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Multiple Model Ballistic Missile Tracking with

State-Dependent Transitions and Gaussian

Particle Filtering

Miao Yu@, Member, IEEE, Liyun Gong@, Hyondong Oh∗, Member, IEEE, Wen-Hua Chen+, Senior

Member, IEEE, and Jonathon Chambers#, Fellow, IEEE

Abstract—This paper proposes a new method for track-
ing the entire trajectory of a ballistic missile from launch
to impact on the ground. Multiple state models are used to
represent the different ballistic missile dynamics in three
flight phases: boost, coast and reentry. In particular, the
transition probabilities between state models are represent-
ed in a state-dependent way by utilising domain knowledge.
Based on this modelling system and radar measurements, a
state-dependent interacting multiple model approach based
on Gaussian particle filtering is developed to accurately
estimate information describing the ballistic missile such as
the phase of flight, position, velocity and relevant missile
parameters. Comprehensive numerical simulation studies
show that the proposed method outperforms the traditional
multiple model approaches for ballistic missile tracking.

Index Terms—Ballistic missile tracking, multiple state
models, state-dependent transition probabilities, Bayesian
inference, Gaussian particle filter

I. INTRODUCTION

A ballistic missile (BM) is one of the major threats

from the air in modern warfare, so it is important to inter-

cept before it hits the target on the ground. To intercept
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the BM, first it needs to be tracked by radar systems to

estimate the state information such as position, velocity

and other relevant parameters, based on which its future

trajectory can be predicted by a corresponding dynamic

model.

The BM typically experiences three different flight

phases: boost, coast and reentry [1]. During those phases,

the characteristics of the BM are significantly different:

i) in the boost phase, the BM experiences a powered

flight from launch to thrust cutoff; ii) in the coast phase,

the thruster of the BM is turned off and the missile flies

freely without the influence of atmospheric drag because

it is in a relatively high part of the atmosphere; and

iii) in the reentry phase, the BM reaches the lower part

of the atmosphere and the atmospheric drag becomes

considerable again and lasts until its impact to the

ground.

Various works have considered BM tracking for the

boost phase. A boost phase missile tracking algorithm

is proposed in [2]. A nonlinear model is proposed to

model the missile dynamics by correlating its transitional

dynamics with the altitude motion and the line-of-sight

angle is used as measurements. Based on the state model

and measurements, the extended Kalman filter (EKF) is

applied to estimate the state of a missile. An improved

algorithm over [2] with better tracking performance is

proposed in [3]. The batch based algorithm is used for

the state initialisation and an adaptive process-noise ma-

trix is added to compensate for the errors of the transition

matrix in the dynamic model. A new dynamic model is

proposed in [4], in which the thruster acceleration of

the booster is modelled by a vector-differential equation

that includes effects of both propellant depletion and

attitude motions. The new model is incorporated into

the EKF framework for the boost phase tracking. Li et
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al. [5] proposed a Maximum Likelihood (ML) algorithm

for BM tracking at a particular acquisition time in the

boost phase and the launch point. Based on the profile-

based modelling of the boost phase and the line-of-sight

measurements, the ML estimation method is applied

for constructing and solving an optimisation function

for estimating relevant parameters. A kind of adaptive

filter algorithm is proposed in [6] for the boost-phase

trajectory estimation. Polynomial model is used as the

motion model of the boost trajectory and the correspond-

ing process noise variance is constructed to make sure

the state estimation error approximates the error lower

bound of the optimal estimation. In order to achieve

stably tracking the ballistic target and better adaptability

to the flicker noise in the boost phase, a multiple model

based method which combines the unscented Kalman

filter and unscented particle filter as in [7] is proposed

for tracking the ballistic missile in the boost phase.

There are also works for tracking the BM in the coast

and reentry phase. Tracking of the BM in the coast phase

is proposed in [8]. The sensor mechanism is modelled

to deal with the time lag due to the mechanism of data

collection and transmission and it is incorporated into the

EKF for the state estimation. In the approach proposed

in [9] for the coast phase tracking, the Doppler fre-

quency is also taken into account for new measurement

information. And different from the traditional Kalman

filtering based approach, a unscented Klaman filtering

(UKF) filtering approach is exploited for tracking. For

the reentry phase tracking, an extended interval Kalman

filter approach [10] and sequential Monte Carlo-based

approach [11] have been developed by considering the

effect of atmospheric drag. Besides, a comparison study

between different filtering methods for BM tracking

during the reentry phase is presented in [12]. From

the numerical simulation results, it was shown that

the Rao-Blackwellised particle filter achieves the best

performance, especially when large initial uncertainties

exist.

Note that the aforementioned methods only consider

tracking of the BM during a particular phase by using

one type of state models. However, in order to accurately

track the whole trajectory of the BM, multiple state

models need to be used as the BM experiences different

flight phases from the launch to impact. To this end,

Benavoli et al. [13] proposed an optimisation-based

method to estimate the BM states and model parameters

by adopting multiple models. A particle filtering-based

approach has also been applied to estimate the burnout

time. Different BM dynamic models (as detailed in [13])

have been designed to construct the cost function before

and after the estimated burnout time and optimised for

the state and parameter estimation. The limitation of this

method is that it is always assumed that the tracking of

a BM starts from the boost phase.

The most widely-used method for the tracking of

multiple BM flight phases is the interacting multiple

model (IMM) method as used in [14]–[17]. Multiple

state models corresponding to different flight phases have

been applied in the development of IMM algorithms

where the state estimation is given by three steps:

interaction, filtering and combination [18]. However, the

current multiple model approaches still can not fully

represent the real behaviour of a typical ballistic missile.

For example, the IMM-based method uses a modelling

system with constant transition probabilities between

different models. This is not a realistic approach for

BM tracking as the transitions between different phases

are related with the states, that is, state-dependent. For

instance, the higher the BM is, the more likely the BM

flight phase transits from boost to coast.

In this paper, a new multiple model-based filtering

approach is developed for BM tracking. Firstly, the state

modelling framework with multiple models and state-

dependent transition probabilities is adopted for the BM

movement modelling. The BM movement characteristics

in different flight phases are reflected in multiple models.

Compared with the traditional multiple model-based

BM tracking with constant transition probabilities, the

state-dependent transition probabilities between different

models are used in this work. Based on this mod-

elling system, state-dependent interacting multiple model

Gaussian particle filtering (SD-IMMGPF) approach is

developed to implement the exact Bayesian inference

framework. Different from the generic particle filtering-

based state-dependent multiple model particle filtering

(SD-IMMPF) ( [19] and [20]), the proposed approach us-

es a modified version of the GPF [21] as mode-matched

filtering. Compared with the SD-IMMPF, the proposed

SD-IMMGPF approach can exploit both state model and

measurement information for generating particles which

can better approximate the posteriori state distribution

for improving tracking results.

The structure of this paper is as follows. Section II

describes the tracking models, including the proposed

state modelling framework and the measurement model

used in BM tracking. The general Bayesian inference

procedure and the proposed SD-IMMGPF approach are

presented in Section III. Comprehensive numerical sim-

ulation studies using different algorithms are presented

in Section IV, and the final conclusions and suggestions

for future work are given in Section V.
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II. BALLISTIC MISSILE TRACKING MODELS

A. Multiple model system with state-dependent transi-

tion probabilities

This section presents the state modelling system used

for the ballistic missile tracking. Multiple state models

are applied for the different missile movements in dif-

ferent phases where the state transitions between them

are represented in a state-dependent way.

1) Multiple state models: The entire trajectory of the

BM from launch to impact is commonly divided into

three phases [1], [13]: boost, coast and reentry phases as

illustrated in Fig. 1. Thus, three state models are defined

to reflect different BM dynamics. Similar to [13], we

made the following assumptions: i) Earth is perfectly

spherical and the rotation of the earth is considered; ii)

the effect of the aerodynamic lift is currently neglected

as in [10], [11], [13]; and iii) it is assumed that a single-

stage boost phase with a constant thrust force exists.

Time (s)

Altitude 

(km)

Boost

Coast

Re-entry

Impact

Launch

Fig. 1. The illustration of the entire trajectory and different phases
of the BM.

Boost model

During the boost phase, the missile is affected by the

gravity, thrust and aerodynamic drag force [13]. In an

earth-centered-earth-fixed (ECEF) coordinate system [1],

as the Earth rotates about the conventional terrestrial pole

(CTP) axis with an angular velocity ω, the missile is

also affected by two other forces: coriolis and centripetal

force. According to Newton’s force law, the following

basic equations hold:

ṗt = vt

v̇t = athrustt + a
drag
t + a

gravity
t + acorriolist + a

centripetal
t

(1)

where pt = (pxt , p
y
t , p

z
t )

T and vt = (vxt , v
y
t , v

z
t )

T ((·)T
denotes the vector transpose) represent the position and

velocity in the ECEF coordinate system at the time t,
respectively. Its z-axis is the CTP axis. The x and y
axes lie in the equatorial plane with the x axis pointing

towards the Greenwich meridian. The vectors athrustt ,

a
drag
t , a

gravity
t , acorriolist and a

centripetal
t represent the

accelerations introduced by thrust, aerodynamic drag,

gravity, coriolis, and centripetal force, respectively.

As in [13] and [22], the thrust acceleration athrustt

acts along the target’s longitudinal axis (parallel to the

velocity vector vt) and its magnitude is:

|athrustt | = gIspṁt

mt

(2)

where m(t) is the target’s mass, g = 9.81ms−2 represent

the gravitational acceleration, Isp is the specific impulse

(expressed in seconds) and ṁt is the mass burn rate.

Assuming that the specific impulse is constant and the

target mass mt decreases linearly at a constant rate ṁ
(mt = m0 − ṁt, m0 is the targets mass at the launch

time), the thrust acceleration magnitude can be expressed

as

|athrustt | = ng

1− qt
(3)

where n = Ispq is the initial thrust-to-weight ratio and

q = ṁt

m0

is the normalized mass burn rate.

The drag acceleration a
drag
t is opposite to the target’s

velocity vector vt. According to [22], its magnitude is

given by:

|adragt | = cD(|vt|)Sρ(ht)|vt|2
2mt

(4)

where |vt| is the velocity magnitude at time t and

ht represents the altitude of the BM. S is defined as

the target body cross-sectional area perpendicular to

the velocity [22]. cD(|vt|) is the drag coefficient as a

function of the velocity magnitude and ρ(·) is the air

density function defined as:

ρ(ht) = ρ0 exp(−k · ht) (5)

where ρ0 = 1.22 and k = 0.14× 10−3.

By assuming cD(|vt|)S/mt to be constant [13], a

ballistic coefficient parameter β = mt/cD(|vt|)S is

introduced and (4) can be rewritten as:

|adragt | = ρ(ht)|vt|2
2β

(6)

The gravitational acceleration points from the target

to the Earth’s center and its magnitude is given by the

Newton’s law of universal gravitation as ( [13] and [22]):

|agravityt | = uG

|pt|2
(7)

where uG = 3.99 × 1014Nm2/kg and |pt| represents

the position magnitude.

The coriolis and centripetal accelerations, acorriolist

October 24, 2017 DRAFT
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and a
centripetal
t are defined as ( [13] and [22]):

acorriolist = 2wE × vt

a
centripetal
t = wE × (wE × pt)

(8)

where ‘×’ represents the cross product and wE =
(0, 0,−ω)T . ω = 7.29 × 10−5rad/s is the Earth’s

angular speed.

Combining definitions of separate acceleration terms

from (2) to (8), the total acceleration of the BM during

the boost phase (denoted as abt) can be represented as:

a
b
t = a

thrust
t + a

drag
t + a

gravity
t + a

corriolis
t + a

centripetal
t

=
ng

1− qt

vt

∥vt∥
−

ρ(ht)

2β
∥vt∥vt − uG

pt

∥pt∥
+ 2wE × vt

+ wE × (wE × pt)

(9)

From the acceleration terms in (9) and the piecewise-

constant acceleration assumption during a short time

interval T , we can obtain the evolution of the position

and velocity between t and t+ T as:
[

pt+T

vt+T

]

= F

[

pt

vt

]

+G(ab
t + w

b
t) (10)

where wb
t = (wx,b

t , wy,b
t , wz,b

t )T represent the boost

phase acceleration uncertainties in three axes and the

matrix F and G are defined as:

F =















1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1















, G =



















T2

2
0 0

0 T2

2
0

0 0 T2

2

T 0 0
0 T 0
0 0 T



















(11)

Typically, as BM parameters n, q and β in (9) are

unknown, they need to be estimated. The estimated pa-

rameters can then be used in missile trajectory prediction

and missile type identification. In order to estimate the

initial thrust-to-weight ratio n and normalised mass burn

rate q, a simple Brownian motion model is used as:

nt+T = nt + T · wn
t

qt+T = qt + T · wq
t

(12)

where nt and qt represent modeled n, q values at time

instance t. wn
t and wq

t represent the introduced parameter

uncertainties.

A similar way could be used to model the ballistic

coefficient β. However, when the BM is at a high

altitude, the value of
ρ(ht)
2β in (9) will be close to zero

regardless of β due to the exponential decay of the term

ρ(ht) with respect to the height ht. In this case, different

values of β have the same effect on the position and

velocity evolution, and thus the value of β can not be

estimated correctly. In order to address this issue, we

adopt the same strategy for parameter modelling used

in [10]. Instead of β, a parameter γt = ρ(ht)
2β is first

modelled and calculated. β can then be computed from

γt. By the Euler approximation [23], the evolution of γt
can be modelled as:

γt+T = γt + T · γ′
t + T · wγ

t (13)

where wγ
t represents the parameter uncertainty and γ′

t

represents the differentiation of γt with respect to the

time t given as:

γ′
t = −k · γt

pxt v
x
t + pyt v

y
t + pzt v

z
t

√

(pxt )
2 + (pyt )

2 + (pzt )
2
. (14)

By augmenting the state dynamic equation (10) with

the parameter models in (12) and (13), the complete state

model for the boost phase is represented as:

xbt+T = F bxbt +Gb

















abt
γ′
t

0
0









+









wb
t

wγ
t

wn
t

wq
t

















(15)

where

xbt =

























pxt
p
y
t

pzt
vxt
v
y
t

vzt
γt
nt

qt

























, F b =

























1 0 0 T 0 0 0 0 0
0 1 0 0 T 0 0 0 0
0 0 1 0 0 T 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

























Gb =





























T2

2
0 0 0 0 0

0 T2

2
0 0 0 0

0 0 T2

2
0 0 0

T 0 0 0 0 0
0 T 0 0 0 0
0 0 T 0 0 0
0 0 0 T 0 0
0 0 0 0 T 0
0 0 0 0 0 T





























(16)

Coast and reentry models

After the boost phase, a BM will not be affected by

the thrust force. The acceleration components (denoted

as acrt ) in three axes become:

a
cr
t = −γt∥vt∥vt − uG

pt

∥pt∥
+ 2wE × vt + wE × (wE × pt). (17)

When a BM is in the coast phase, it is at a high altitude

and γt is a very small value. In this case, we model

the γt to follow a Gaussian distribution with zero mean

and very small standard deviation σ– γt ∼ N(0, σ2).
According to the definition of γt and the piecewise-

constant acceleration assumption, the coast model is

represented as:
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xc
t+T = F cxct +Gc

([

acrt
0

]

+

[

wc
t

wγ,c
t

])

(18)

where

xrt =



















pxt
p
y
t

pzt
vxt
v
y
t

vzt
γt



















, F c =



















1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0



















Gc =























T2

2
0 0 0

0 T2

2
0 0

0 0 T2

2
0

T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T























(19)

where wc
t is a 3 × 1 vector representing the coast

model acceleration uncertainties and wγ,c
t is a scalar

representing the uncertainty of γt in the coast model.

For the re-entry phase, the BM altitude decreases and

the parameter γt is no longer negligible. Similar to the

boost model, when the BM is within the lower part of

the atmosphere, we model the evolution of γt in (13).

The BM re-entry dynamic is then modelled as:

xrt+T = F rxrt +Gr

([

acrt
γ′
t

]

+

[

wr
t

wγ,r
t

])

(20)

where

xrt =



















pxt
p
y
t

pzt
vxt
v
y
t

vzt
γt



















, F r =



















1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



















Gr =























T2

2
0 0 0

0 T2

2
0 0

0 0 T2

2
0

T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T























(21)

and wr
t is a 3 × 1 vector representing the re-entry

model acceleration uncertainties and wγ,r
t is a scalar

representing the uncertainty of γt in the reentry model.

2) State-dependent model transition probabilities:

Transition probabilities between different flight phases

(or the corresponding state models equivalently) can

be represented as constant values in [14]–[17] where

the current flight phase depends only on the one at

the previous time instance, as illustrated in Fig. 2(a).

However, in reality, the flight phase is also related to

the state as represented in Fig. 2(b). Thus, the transition

x1
m1
y1

xt-1
mt-1
yt-1

xt
mt
yt

yN
mN
yN

(a) (b)

x1
m1
y1

xt-1
mt-1
yt-1

xt
mt
yt

yN
mN
yN

Fig. 2. The structure of a multiple model system with constant
transition probabilities (a) and state dependent ones (b), with mt,
xt and yt representing the flight phase, state and measurement,
respectively.

probabilities between different flight phases (or state

models) are state dependent.

It is worthwhile noting that the transition between

flight phases is dependent on the altitude information, as

suggested in [1]. When the height reaches a particular

threshold, the thruster of the BM is turned off and the

flight phase transits to the coast phase, as illustrated in

Fig. 3(a). As the missile flies in the coast phase, it first

reaches a peak and then drops towards the ground due to

the effect of gravity. When the altitude drops to a certain

value, the BM reenters the low part of the atmosphere

and transits to the reentry phase, as illustrated in Fig.

3(b).

This domain knowledge related to the flight phase

transition and the altitude can be used to reflect the

corresponding state model transitions as follows:

mt = coast, if ht > h1 and mt−1 = boost

mt = reentry, if ht < h2 and mt−1 = coast
(22)

where mt represents the index of the state model (boost,
coast or reentry) related to the flight phase. The param-

eters ht represents the ballistic missile height; h1 and h2

represent threshold values. Normally, the exact values of

h1 and h2 are unknown, but some information could be

obtained from previously collected information (e.g. the

trajectory data collected for a particular missile type).

The more information we obtain, the more accurate

values can be obtained with less uncertainties.

In this work, to consider the uncertainties of h1 and

h2, the Gaussian distribution is exploited to model them:

h1 ∼ N(·|mh1
, σ2

h1
)

h2 ∼ N(·|mh2
, σ2

h2
)

(23)

where mh1
and mh2

represent the guess of the true

values of h1 and h2, whilst σh1
and σh2

represent the

October 24, 2017 DRAFT
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Boosting with 

thruster-on
Coasting with 

thruster-off

Earth center

(a)

h1

(a) The BM transits from boost to coast when it
reaches a certain threshold with thruster being off

Earth center

Lower atmosphere part

with a height h2   

(b)

t=t1

t=t

2

h1

h2

g

g

(b) As the BM approaches the lower part of the atmosphere
from time t1 to t2, the height h reduce due to the effect
of gravity.

Fig. 3. The transition of the BM between different phases.

standard deviations which represent the uncertainties for

the height thresholds.

From (22) and (23), the transition probabilities from

the boost to coast and from the coast to reentry are

modelled as (24), where CDF (·|m,σ2) represents the

cumulative density function for a Gaussian distribution

with the mean m and standard deviation σ. In this way,

the transition probabilities between different state models

are modelled in a state-dependent way with respect to the

ht.

p(mt = coast|mt−1 = boost) = p(ht > h1)

= CDF (ht|mh1, σ
2
h1)

p(mt = reentry|mt−1 = coast) = p(ht < h2)

= 1− CDF (ht|mh2, σ
2
h2)

(24)

B. Measurement model

It is assumed that a radar measures the range rmt ,

azimuth angle θmt and elevation angle ϕm
t of a BM

in a local east-north-up (ENU) coordinate system [13].

The ENU coordinate system has the origin at the radar

position, with three axes being towards the east, north

and up directions, respectively. The global ECEF and

local ENU coordinate systems are illustrated in Fig.

4, and the corresponding coordinates can be converted

through:




pet
pnt
put



 = M ·









pxt
pyt
pzt



− pR



 (25)

Radar 

position

Fig. 4. The illustration of the global ECEF and local ENU coordinate
systems.

where [pet , p
n
t , p

u
t ]

T
represents a position in the local

ENU coordinate of the radar, pR =
[

px,R, py,R, pz,R
]T

is the position of the radar in the ECEF coordinate

system and M denotes the rotation matrix:

M =





− sin(λ) cos(λ) 0
−cos(λ)sin(φ) − sin(λ)sin(φ) cos(φ)
cos(λ)cos(φ) sin(λ)cos(φ) sin(φ)





(26)

with φ and λ being the latitude and longitude of the

radar. Under the local ENU coordinate system, the

measurement equation is described as:
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



rmt
θmt
ϕm
t



 = h(xst ) + nm
t

=









√

(pet )
2 + (pnt )

2 + (put )
2

arctan(
pn

t

pe

t

)

arctan(
pu

t√
(pe

t
)2+(pn

t
)2
)









+ nm
t

(27)

where xst represents the state vector of a particular state

model s,corresponding to the boost, coast or reentry

phase as mentioned previously and nm
t a measurement

noise vector.

III. STATE-DEPENDENT INTERACTING MULTIPLE

MODEL GAUSSIAN PARTICLE FILTERING

Based on different models defined in the previous

section, a state-dependent interacting multiple model

Gaussian particle filtering (SD-IMMGPF) algorithm is

developed for ballistic missile tracking. It is based on the

exact Bayesian inference framework for a multiple model

system but with state-dependent transition probabilities.

A. Exact Bayesian framework for the multiple model

system

The overall process of the exact Bayesian framework

is divided into four steps:

p(mt−1|Zt−1)
Mixing−−−−→ p(mt|Zt−1) (28)

p(xt−1|mt−1,Zt−1)
interacting−−−−−→ p(xt−1|mt,Zt−1) (29)

p(xt−1|mt,Zt−1)
Evolutions−−−−−→ p(xt|mt,Zt−1) (30)

p(xt|mt,Zt−1)
Correction−−−−−→ p(xt,mt|Zt) (31)

where mt denotes the model index, xt the state vector

and Zt an ensemble of measurement vectors with Zt =
{z1, ..., zt}.

1) Detailed Bayesian inference procedure: The

Bayesian inferences for the four steps are described as

follows.

Mode mixing: The mode mixing is related to the

evolution of the model probability between consecutive

discrete time instances t−1 and t. Using the law of total

probability, we have:

p(mt = s|Zt−1) =
∑

r∈M

p(mt = s,mt−1 = r|Zt−1)

=
∑

r∈M

p(mt = s|mt−1 = r,Zt−1)p(mt−1 = r|Zt−1),

∀s, r ∈ M = {boost, coast, reentry}
(32)

where p(mt = s|mt−1 = r,Zt−1) can be further

decomposed as:

p(mt = s|mt−1 = r,Zt−1)

=

∫

πrs(xt−1) · p(xt−1|mt−1 = r,Zt−1) dxt−1

(33)

where πrs(xt−1) represents the state-dependent model

transition probability from r to s.

State interacting: State interacting generates the ini-

tial mode-conditioned density p(xt−1|mt = s,Zt−1)
according to the conditional probability relation and the

law of total probability as:

p(xt−1|mt = s,Zt−1)

=

∑

r∈M

πrs(xt−1) · p(xt−1,mt−1 = r|Zt−1)

p(mt = s|Zt−1)
.

(34)

Evolution: The state evolution step is to propagate the

mode-conditioned state density from t − 1 to t. Given

the initial density provided in (34), the mode-conditioned

prior distribution p(xt|mt = s,Zt−1) at t is calculated

as:

p(xt|mt = s,Zt−1)

=

∫

p(xt|xt−1,mt = s,Zt−1)p(xt−1|mt = s,Zt−1) dxt−1

(35)

where p(xt|xt−1,mt = s,Zt−1) depends on the state

model mt = s.

Correction: Finally, the updated measurement is in-

corporated to correct the prior by Bayes rule:

p(xt,mt = s|Zt)

∝ p(zt|xt,mt = s)p(xt|mt = s,Zt−1) · p(mt = s|Zt−1).
(36)

The state estimation can then be derived from the up-

dated posterior distribution p(xt,mt = s|Zt).

B. SD-IMMGPF implementation

There is no analytical solution for the exact Bayesian

inference framework due to the nonlinearity and non-

Gaussian distribution of the multiple model system.

Thus, a particular implementation method is needed

to obtain the approximated solution of the posterior

state distribution in (36). Considering the state-dependent

transition probabilities in the Bayesian inference frame-

work, the conventional IMM filtering method in [14]–

[17] is not suitable since it assumes the constant transi-

tion probabilities. In [19] and [20], a particle filtering-

based SD-IMMPF approach is proposed in order to im-

plement the aforementioned Bayesian inference frame-

work. However, in the SD-IMMPF approach, only the
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state model is applied for new particle generation; thus

it is likely to obtain outliers (more details are explained

below).

Instead of the SD-IMMPF, this study proposed a

Gaussian particle filtering-based SD-IMMGPF for im-

plementing the Bayesian inference to increase the sam-

pling efficiency and tracking performance. Compared

with its counterpart, the SD-IMMGPF applies Gaussian

particle filtering-based approach for every mode-matched

filter to generate particles better approximating the s-

tate posterior distribution (36). The details of the SD-

IMMGPF approach are shown as follows.

Initially, it starts at time t−1 with the set of weighted

particles {x
r,k
t−1, w

r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} to

approximate the probability p(xt−1,mt−1 = r|Zt−1).

Mode mixing implementation: Prior mode probabil-

ity in (32) is approximated with generated particles as:

p(mt = s|Zt−1) ≈
∑

r∈M

N
∑

k=1

πrs(x
r,k
k−1) · w

r,k
t−1 , Λs

t−1,

(37)

where Λs
t−1 is defined to facilitate the rest of the deriva-

tion.

State interacting implementation: The state interact-

ing process can be implemented by inserting particles at

t−1 with the different mode index r, into (34) such that

p(xt−1|mt = s,Zt−1)

≈
∑

r∈M

N
∑

k=1

πrs(x
r,k
t−1)w

r,k
t−1δ(xt−1 − x

r,k
t−1)/Λ

s
t−1.

(38)

Evolution and correction implementation: In the

SD-IMMPF method proposed in [19], a generic particle

filtering-based approach is applied as the mode-matched

filter to obtain the approximation of the posterior dis-

tribution. Firstly, the resampling method is applied to

obtain a set of N particles {x
s,k
t−1}k=1,...,N from (38),

based on which new particles {x
s,k
t }k=1,...,N are then

predicted according to the state model corresponding

to mode s. Weights of particles {ws,k
t }k=1,...,N are

calculated by the likelihood function. The posterior dis-

tribution of (36) is then approximated by the obtained

{ws,k
t , x

s,k
t }k=1,...,N for every mode s value. However,

the limitation of the SD-IMMPF method is that particles

are only generated from the state model and the gener-

ated particles are likely to be outlier with low likelihood

probability (as mentioned in [24]), which deteriorates the

tracking performance. When the initial condition is not

accurate enough and the number of particles is small,

the performance of the SD-IMMPF algorithm is rather

poor (as will be shown in the simulation studies).

In order to address this limitation of the SD-IMMPF,

the Gaussian particle filtering (GPF) [21] based approach

is applied for mode-matched filtering. Conditioned on

a particular mode, a new importance function which is

a Gaussian approximation of the mode-based posterior

distribution is constructed, by exploiting information in

both the state and measurement models. In this way,

particles which have higher likelihood values can be

sampled from the constructed importance function to

better approximate the related posterior distribution of

(36), leading to more accurate state estimation. Besides,

compared with other variants of particle filtering which

also exploits state and measurement models for sampling

particles (such as unscented particle filtering (UPF)

[25]), the GPF based implementation is time efficient.

The reason is that rather than constructing important

functions for every particle (as in UPF, for every particle

an important function needs to be constructed by the

unscented Kalman filtering for sampling), only one im-

portant function needs to be constructed for every mode

for particles generation.

Firstly, the mean and covariance for a Gaussian dis-

tribution to approximate p(xt−1|mt = s,Zt−1) can be

obtained as:

µs
t−1 =

∑

r∈M

N
∑

k=1

πrsw
r,k
t−1x

r,k
t−1

Σs
t−1 =

∑

r∈M

N
∑

k=1

πrsw
r,k
t−1(x

r,k
t−1 − µs

t−1) · (xr,kt−1 − µs
t−1)

T

(39)

Based on this mean and covariance, we obtain a Gaus-

sian approximation of the distribution p(xt|mt = s,Zt).
Different methods can be applied to obtain such an

approximation; in our work, the extended Kalman filter

(EKF) is applied considering its efficiency and successful

applications in the posterior distribution approximation

of BM tracking [14]–[17]. The EKF in the GPF consists

of the two steps: prediction and update. The prediction

step predicts the mean and covariance by a particular

state model as:

µs
t|t−1 = fs(µs

t−1) (40)

where fs(·) represents the state transition function cor-

responding to a particular mode s, from (15), (17) and

(20) for the BM tracking problem.

Σs
t|t−1 = (Js

t )|µs

t−1
Σs

t−1((J
s
t )|µs

t−1
)T +Qs (41)

where (Js
t )|µs

t−1
represents the (s-th) model first order

Jacobian matrix value of mode s, at the initial mean

value µs
t−1. The Qs matrix is the covariance of the noise

vector for the mode s. The mean and covariance are then
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updated from the predicted results:

Ss
t = Ht|µs

t|t−1
Σs

t−1(Ht|µs

t|t−1
)T +R

W s
t = Σs

t|t−1(Ht|µs

t|t−1
)T (Ss

t )
−1 (Kalman gain)

rst = zt − h(µs
t|t−1) (measurement residual)

µs
t = µs

t|t−1 +W s
t rst (mean)

Σs
t = Σs

t|t−1 −W s
t Σ

s
t|t−1(W

s
t )

T (covariance)

(42)

where h(·) is the measurement model function in (27).

The matrix Ht|µs

t|t−1
represents the value of the first

order Jacobian matrix related to the measurement model

function at µs
t|t−1. The matrix R represents the measure-

ment noise covariance. A Gaussian distribution is then

obtained with the mean µs
t and covariance Σs

t , which is

applied to approximate the posterior p(xt|mt = s,Zt).
A new set of particles {x

i,s
t }i=1,...,N is then sam-

pled from this Gaussian distribution represented as

N(xi,st |µs
t ,Σ

s
t ), which is constructed considering both

the state model and measurement model. In this way,

measurement information is considered for the particle

generation, and thus generated particles will be more

likely in a high measurement likelihood region. From

the concept of importance sampling in [24] and (36), the

posterior distribution p(xt,mt = s|Zt) is approximated

as:

p(xt,mt = s|Zt) ≈
∑

i

wi,s
t δ(xt − x

i,s
t ) (43)

with particle weights {wi,s
t }i=1,...,N being estimated as:

w
i,s
t ∝

p(zt|x
i,s
t ,mt = s)N(xi,s

t |µs
t|t−1,Σ

s
t|t−1)p(mt = s|Zt−1)

N(xi,s
t |µs

t ,Σ
s
t )

(44)

where N(xi,st |µs
t|t−1,Σ

s
t|t−1) is a Gaussian approxima-

tion of p(xt|mt = s,Zt−1). From the obtained particles

and corresponding weights, both the state estimation and

model probability can be estimated. The procedure of the

SD-IMMGPF algorithm is summarised in Algorithm I.

IV. NUMERICAL SIMULATION STUDIES

In this section, numerical simulation studies are per-

formed to analyse the performance of the proposed

SD-IMMGPF method for the BM tracking in terms of

estimating mode probabilities, BM states and parameters.

An entire BM trajectory is simulated in the earth-

centred-earth-fixed (ECEF) coordinate system in Fig. 5.

Key parameters of the simulated BM flight trajectory

are listed in Table I, which corresponds to the short

range ballistic missile as described in [26]. Based on

the simulated BM trajectory, algorithms can be applied

for the BM tracking, with the following settings.

Initialisation: Considering the uncertainty about the

initial state vector, Gaussian distributions are applied to

Algorithm 1 Summary of the SD-IMMGPF algorithm

Initially, it starts at time t−1 with the set of weighted parti-

cles {x
r,k
t−1, w

r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} to approximate

the probability p(xt−1,mt−1 = r|Zt−1).

• Mode mixing implementation:
The prior mode probability p(mt = s|Zt−1) is com-

puted by (37).
• State interacting implementation:

p(xt−1|mt = s,Zt−1) is approximated by particles

{x
r,k
t−1, w

r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} using (38)

• Importance sampling function construction:
(i) For every mode s, initial mean µs

t−1 and covariance
Σs

t−1 for Gaussian approximation of p(xt−1|mt = s,Zt−1)
are estimated by (39)

(ii) The extended Kalman filtering procedure is per-
formed according to prediction ((40), (41)) and update (42)
to obtain a Gaussian approximation of p(xt|mt = s,Zt),
with mean µs

t and covariance Σs
t .

• Particles sampling and weights calculation:
N Particles are generated from the importance function

by x
i,s
t ∼ N(x|µs

t ,Σ
s
t ) for i = 1, ..., N and related weights

{wi,s
t }Ni=1 are computed by (44).

Finally, according to the particles and weights, the state is
estimated as:

x̂t =
∑

s∈M

N
∑

i=1

w
i,s
t x

i,s
t (45)

and the probability of a particular mode mt = s is calculated
as:

p(mt = s) =

N
∑

i=1

w
i,s
t (46)

3.9
3.95

4
4.05

4.1
4.15

x 10
6

3.7
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3.9
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4.1

x 10
6

2.9

2.95

3

3.05

3.1

3.15

3.2
x 10

6

 

X (m)Y (m)
 

Z
 (
m

)

BM trajectory
radar position

Fig. 5. Simulated BM trajectory and radar position in the ECEF
coordinate system

TABLE I
THE PARAMETERS OF THE SIMULATED BM TRAJECTORY

Flight time Range Boost time Engine-off velocity

305 (s) 292 (km) 66 (s) 1.46 (km/s)
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model different components of the initial state vector.

The initial position p0 and velocity v0 in the ECEF

coordinate system can be modelled as:

p0 ∼ N(·|p0,Σ
p
0), v0 ∼ N(·|v0,Σ

v
0) (47)

where the means p0 and v0 represent the initial guess of

the true position and velocity, respectively. The associ-

ated uncertainties Σp
0 and Σv

0 are given by:

Σp
0 =





100, 0, 0
0, 100, 0
0, 0, 100



 (m), Σv
0 =





1, 0, 0
0, 1, 0
0, 0, 1



 (m/s)

(48)

The BM parameters n, q and γ are modelled as:

n0 ∼ N(·|n0, (σ
n
0 )

2), with n0 = 3, σn
0 = 0.1

q0 ∼ N(·|q0, (σ
q
0
)2), with q0 = 0.01, σ

q
0
= 0.001

γ0 ∼ N(·|γ0, (σ
γ
0
)2), with γ0 = 2 · 10−4, σ

γ
0
= 10−5

(49)

where n0, q0 and γ0 represent BM parameters at t = 0.

The means n0, q0 and γ0 represent initially detected

BM parameter values, and σn
0 , σq

0 and σγ
0 represent the

associated standard deviations.

State and measurement models: The uncertainty vec-

tors for three state models (boost (15), coast (18) and

reentry (20)) are defined as:

wb
t ∼ N(·|06×1, diag([1, 1, 1, (10

−5)2, (10−1)2, (10−3)2]))

wc
t ∼ N(·|06×1, diag([1, 1, 1, (10

−8)2]))

wr
t ∼ N(·|06×1, diag([1, 1, 1, (10

−5)2]))

(50)

where diag([a1, ..., an]) represents an n×n diagonal ma-

trix with elements on the diagonal line being [a1, ..., an]
and others being zeros.

The state-dependent transition probabilities between

different state models are set as:

boost coast reentry

boost
coast
reentry





1− p1(ht) p1(ht) 0
0 p2(ht) 1− p2(ht)
0 0 1





(51)

where p1(ht) = CDF (ht|mh1, σh1) and p2(ht) =
CDF (ht|mh2, σh2). Related parameters are set as:

mh1 = 35000 (m), mh2 = 25000 (m), and σh1 = σh2 =
3000 (m).

The measurement model in (27) uses Gaussian noises

as:
n
m
t ∼ N(·|03×1,Σm) (52)

where

Σm = diag([(100)2 (m)2, (0.1)2 (rad)2, (0.1)2 (rad)2])
(53)

The aforementioned parameter values have been used

in the throughout simulations unless explicitly mentioned

to set to other values.

A. Modelling system comparison

In this section, we compare the proposed SD-

IMMGPF approach with those using a constant transition

probabilities-based multiple modelling system, including

four IMM approaches implemented by extended Kalman

filter in [14]–[17], unscented Kalman filter, particle filter

in [27] and Gaussian particle filter. For convenience,

these four approaches are denoted as CTP-IMMEKF,

CTP-IMMUKF, CTP-IMMPF and CTP-IMMGPF for

short. Comparisons have been made in terms of the flight

phases probabilities, position and velocity estimates.

1) Estimation of flight phase probabilities: The es-

timated probabilities of a particular BM flight phase

(boost, coast, reentry) is compared. For the particle

filtering-based methods, 10,000 particles are used for the

filtering corresponding to every mode (the same number

is applied for the following simulations unless otherwise

stated).

One hundred Monte Carlo simulations are performed

and the averaged flight phases probabilities obtained

from different methods are plotted in Fig. 6. From

the figure, we can see the advantages of the proposed

method over other constant transition probabilities-based

ones from two aspects: (i) the estimated probabilities

by the SD-IMMGPF method are better matched with

the ground truth and there are no obvious fluctuations

for the estimated model probabilities during a particular

phase period; and (ii) in the transition periods between

different phases, the change of the mode probabilities es-

timated by the SD-IMMGPF method reacts much faster

to the true mode change. The obtained advantages are

attributed to the state-dependent transition probabilities

between state models corresponding to different flight

phases, which reflect the true flight phase transitions of

the BM in a more realistic way.

2) Estimation of position and velocity: Secondly, we

compare the tracking accuracy for BM positions and

velocities by different methods. The root-mean-square-

error (RMSE) is used to evaluate the tracking accuracy.

Figures 7 and 8 show the averaged RMSEs from a

hundred Monte Carlo simulations for position and veloc-

ity at every time instance during particular time intervals,

respectively. Besides, the averaged position and velocity

RMSEs of these intervals are further given in Tables II

and III, from which can see that the advantages (smaller

RMSEs) of the proposed SD-IMMGPF approach over

others. We need to emphasize that compared with its

counterpart of the CTP-IMMGPF approach using the

exact same GPF based implementation approach, the

proposed SD-IMMGPF approach still achieves better

results especially during intervals just after phase tran-

sitions, thanks to the better flight phases probabilities

estimations during these intervals as shown in Fig. 6 by
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TABLE II
THE AVERAGED POSITION RMSES(m) OF DIFFERENT PHASES FOR 100 MONTE CARLO SIMULATIONS.

CTP-IMMEKF CTP-IMMUKF CTP-IMMPF CTP-IMMGPF SD-IMMGPF

Averaged RMSE for 70-90 (s) 304.86 325.71 294.55 276.06 242.23

Averaged RMSE for 100-200 (s) 176.87 179.11 156.52 151.52 145.18

Averaged RMSE for 280-300 (s) 314.68 298.81 355.60 351.97 226.66

TABLE III
THE AVERAGED VELOCITY RMSES(m/s) OF DIFFERENT PHASES FOR 100 MONTE CARLO SIMULATIONS.

CTP-IMMEKF CTP-IMMUKF CTP-IMMPF CTP-IMMGPF SD-IMMGPF

Averaged RMSE for 70-90 (s) 82.43 90.75 73.02 60.56 41.32

Averaged RMSE for 100-200 (s) 15.30 9.53 7.60 7.42 5.25

Averaged RMSE for 280-300 (s) 72.69 75.01 81.59 77.49 52.76

(a) Boost phase

(b) Coast phase

(c) Reentry phase

Fig. 6. Estimated flight phases probabilities by different estimation
algorithms.

exploiting the state dependent transition probabilities.

B. Implementation methods comparisons

We particularly compare two methods of implement-

ing the Bayesian inference: the SD-IMMPF and pro-

posed SD-IMMGPF algorithms, where the same state

dependent transition modeling is adopted. Firstly, the

two algorithms are evaluated under different number of

particles using the aforementioned parameter settings for

initialisation, state model and measurement model. Note

that the particle filter is a numerical implementation of

exact Bayesian estimation which is supposed to be the

optimal solution for the problem. When the number of

particles are enough large, there is no conservativeness.

However, the performance may degrade with the de-

crease of the number of particles.

One hundred Monte Carlo simulations have been

made. The estimated averaged position and velocity

RMSEs curves at every time instance are presented in

Fig. 9. The averaged position and velocity RMSEs of

the related intervals are further given in Tables IV and

V.

TABLE IV
COMPARISONS OF THE AVERAGED POSITION RMSES(m) BETWEEN

SD-IMMGPF AND SD-IMMPF .

SD-IMMPF SD-IMMGPF

N=2500 471.82 232.63

N=5000 301.02 215.61

N=10000 215.91 210.23

From the results, it can be observed that the per-

formance of the SD-IMMPF is heavily affected by the

particle size. It becomes worse as the particle number
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(a) After the transition from boost to coast phase

(b) During the coast phase

(c) After the transition from coast to entry phase

Fig. 7. The position RMSE curves during different intervals.

TABLE V
COMPARISONS OF THE AVERAGED VELOCITY RMSES(m/s)

BETWEEN SD-IMMGPF AND SD-IMMPF .

SD-IMMPF SD-IMMGPF

N=2500 66.13 53.93

N=5000 58.69 49.51

N=10000 49.86 43.87

(a) After the transition from boost to coast phase

(b) During the coast phase

(c) After the transition from coast to entry phase

Fig. 8. The velocity RMSE curves during different intervals.

reduces. That is because the SD-IMMPF approach only

applies the state model to generate new particles as

mentioned in Section III. It is likely to generate more

outliers with low likelihood values, thus a comparatively

larger number of particles are needed to gaurantee good

performance.

Secondly, we test different algorithms with different

particle sizes under a comparatively worse initial con-

dition with larger uncertainties set for the initial posi-

tion/velovity components in (54). The RMSE curves and

averaged RMSE values during corresponding intervals

are shown in Fig. 10 as well as Tables VI and VII.
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(b) The velocity RMSE curves

Fig. 9. The position RMSE and velocity RMSE curves by the SD-
IMMPF and the proposed SD-IMMGPF method.

Σp
0 =





400, 0, 0
0, 400, 0
0, 0, 400



 (m), Σv
0 =





4, 0, 0
0, 4, 0
0, 0, 4



 (m/s)

(54)

TABLE VI
COMPARISONS OF THE AVERAGED POSITION RMSES(m) BETWEEN

SD-IMMGPF AND SD-IMMPF UNDER WORSE INITIAL

CONDITIONS.

SD-IMMPF SD-IMMGPF

N=2500 994.08 232.96

N=5000 582.33 215.80

N=10000 296.70 211.30

Compared with the previous results, we can see that

the performance of the SD-IMMPF is also significantly

affected by the initial condition. As the initial condition

becomes worse, the performance of the SD-IMMPF

becomes worse; however, the proposed SD-IMMGPF is

much more robust to the initial conditions.

The reason behind it is that, as the initial condition

becomes worse, subsequent particles predicted by the
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(b) The velocity RMSE curves

Fig. 10. The position RMSE and velocity RMSE curves by the SD-
IMMPF and the proposed SD-IMMGPF method under worse initial
conditions.

TABLE VII
COMPARISONS OF THE AVERAGED VELOCITY RMSES(m/s)

BETWEEN SD-IMMGPF AND SD-IMMPF UNDER WORSE INITIAL

CONDITIONS.

SD-IMMPF SD-IMMGPF

N=2500 116.73 55.13

N=5000 69.60 50.40

N=10000 59.13 44.22

state model only will be inconsistent with the true pos-

terior distribution, which leads to the poor performance

of the SD-IMMPF. However, in the SD-IMMGPF, the

Kalman filtering-based approach is applied to construct

importance functions representing a Gaussian approxi-

mation of the true posteriori distribution for every mode,

from which reasonable particles can still be generated

and corrected by the likelihood function. The related

performance will not deteriorate too much.

We also investigate various versions of the generic

particle filtering (e.g., auxiliary particle filtering [24]

and unscented particle filter [25]) for implementing

the Bayesian inference of the state-dependent multiple

model framework (denoted as SD-IMMAPF and SD-
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IMMUPF for short). Comparisons are made between

SD-IMMAPF, SD-IMMUPF and the proposed method.

For a fair comparison, different particle filtering methods

follow the same state models, measurement model and

initial condition (as given in (47),(48) and (49)).

RMSEs at different time instances obtained from 100

Monte Carlo simulations are plotted in Fig. 11, with the

averaged position and velocity RMSEs being shown in

Table VIII. Besides, the averaged computation time of

different filtering algorithms for a single time instance is

calculated. We can see that the proposed SD-IMMGPF

method achieves smaller RMSEs compared with SD-

IMMAPF with a similar computational cost. Although

the SD-IMMUPF achieves a similar performance as

the SD-IMMGPF, its computational cost is much larger

(more than 17 times). Thus, the proposed SD-IMMGPF

approach can achieve highly accurate tracking results

with a low computational cost.
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(b) The velocity RMSE curves

Fig. 11. The position and velocity RMSE curves by SD-
IMMAPF (N=5000), SD-IMMUPF (N=600) and proposed SD-
IMMGPF (N=5000).

C. BM Parameters estimation

Finally, the performance in estimating BM parameters

is evaluated by comparing with the ground truth val-

ues from one hundred Monte Carlo simulations. Based

on the initial parameter distributions mentioned before
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(c) β

Fig. 12. BM parameter estimation from 100 Monte Carlo simulations.

and SD-IMMGPF filtering, the BM parameter curves

for each Monte Carlo run, corresponding mean curve

and boundaries determined by three times the standard

deviation σ from the mean values, are plotted in Fig. 12.

It can be observed that the estimated parameter values

quickly converge to the ground truth. In this way, the

proposed algorithm can also be used for the parameters

estimation, which can be potentially applied for the mis-

sile type classification. We then evaluated the parameter

estimation performance by different filtering methods,

by comparing 100 times averaged RMSEs of different

parameters at the end of a particular phase (n and q are

estimated at the end of the boost phase t = 64s and β
is estimated at the end of the reentry phase t = 305s).
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TABLE VIII
COMPARISONS OF THE AVERAGED RMSES AND COMPUTATIONAL TIME BETWEEN SD-IMMGPF AND OTHER VERSIONS OF PARTICLE

FILTERING BASED IMPLEMENTATION.

SD-IMMAPF SD-IMMUPF SD-IMMGPF

(N=5000) (N=600) (N=5000)

Averaged position RMSEs(m) 269.59 217.95 217.54

Averaged velocity RMSEs(m/s) 59.33 45.91 46.49

Computational time(s) 0.07 1.07 0.06

Results for different filtering methods are presented in

Table IX. We can see that the proposed SD-IMMGPF

method achieves the most accurate parameter estimation

results, compared with the CTP-IMMEKF and the SD-

IMMPF method.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new method for tracking

the whole trajectory of a ballistic missile. Compared

with the current state-of-the-art methods for the ballistic

missile tracking, the proposed method has the following

novelty both in the state model and Bayesian inference

implementation. Firstly, a new modelling framework is

applied to model BM movements in different phases.

Multiple models are applied to describe the BM dy-

namics in different phases while transition probabili-

ties between different models are modelled in a state-

dependent way rather than fixed values ( [14]–[17]).

Secondly, a new SD-IMMGPF method is developed to

implement the Bayesian inference based on the proposed

modelling framework by exploiting both the state model

dynamics and measurement information in an efficient

way. Comprehensive numerical simulation studies show

that the proposed method achieves more accurate mode

probabilities, state components and parameters estima-

tions compared with others (such as the traditional IMM

based approach [14]–[17]) and different particle filtering

based implementation approaches ( [19] and [20]). Note

that the developed algorithm can also be applied to

exploit domain knowledge for tracking and behaviour

type identification of other objects such as vehicle, ships

and pedestrians. In this way, the developed method has

the potential to be applied in wider application areas

such as the situation awareness in public areas, maritime

transport, and autonomous vehicles.

For future work, we will further develop the current

algorithm from different aspects. From the modelling

aspect, the semi-Markov model [28] will be investigated

to model the different manoeuvres (e.g. manoeuvring to

evade the interceptor) to accommodate more complex

movements of the BM; and a model noise with full

rank covariance matrix will also be investigated. From

the algorithm development aspect, we will investigate

the combination of the state-dependent model switching-

based multiple model framework with other filtering

techniques to deal with the particle loss problem, such

as the particle flow algorithm as in [29] or exploiting

various numbers of particles in every mode for filtering.

Finally, we will consider a more challenging scenario as

in [30] and [31], to track the BM by a sensor-networked

system considering the possible network-induced phe-

nomena such as missing/fading measurements, sensor

saturations, communication delays, and randomly occur-

ring incomplete information.
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Figures:

Fig. 1. The illustration of the entire trajectory and

different phases of the BM.

Fig. 2. The structure of a multiple model system with

constant transition probabilities (a) and state dependent

ones (b), with mt, xt and yt representing the flight phase,

state and measurement, respectively.

Fig. 3. The transition of the BM between different

phases.

Fig. 4. The illustration of the global ECEF and local

ENU coordinate systems.

Fig. 5. Simulated BM trajectory and radar position in

the ECEF coordinate system.

Fig. 6. Estimated flight phases probabilities by differ-

ent estimation algorithms.

Fig. 7. The position RMSE curves during different

intervals.

Fig. 8. The velocity RMSE curves during different

intervals.

Fig. 9. The position RMSE and velocity RMSE curves

by the SD-IMMPF and the proposed SD-IMMGPF

method.

Fig. 10. The position RMSE and velocity RMSE

curves by the SD-IMMPF and the proposed SD-

IMMGPF method under worse initial conditions.

Fig. 11. The position and velocity RMSE curves

by SD-IMMAPF (N=5000), SD-IMMUPF (N=600) and

proposed SD-IMMGPF (N=5000).

Fig. 12. BM parameter estimation from 100 Monte

Carlo simulations.
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