guarantee safe switching, based on di!erent a priori assumptions, exist. As
explained in Section 2, and using the notation of that section, we can conceive of an identi"cation
(albeit with error) of

=
�
"�

n
�
D

!

d
�
D

P�
C

�
1#PC

�
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Depending on the location relative to the stability boundary of the zeros of D and d
�
, an

identi"cation algorithm may allow one to determine with reasonable accuracy the frequency
response of

V
�
: ���" (P

�
!P)

C
�

1#PC
�

We will make use of the following inequality:

�
PC

�
1#PC

�
�)�

P
�
C

�
1#P

�
C

�
�#�

(P
�
!P)C

�
1#PC

�
� �1#�

P
�
C

�
1#P

�
C

�
�� (13)

This inequality is easily derived from the observation that

PC
�

1#PC
�

"

P
�
C

�
1#PC

�

#

(P!P
�
)C

�
1#PC

�

and

P
�
C

�
1#PC

�

"

P
�
C

�
1#P

�
C

�
�1#

(P
�
!P)C

�
1#PC

�
�

Now we can state the following lemma (also a variant of the small gain theorem).

Lemma 3. Suppose that P and P
�
are each stabilized by C

�
. Then P is stabilized by

C


"C

�
(I#�)

if the transfer functions C


and C

�
have the same number of right half-plane poles and

��� �
PC

�
1#PC

�
�(1 ∀� (14)

A su$cient condition for Equation (14) is that (for all �)

�����
P
�
C

�
1#P

�
C

�
�#�

(P
�
!P)C

�
1#PC

�
� �1#�

P
�
C

�
1#P

�
C

�
���(1 (15)

Proof. The "rst part of the lemma is standard [15, 18]. In addition, if Equation (15) holds, then
Equation (14) it can be seen to be also true by (13). �

We can take advantage of the above lemma in the following way. Using some identi"cation
algorithm, we estimate the frequency responses V

�
, which appear in Equation (15). All other

quantities are known. Therefore, for each k with the property that C


and C

�
have the same

number of right half-plane poles, we can check condition (15), albeit with estimated quantities
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replacing true quantities. If (15) does hold, then it is safe to insertC


. Once again, one can consider

all the P
�
for which Equation (15) holds and take the right-hand side (at each frequency) to be the

minimum (at each frequency) over i subject to (P
�
, C

�
) being stable. In this way, a less conservative

su$ciency condition is obtained.
Whether this scheme or that of Section 3 will give better results will depend on the particular

problem. It may be that only one of the two schemes can be used, depending on the pole
distribution of the controllers.

5. EXAMPLE

In order to demonstrate the method, the controller switching scheme with safety, as described in
Section 3, was implemented in Matlab. The original speci"cations are given here in continuous
time, although the simulation was implemented in discrete time using the zero-order hold
equivalent representation of continuous transfer functions with a sampling interval of �"0.05 s.
The simulation period was 30 s.
The plant to be controlled was chosen as

P"

1.2 (�
�
s#1) (!�

�
s#1)

(�
�
s#1) (�

�
s#1) ( �

��
s#1)

with a DC gain of K"1.2 and a non-minimum-phase zero at z"4. The control objective is to
extend the bandwidth of the open-loop plant, that is for the complementary sensitivity transfer
function to have a bandwidth that exceeds that of the open-loop plant, with regard to practical
limitations imposed by the existence of a non-minimum-phase zero. There were 441 plant models
used for the multiple model set. They were speci"ed as

P
�
"

K
�
(�
�
s#1) (!(1/z

�
) s#1)

(�
�
s#1) (�

�
s#1) (�

�
s#1)

where the modeled DC gain varied from K
�
"0.2 to 2 in 20 logarithmically equally spaced

intervals, and the modelled non-minimum-phase zero varied from z
�
"1 to 10, also in 20

logarithmically equally spaced intervals.
The controllers for each model were designed using discrete-timeQ-synthesis (where, for stable

nominal models G
�
, the controller is calculated as C"Q(1!QG

�
)��, where the target com-

plementary sensitivity function ¹
�
de"nes Q by ¹

�
"QG

�
[19]). The target closed-loop (com-

plementary sensitivity) transfer function had a DC gain ofK
�
"0.95 (this slight detuning avoided

issues involved with calculating the quantity � (C
�
, C

�
) between marginally stable controllers, that

is, controllers with integrators). The target complementary sensitivity had a target bandwidth of
p
�
"�z

�
where �"�

�
is a tuning factor indicating the aggressiveness of the design, which is limited

by the (modelled) non-minimum-phase zero z
�
. The target closed-loop denominator polynomials

were speci"ed as (s#p
�
)n� (s�#2�

�
p
�
s#p�

�
)n�, with a damping factor �

�
"0.5 and with n

�
3�0, 1�

and n
�
chosen to give the appropriate polynomial order n

�
#2n

�
. Naturally, the target com-

plementary sensitivity retained the modelled non-minimum-phase zero z
�
, so that the "nal
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(continuous-time) target complementary sensitivity function becomes

¹
�
"K

�

!s#z
�

s#z
�

pn�#2n
�

�
(s#p

�
)n� (s�#2�

�
p
�
s#p�

�
)n�

(16)

The controllers were implemented in discrete-time state space, in controller canonical form [19],
with the state variable not reset between controller switchings.
In order to maintain persistent excitation, the reference signal was speci"ed as a "ltered version

of a white noise signal with variance ��
�
"10� that was created with the Matlab randn function.

A triangular "lter with unit weighting and window length of �
�
"2 s was used to smooth the

high-frequency components of the original white signal. White output noise n of variance
��
�
"0.5� and white input noise d

�
of variance ��

�
"1� were also included in the simulation. The

observed output y
�
is thus

y
�
"P (u#d

�
)#n

where u is the demanded control.
For the estimation of the transfer functions =

�
(Equation (4)), a standard recursive least-

squares [17] algorithmwas employed in order to directly identify a parameter vector �, consisting
of the coe$cients a

��
, b

��
of the discrete time representation of the fourth-order transfer function

=
�
+

b
��
z��#b

��
z��#b

��
z��#b

��
z��

1#a
��
z��#a

��
z��#a

��
z��#a

��
z��

(17)

The regressor vectors � were composed of low-pass "ltered versions of past observed measure-
ments y

�
and demanded control u. The low-pass "lter used to create the regressors had

continuous poles at �!5, !6, !8, !8�, and no zeroes. The system identi"cation covariance
matrix was initialized at

P
�
"�

10�I
�

0

0 10�I
�
�.

In addition, the recursive least-squares scheme that was implemented included the feature that
the covariance matrix Pwas scaled by a reset factor of 10�, each time a controller switching took
place. All other initial conditions were taken as zero, including the initial plant and controller
states, multiestimator states, initial regressor vectors and estimates of parameters of the transfer
functions=

�
. No attempt was made to estimate either the parameter covariance or the typical

frequency response uncertainty for the estimates of the transfer functions=
�
using this identi"ca-

tion method.
The multiestimator (Equation (2)) was designed with denominatorD having (continuous) poles

p
��

"�!2, !3, !4�. The multiestimator performance signals �
�
(Equation (1)), were designed

with 
 corresponding to a time constant of ��"10 s. The simulation was run several times with
the supervisor initialized with the controller corresponding to one of two nominal models: one
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with K
�
"0.2�10����+1.26 and z

�
"10����+5.01 and the other with K

�
"0.2�10����+1.12

and z
�
"10����+1.12. We denote the "rst of these controllersK	

�	��
and the secondK


�	��
. Both of

these initial controllers were stabilizing for the true system P.
The minimum time between controller switchings was set at �

�
"1. At any time after the

minimum controller switching time, the controller suggested by the supervisor corresponded to
the minimum of the �

�
. In order to check safety, condition (12) was investigated for a "nite number

of frequency points, with of course the estimated transfer functions T
�
used in place of the actual

values. This set of frequencies consisted of n�"100 data points spaced equally from 0 to the
(normalized) Nyquist frequency of � (that is an unnormalized frequency of �/�). In order
to reduce computational load, if after a time of �

�
, an alternative to the currently

implemented controller that subsequently failed the safety checking routine was suggested,
another interval of �

�
would be required before allowing the suggestion of an another controller.

For comparison, simulations of the algorithm without the safety checking property were also
conducted.
A summary of the (somewhat arbitrary) choices of parameters and design methods used for the

example appears in Table I.

5.1. Results

The process was simulated and data recorded a total of 16 times with the particular choice of
simulation parameters as described above. The results varied for alternative realization of the
noise and reference signals. With the safety property enforced, as was to be expected the allowed
controller switchings were much less frequent. For simulations both with and without the safety
checking property, it was noticed that starting with K	

�	��
typically resulted in better performance

and less frequent switching (as well as less chance of instability for the unsafe adaptive case) than
using the initial controller K


�	��
. A typical controller switching trajectory is shown in Figure 3

with an initial controller of K	
�	��

. For the purposes of interpreting the controller switching graph,
the dotted line corresponds to the modelled DC gain, and the dashed line corresponds to the
modeled non-minimum phase zero. The corresponding trajectory showing the output lagging the
reference also appears in Figure 3.
In all the simulation runs with the safety checking property, the routine did not once allow the

switching in of any controller which was destabilizing, although it did allow controllers with quite
poor performance. See Figure 4 for such a simulation run, which was started with the initial
controllerK


�	��
. (Note that both the time and output axes di!er between the right and left "gures.)

For simulations run without the safety checking property, conversely, as expected, the control-
ler switchings allowed by the supervisor were much more frequent. A typical controller switching
trajectory and output trajectory are shown in Figure 5. For comparison with Figure 3, these
correspond to an initial controller K	

�	��
.

Most of the simulations that were run without safety checking exhibited some periods of poor
performance. See, for example, Figure 6, which shows the trajectory for an initial controllerK


�	��
.

In addition to resulting in poor performance, on a number of occasions, the controller corre-
sponding to the minimum �

�
resulted in a destabilized closed loop (this was checked numerically,

using the model of the true plant P), although the situation did not persist for more than a few
periods �

�
. See Figure 7 for one such a simulation (initial controller K


�	��
) where an unstable

controller was introduced between 2 and 4 s (note the scale on the y-axis). However, even without
the safety checking property, an unstable closed loop did not occur on every simulation run.
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Table I.

Description Symbol Value

Sampling interval � 0.05 s
Simulation Period * 30 s
Continuous to discrete method * Zero-order hold equivalent

Real plant P 1.2(�
�
s#1) (!�

�
s#1)

(�
�
s#1) (�

�
s#1) ( �

��
s#1)

Plant models P
�

K
�
(�
�
s#1) (!�z

�
s#1)

(�
�
s#1) (�

�
s#1) (�

�
s#1)

Model range DC gain K
�

[0.2, 2]
Number of DC gain intervals * 20 Logarithmically spaced
Model range NMP zero z

�
[1, 10]

Number of NMPZ intervals * 20 Logarithmically spaced
Number of models * 441"21�21

Controller design method * Q-synthesis
Closed-loop target DC gain K

�
0.95

Closed-loop target bandwidth p
�

!�z
�

Closed-loop target damping �
�

0.5
CLTBW: OLNMPZ ratio � �

�
Controller implementation * Controller canonical form

Reference signal r Triangular "ltered white noise
Reference covariance ��

�
10�

Ref. "lter window time length �
�

2 s
Output noise covariance ��

�
0.5�

Input disturbance covariance ��
�

1�
Multiestimator poles p

��
�!2, !3, !4�

Multiestimator time constant �� 10 s
Transfer function estimation scheme * Recursive least squares
Estimated parameters �K Discrete time TF coe$cients
Regressor "lter poles * �!5, !6, !8, !8�
Model order * 4
Initial covariance matrix P

�
diag �10�I, 10�I�

Covariance reset factor * 10
Initial conditions xP (0), x

(0), zero I.C.
�K (0), �(0) , �

�
(0)

Controller minimum switching time �
�

1 s
Initial controller index �(0) for K	

�	��
corresponding to K

�
+1.26, z

�
+5.01

for K

�	��

corresponding to K
�
+1.12, z

�
+1.12

Test frequency range [0, �]
Number of test frequency intervals n� 100, Linearly spaced

5.2. Discussion

We now investigate why, for this example, choosing the minimum over �
�
as a basis on which to

select a controller, risks leading to instability. Keeping in mind that �
�
is approximately the

(low-pass "ltered) spectrum of �
�
in Equation (3), we see from expression (2) for=

�
that there is

a weighting bias in favour of low frequencies introduced by the term �C�/�1#�C�� due to
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Figure 3. (Safe) Controller switching.

high-gain control near DC. This is exacerbated by the predominantly low-pass reference spec-
trum �

��
.

Note also that the pole at !10 in the true plant is modelled in all the P
�
at !3. Thus, the true

plant does not roll-o! until much later in frequency than the models suggest. In addition, the true
plant pole at !1.5 and zero at !2 is modelled by a pole at !2 and zero at !1.5. Therefore, if
the gain of the plant and model match at low frequencies (as is tended to be promoted by the
weighting bias in �

�
toward low frequencies) then the magnitude gain of the model at mid-range

frequencies is higher than that of the true plant. This fact, in addition to the high-frequency pole
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Figure 4. Example of poor performance: safe switching.

being modelled at a lower than actual frequency, promotes a tendency to estimate the non-
minimum phase zero also at a higher frequency than actual. It can be seen that the controllers
that were actually implemented in the simulations correspond to models with DC gains close to
the correct value of 1.2 and non-minimum-phase zeroes greater than the correct value of z"4.
The mismodelled (overmodelled) non-minimum-phase zero leads to attempts to implement
a more aggressive (high bandwidth) closed loop than is justi"ed, which, in combination with the
mismodelled (undermodelled) pole results in a high risk of instability.
In contrast, a heuristic argument would suggest that for the particular purposes of stability (but

also for performance) a more appropriate model choice would be one which is close to the plant
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Figure 5. Controller switching (without safety).

near the closed-loop crossover frequency (see Figure 8). Because of the mismodelling of the
low-frequency stable poles and zeroes, such an argument would suggest that underestimating the
DC gain in order to more closely represent the mid-frequency ranges would be appropriate.
Furthermore, it is safer to underestimate rather than overestimate the location of a non-
minimum-phase zero, although the switching algorithm allowed such a situation to occur, even
when embellished with safety checking.
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Figure 6. Example of poor performance (without safety).

6. FURTHER ISSUES

Requirements on r: In this paper we have assumed that r is a wideband signal. In the absence of
more information about P, this is a necessary requirement. Safe adaptive control is concerned
with ensuring stability, and, for linear time-invariant plants, this is assessed by a condition which
has to be checked at each frequency. In our case, an experimental form of checking is proposed,
implying that excitation over the whole range of frequencies is required.
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Figure 7. Example of temporary instability (without safety).

There are at least three exceptions to this requirement. If P is known to be a rational transfer
function with degree no more than some integer k, then the knowledge of P at k complex
frequencies is su$cient to determine P at all frequencies. This, however, is an unlikely situation.
An alternative exception occurs if P is unknown up to some frequency �

�
say, but for ���'�

�
,

one knows that �P �)(��#��
�
)����. Finally, a third exception is e!ectively a combination of the

"rst two. If we know that P"P
�
(I#�) or P"P

�
#� for some unknown rational P

�
of known

degree, and for some � lying within certain frequency-dependent bounds, then, once again, the
requirement that r be a wideband signal may be relaxed.
The key in each case is to have r such that a combination of experimental data and a priori

information is su$cient to assure the satisfaction of the stability conditions.
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Figure 8. Closed loop used for de"ning the generalized sensitivity matrix.

Figure 9. Closed-loop system (P, C).

E+ect of noise: Although identi"cation can never be exact when noise is present, exact
identi"cation is not necessarily required. We merely need assurance that certain inequalities
involving transfer functions are ful"lled. The presence of noise will not invalidate the algorithm,
but it will set limits on the switching speed, since noise will increase the time required to identify
to any given degree of con"dence.

Speed of switching: For the proposed estimation-supervision component of the algorithm, the
switching speed will be limited for two reasons: with a given controller in place, a steady-state
identi"cation must be achieved, implying that transients must settle down. Second, at higher
noise levels, longer periods may be needed to secure su$ciently accurate identi"cation.

7. CONCLUSION

This paper has presented some possible methods for ensuring that controller adaptation in
a multiple model adaptive control context proceeds cautiously and safely, in the spirit of earlier
work [12]. We use Vinnicombe metric results to ensure that any change in controller is small
enough so as not to result in a (frozen) unstable closed loop. A su$cient condition for guarantee-
ing safety can be checked, in principle, by the calculation of quantities based on available
measurements. Note, however, that this requires the identi"cation of an estimate of a particular
transfer function, so that the safety guarantee is not absolute. However, given con"dence
estimates on the identi"cation method, it would be possible to give a quantitative probabilistic
guarantee. This would be a function of both the magnitude of noise and any bias introduced
by choice of identi"cation method. In principle, it would be possible to give absolute
guarantees on switching safety if hard error bounds on the transfer function identi"cation step
were known.
In addition, practical considerations suggest that resorting to checking a "nite number of

frequencies is more appropriate, although the stability guarantee, in principle, requires checking
a condition over an in"nite number of frequencies. This issue could be tackled rigorously if an
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a priori bound on complexity [15] (roughly, the rate of change of the transfer function with
frequency) of the true plant were known.
A demonstration of the safe switching multiple model algorithm was presented. This showed

that the safe switching algorithm resulted in a conservative switching regime which indeed
maintained (frozen) closed-loop stability, whereas the same supervisor without the safety check
occasionally implemented a destabilizing controller.
The suggested method requires that the initial controller chosen is a stabilizing controller.

Further research is required to determine methods to quickly "nd a stabilizing controller in the
event that a destabilizing initial controller is implemented or in the unlikely event that a de-
stabilizing controller is switched in during operation. Methods to detect an unstable closed loop
are also required. Further research is also required on determining an appropriate switching time.
This would be based on both the time interval required for securing su$cient con"dence in
identi"cation, and the time for switching transients to have decayed appropriately.

APPENDIX A: ROBUST STABILITY AND PERFORMANCE RESULTS
FOR SCALAR PLANT

A.1. Robust stability results

We summarize some ideas from Vinnicombe [13], for scalar plants. With P
�
(s) and P

�
(s) two

plants with rational transfer functions, and with P* (s)"P (!s), de"ne the chordal distance � at
s"j� by

�[P
�
( j�), P

�
( j�)]: ���"

�P
�
( j�)!P

�
(j�)�

�1#�P
�
( j�)���1#�P

�
(j�)��

(A1)

For a rational function X( j�), let wno [X] denote the number of encirclements of the origin
made by X (s) as s follows the standard Nyquist D-contour in a counterclockwise direction,
indented into Re[s]'0 around any j�-axis poles and closing on a semicircle in the right half
plane. All open right half-plane poles and zeros of X(s) must be enclosed by the contour.
Associated with Equation (A1) is a winding number condition, namely

wno(1#P*
�
P
�
)#� (P

�
)!�J (P

�
)"0 (A2)

where � (X) and �J (X) denote respectively, the number of poles of X in the open and closed right
half-plane. If Equation (A2) holds, then

�� (P�
, P

�
)"sup�� [P

�
( j�), P

�
( j�)]

is the �-gap matrix distance (Vinnicombe distance) between P
�
and P

�
.

Alternative expressions involving normalized coprime factorizations are available. Let
P
�
"n

�
/d

�
where n

�
, d

�
are coprime polynomials and let D

�
be a stable polynomial with
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D*
�
D

�
"n*

�
n
�
#d*

�
d
�
. Setting

G
�
"�

n
�
/D

�
d
�
/D

�
�

and

G�
�
"[!d

�
/D

�
n
�
/D

�
]

then

�(P
�
( j�), P

�
( j�))"�GI

�
(j�)G

�
( j�)�

and Equation (A2) is equivalent (with G*
�
: ���"G�

�
(!s)) to

wno(G*
�
G

�
)"0

Let C(s) denote the transfer function of a controller, and consider the 2�2 transfer function
¹(P, C) from the pair [r

�
r
�
]� to [y u]� for the scheme of Figure 9, which is sometimes known as

the generalized sensitivity matrix.

¹ (P, C)"�
P

1 � (1#CP)��[C 1]

It is easily seen that

�[¹( j�)]"
�1#�P( j�)���1#�C( j�)��

�1#P ( j�)C ( j�)�
.

The generalized stability margin is de"ned to be

b
���

"

1

sup��[¹( j�)]

if (P, C) is stable, and is zero otherwise.
The main robust stability results are then as follows [13, 15].

Lemma A1. Suppose (P
�
, C

�
) is a stable closed loop. Then (P

�
, C

�
) is stable for all plants

P
�
satisfying �� (P�, P�

))� if and only if bP
�
,C

�
'�. Also, (P

�
, C

�
) is stable for all controllers

C
�
satisfying �� (C�

, C
�
))� if and only if bP

�
,C

�
'�.

Lemma A2. Suppose (P
�
, C

�
) is a stable closed loop and that

�[P
�
( j�), P

�
( j�)]��¹ (P

�
( j�), C

�
( j�))�(1 ∀� (A3)

468 B. D. O. ANDERSON E¹ A¸.

Copyright � 2001 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2001; 15:445}470



Then (P
�
, C

�
) is stable if and only if Equation (A2) holds. If

�[C
�
( j�), C

�
( j�)]��¹[P

�
( j�), C

�
(j�)]�(1 ∀� (A4)

then (P
�
, C

�
) is stable if and only if

wno(I#C*
�
C

�
)#�(C

�
)!�J (C

�
)"0 (A5)

A.2. Robust performance results

Robust performance results are expressed in terms of �[¹ (P
�
, C

�
)] for various choices of i, j

[13, 15].

Lemma 6. Suppose (P
�
, C

�
) is a stable closed loop. If Equations (A2) and (A3) hold, then at

each �,

�[¹(P
�
, C

�
)])

�[¹ (P
�
, C

�
)]

1!� (P
�
, P

�
)�[¹(P

�
, C

�
)]

(A6)

If Equations (A1) and (A5) hold, then

�[¹ (P
�
, C

�
)])

�[¹(P
�
, C

�
)]

1!� (C
�
, C

�
)�[¹ (P

�
, C

�
)]
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