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ABSTRACT: 

 

This paper describes a semi-automatic system for road verification based on high resolution imagery and 3D surface models. 

Potential update regions are identified by an object-wise verification of all existing database records. The proposed system combines 

several road detection and road verification approaches from current literature to form a more general solution. Each road detection / 

verification approach is realized as an independent module representing a unique road model combined with a corresponding 

processing strategy. The object-wise verification result of each module is formulated as a binary decision between the classes 

“correct road” and “incorrect road”. These individual decisions are combined by Dempster-Shafer fusion, which provides tools for 

dealing with uncertain and incomplete knowledge about the statistical properties of the data. For each road detection / verification 

module a confidence function for the result is introduced that reflects the degree of correspondence of an actual test situation with an 

optimal situation according to the underlying road model of that module. A comparison with results from an EuroSDR test on road 

extraction demonstrate the strengths and limitations of the method. 

 

 

1. INTRODUCTION 

Road networks are important parts of national infrastructure. 

Therefore, up-to-date, complete and accurate information about 

road networks is of vital importance. In order to maintain a high 

quality of road databases, short update-cycles are required. This 

can be supported by using remote sensing imagery for 

automated road verification and update. Whereas many road 

detection approaches were developed in the last two decades, cf. 

(Mena, 2003; Poullis & You, 2009), only few papers deal with 

the verification or updating of databases, which can be seen as a 

natural application for road detection methods.  
 

In (Klang, 1998) a semi-automatic system for the enhancement 

of the Swedish road database based on a comparison with SPOT 

and Landsat satellite imagery is described. The approach detects 

the positions of road junctions within a tolerance radius around 

the positions indicated in the database. These nodes are used as 

seed points for an active contour model which is applied to 

every road object of the database. Finally, a comparison of the 

extraction result and the corresponding database object provides 

the human editor with a number of potential objects for the 

updating process. The system was extended for updating the 

National Topographic Database of Geomatics Canada (Fortier 

et al. 2001). Zhang (2004) uses aerial stereo imagery to extract a 

complete road network by introducing information from an 

existing database, e.g. approximate geometry and network 

topology. Zhang and Couloigner (2004) describe a framework 

for road change detection. They present different map 

conflation techniques between the database and polylines 

detected in images, to classify road objects as being unchanged, 

partly changed, changed, disappeared, or created. As their 

focus is on map conflation, they assume the existence of a 

perfectly detected road network as a basis. Poulain et al. (2010) 

describe a method that applies high resolution SAR and optical 

images for an automatic update of a road database explicitly in 

an urban context. For each database object, features are 

extracted within a region near the positions indicated by the 

database. These features reflect different properties of a road, 

but also those of typical urban context objects, i.e. buildings and 

vegetation. In a first step, each road object is verified using the 

extracted features; in this process, the features are combined by 

Dempster-Shafer fusion. In a second step, road candidates are 

extracted from the entire image and verified by their proximity 

to road objects verified in the first step. The results show that 

the fusion concept is able to combine features from different 

data sources successfully. Gerke and Heipke (2008) present a 

method for road verification in rural areas on the basis of aerial 

or satellite imagery. They extract linear objects within a region 

near the position indicated by the database. Then, the extracted 

lines are compared with the database; only if an object cannot 

be associated to appropriate linear objects it has to be inspected 

by a human operator.  
 

In this paper we present a method for automated road 

verification based on colour orthophotos and normalized Digital 

Surface Models (nDSM). In accordance with conclusions from 

a review of the related work, we carry out an object-wise test 

for each road object in the database. Thus, we solve the 

verification task locally and introduce prior knowledge from the 

database to be updated. As we know that we will not find a clear 

solution for all road objects, difficult situations are forwarded to 

a human operator together with all the objects that are likely to 

correspond to a change in the database. Whereas inspecting the 

scene is automated, the editing task itself is still manual.  
 

In order to define an automatic test that is valid for different 

settlement structures, environmental conditions and image 

sources, we combine powerful approaches from current research 

in the field of road extraction. We presented the method in 

previous publications that where focused on the adaptation of 

the road extraction algorithms to the verification task with 

respect to particular tasks (Ziems et al., 2010, 2011a). In the 

current paper we focus on the fusion framework we use to 

combine the different approaches. The experiments are set up to 

analyse the characteristics of the combination on the basis of 

different datasets. Furthermore, we compare our results to a 

benchmark dataset, provided by EuroSDR (Mayer et al., 2006). 
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2. METHOD  

Our method relies on a set of object extraction algorithms 

realized as so called verification modules. These modules are 

based on different models e.g., describing roads as lines, as 

homogeneous areas with parallel edges, or by their different 

appearance compared to context objects such as buildings. Each 

algorithm can deal with a subset of these situations and its 

success will depend on the compliance of the model 

assumptions with the actual appearance of the roads in the 

image. In addition to its decision about the correctness of the 

road object, each module delivers a confidence value C with 

0 ≤ C ≤ 1 that reflects the degree to which the situation 

encountered for the road object corresponds to the optimal 

situation according to the module’s underlying road model. The 

decisions from all modules are combined in a decision level 

fusion process in which the confidence values control the 

impact of a single decision on the final result.  
 

2.1 Dempster-Shafer Fusion Framework 

The fusion of the results from the different verification modules 

is based on the theory of Dempster-Shafer, e.g. (Klein, 1999). 

Our approach distinguishes the two classes road (R) and non-
road (N). Consequently, the hypothesis space, called frame of 
discernment Θ in the terminology of Dempster-Shafer, contains 

only of two elements: Θ = {R, N}. The power set of Θ, denoted 

by 2Θ, is 2Θ = {Ø, R, N, R∪N} where Ø is the empty set. A 

probability mass m is assigned to each element of 2Θ by a 

“sensor” (verification module) such that 0≤m(x)≤1, m(Ø)=0, 

and m(R) + m(N) + m(R∪N) = 1. The sum of all probability 

masses assigned directly to a class AŒ2Θ is called support sp(A) 
of A. If p sensors are available, probability masses mi have to be 

defined for all these sensors i with 1≤i≤p. The Dempster-Shafer 

theory allows the combination of the probability masses from 

several sensors to compute a combined probability mass for 

each class A Œ 2Θ \ Ø: 
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 In our model for the original probability masses we assume that 

each verification module i delivers a binary decision for or 

against a road, i.e., either Ri or Ni, and a confidence value 

Ci∈[0, 1] measuring its trust into its own decision. The negation 

of Ci, Ci
N=1-Ci, corresponds to the degree to which no decision 

can be taken by the module given the data. This can be 

modelled by assigning a probability mass of 1-Ci to Θ, thus 

mi(Ri∪Ni)=1-Ci. If the module’s decision is Ri, we set mi(Ri)=Ci 

and mi(Ni)=0; otherwise, we set mi(Ri)=0 and mi(Ni)=Ci. Thus, 

the module’s decision is weighted by Ci in the fusion 

framework. After combining the probability masses of all 

modules using Eq. 1, the overall decision is either R or N, 

depending on which class obtains the overall maximum support. 

However, if the confidence value Ci is low for all modules i, 
indicating situations inappropriate for all modules, the support 

both for R and N will be relatively low, so that such cases can 

be found by applying a threshold to the overall support. Thus, 

roads are accepted as correct if sp(R) ≥ 0.5 « sp(N) < 0.95.  

 with Bj Œ 2Θ             (1) 

 

2.2 Verification Modules 

In this Section we give a short overview of the verification 

modules. Some of these modules rely on data sources that are 

not necessarily available (nDSM or an IR-band); in such a case, 

these modules are simply not used. 

2D_line: This module complies with the road extraction 

algorithm presented in (Wiedemann and Ebner, 2000) that 

models roads as linear objects in aerial or satellite imagery with 

a resolution of up to 2 m. The parameters for each database 

object are automatically adjusted by taking into account the 

positional and attribute information from the database to be 

verified. Then, the extracted lines are compared to the original 

database by explicitly checking geometry, shape and line width 

of each road object. If a major part of the road is covered by 

appropriate line segments, the database object is decided to be 

correct; otherwise no decision is taken (Gerke and Heipke, 

2008). As the underlying line model assumes homogeneous 

context regions, the algorithm is expected to deliver less reliable 

results in heterogeneous surroundings. Hence, the confidence of 

the module’s decision can be based on the image entropy E: 

( ) log ( )
g G

E H g H
∈

= − ⋅∑  

where H(g) is the histogram of the image region next to the road 

(cf. Figure 1). The entropy is expected to be low for 

homogeneous and high for heterogeneous contexts. Thus, we 

assign a high confidence value of C2D-line=0.9 to the module’s 

decision for E=0 and a low confidence value for C2D-line=0.1 for 

the maximum possible entropy (E=8 for 8 bit images). Based on 

these pre-defined values, we can find two parameters a and b 

for a shift and a scaling of E and plug the result into a sigmoid 

function to obtain a confidence function monotonically 

decreasing with x=E:  
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Figure 1: 2D line extraction result (blue) and region mask  

(yellow) for computing entropy E 
 

3D_line: This module is based on (Hinz and Baumgartner, 

2003), where roads are detected as “valleys” in the nDSM. 

Analogously to the 2D_line detector, the resulting lines are 

compared to the database objects to provide a decision about the 

correctness of a road object if the major part of the road is 

covered by appropriate line segments; otherwise no decision is 

taken (C3D_line=0). The algorithm is designed for densely built-

up areas, whereas less densely built-up areas show many linear 

structures in the nDSM that may lead to false alarms. Thus, the 

confidence C3D_line of the module is formulated by the entropy E 

of the nDSM next to the road (cf. Figure 2), analogously to the 

2D_line module. 
 

 

 
 

Figure 2: nDSM with 3D-line extraction result (cyan) and 

region mask for computing entropy (yellow) 
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Parallel_Edge: A frequently used characteristic of roads are 

parallel edge pairs that represent road borders in an image. In 

our system, this information is extracted a method similar to 

(Baumgartner et al., 1999). Only if a major part of the database 

object with length ldb is covered by extracted edge pairs of 

length lH+ with appropriate geometry, shape and spacing, the 

object is considered as correct, otherwise no decision is taken 

and thus the confidence is set to zero. In case of high coverage, 

the confidence of the module’s decision is determined by 

analysing alternative hypotheses in the local surrounding that 

may result from buildings or tracks on cultivating farmland. To 

achieve this goal, the projected length lH- of extracted edge 

pairs with contradictory geometry or shape with respect to the 

database object is computed. The confidence is defined by: 

H H
parallel

db

l l
C

l

+ −−
=     ∀

H H
l l+ −≥

and Cparallel =0, otherwise. 
 

SSH: This model was introduced by Fujimura et al. (2008) to 

remove a shift of cartographically generalized road data. The 

basic idea is that the image region belonging to a road can be 

identified by the uniqueness of its intensity distribution 

compared to its surroundings. A road is considered to be correct 

if the sum of the similarities of the histograms (SSH) associated 

to the road in the database is significantly lower than the SSH 

scores of the surrounding image regions. The road geometry and 

width information from the database is used to define several 

image regions with identical shape and area (Figure 3). While 

intensity distributions in areas in the vicinity of a road are 

similar to each other, the road-related histogram leads to a lower 

SSH (Figure 3, lower left). The optimal realization for the 

underlying model is characterized by a homogeneous 

neighbourhood in a direction orthogonal to the given road axis. 

The model can also deal with inhomogeneous neighbourhoods 

if there is no single non-road region having a low SSH score. 

CSSH is modelled as the difference of the actual configuration 

and the optimal model SSHmodel (Figure 3, lower right): 

( ) ( )(
1

1
R

SSH model

r=

C = SSH r SSH r
R
⋅ −∑ )  

where r is a region index and R is the number of regions 

considered. Thus, CSSH mainly depends on the surroundings of 

the road. A high confidence value corresponds to a situation 

where all non-road regions have a similar intensity histogram 

but that of the road region is different. A low confidence is 

obtained if every non-road region has a histogram that is rather 

different from the histograms of all the other non-road regions.  
 

 

Figure 3: Input image with road region (blue) and 24 non-road 

regions (yellow). Left: the computed SSH scores over 

the profile index. Right: and an optimal SSH 

configuration. 

Colour: An image region belonging to a road has specific 

radiometric properties that can be defined in advance. We use a 

Support Vector Machine (SVM) classifier (Vapnik, 1998) for 

the purpose of distinguishing the two classes road and non-road 

in an object-based classification scheme. As the radiometric 

properties for both classes depend on local characteristics, e.g. 

road surfaces, sun-angle, presence of shadows or roof colours, a 

training step is required for each scene. The underlying model is 

appropriate if the colour contrast between the road and its local 

surrounding is high and if the training data represent the tested 

object, but unreliable otherwise. Both aspects are considered for 

the definition of the confidence function. The contrast is 

determined based on the feature space distances d(z,xl) and 
d(z,xr) between the feature vector of the road candidate z and the 

two feature vectors xl and xr from both sides of the road. The 

latter are computed from the regions next to the road that have 

similar shape and area, comparable to the SSH strategy (Figure 

3). Furthermore, the feature space distance d(z,υ) between the 

training dataset, represented by a Support Vector Domain 

Description (SVDD) (Tax and Druin, 2004), and the feature 

vector of the road candidate z is computed. The confidence Ccol 

is defined as follows: 
 

               
( ( , ) )
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−             
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where d̄ is the average distance of the feature vectors used for 

training to the SVDD surface. Thus, the value reflects the 

density of the training data; cf. (Ziems et al., 2011b). The 

parameters a and b for the sigmoid function are selected so that 

the term becomes 0.9 for d(z,υ)=0 and 0.1 for d(z,υ)= d̄.  
 

Intersection: This module is based on the method developed by 

Youn et al. (2008) for road extraction in urban areas. The 

underlying model is based on the structural differences between 

a road and a row of buildings. Several lines are defined, which 

are parallel to the database object (cf. Figure 4).  Then the 

number of intersections of these lines with edges extracted from 

the image is counted. The lower part of Figure 4 shows the 

distribution of this count for the lines. The small values in the 

centre indicate the true position of the road, whereas greater 

values indicate buildings. The minimum of the histogram is 

assumed to correspond to the road centreline. If the distance 

between the position of this minimum and the position of the 

centreline indicated by the database is lower than the maximum 

error allowed according to the specifications of the database, the 

road is decided to be correct.  
 

  
 

Figure 4: Strategy of edge direction analysis (extracted edges = 

black, expected road centreline = dotted cyan, parallel 

profiles = blue). Lower left: the computed histogram 

of the intersection counts over the profile index. 

Lower right: an optimal model configuration. 
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For urban areas containing a lot of small houses, the model is 

robust. However, more homogeneous context such as grassland, 

paddy fields or huge industry halls, is not covered by the model. 

Therefore, the confidence value is modelled as a function of the 

surrounding structure elements. The actual histogram is 

compared with a histogram based on the optimal situation for 

that model, exemplarily depicted in the lower right of Figure 4. 

This optimal situation is an absolute free passage through the 

expected road and a number of intersections on each side of the 

road, which occur if a row of buildings of standard size is 

situated next to the road with a specific width. The confidence 

Cdir for the edge direction analysis is calculated as the area ratio 

of the actual histogram H and an optimal histogram Hmodel:  
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where n is the profile index and A is the index of the centreline 

profile; Δ(n) = Hmodel(n) - H(n) if Hmodel(n) ≥ H(n) and Δ(n) = 0 

otherwise. As the neighbouring areas may be fairly different on 

both road sides, the area to the left and the area to the right of 

the road are considered by different terms. 
 

Building: Explicitly considering of buildings as vote against the 

correctness of the road object is frequently applied in literature 

(Hinz and Baumgartner 2003; Zhang, 2004; Poulain et al., 

2010). As we are not interested in the buildings themselves, the 

building detection strategy is kept simple. Firstly, a 3m 

threshold is applied to the nDSM; secondly, trees are removed 

by introducing a vegetation mask computed by a simple 

landcover classification. A road object is decided to be wrong if 

its centreline intersects an extracted building (Figure 5). The 

confidence Cbuild is defined on the basis of a reliability map 

originated from the nDSM generation process.  
 

 
 

Figure 5: Building module. Top: image superimposed with 

database roads containing one incorrect object. 

Bottom: nDSM superimposed with extracted 

buildings (cyan) and evaluation result (incorrect = 

red, no decision = yellow) 

 

Grassland: In (Zhang, 2004) and (Youn et al., 2008), grassland 

was considered as a hint against the existence of a road. As the 

reconstruction of a road is frequently connected with a 

redevelopment of grassland areas it is usually a good indicator 

for such a change (e.g. Figure 6). Thus, we use a ground 

vegetation mask, computed by a simple landcover classification, 

to detect intersections between grassland areas and the road 

centrelines. The confidence of the decision relies on the quality 

of the ground vegetation mask. As the vegetation areas of 

interest are usually small, local radiometric properties can 

significantly affect the result and lead to misclassifications, e.g. 

with dark road surfaces or shadowed road areas. Thus, the 

brightness of the intersecting image region is used to define the 

confidence Cveg by Eq. 2 for x= ī  , where ī  is the mean intensity 

value of the intersecting pixels in the green band. The 

parameters a and b are selected so that Cveg=0.9 for ī = Ī  and 
Cveg=0.1 for ī =0.0, where  Ī  is the mean intensity value of the 

whole scene in the green band. 
 
 

Figure 6: Redeveloped roundabout identified by grassland 

detection (revised roads = red, no decision = yellow) 

 

Topology: In order to enhance the image analysis results, the 

topologic properties of the road network are often considered, 

e.g. (Baumgartner 1999; Hinz and Baumgartner 2003; Gerke 

and Heipke 2008). The local object-based strategy proposed in 

this work is basically weak for short roads, as local occlusions 

or blurring can hardly be compensated. In accordance with the 

related work it is the assumption of this module that such short 

roads can be validated by their junctions (cf. Figure 7). Thus, 

for roads with length<30m that have two nodes (junctions) with 

degree>1 we additionally consider the output of the verification 

modules from the roads connected to them. Hence, Eq.1 is 

extended to iterate over p`=p+k·p instead of p, where k is the 

number of connected roads. The additional k·p modules are 

considered with reduced confidences Ci`=0.5·Ci as they always 

express only one node of the road to be validated.  
 
 

Figure 7: Topologic Analysis: short road objects are not 

verified by one of the verification modules. They are 

verified based on the junctions they connect (correct 

= green, undecided = yellow).  

 

3. EXPERIMENTS 

To evaluate our method, experiments with different datasets 

were carried out. In the following we will analyse the strengths 

and limitations of the particular modules with respect to 

different datasets. We will further compare these results with 

the combined solution and with those produced by the EuroSDR 

test presented in (Mayer et al., 2006). Additionally, we 

demonstrate the practical impact of our method on real 

cartographic datasets provided by the mapping agencies of 

Japan, Belgium and Germany. For all experiments we used the 

same system parameters. The only exceptions that were made 

are related to the availability of nDSM and IR-band in a 

particular dataset and to the training of the colour module, 

which is required for any new scene. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

332



 

 

rk Module Completeness Correctness 

EuroSDR_Aerial1 

1 2D_line 0.52  (*0.17) 1.0 

2 Parallel_Edge 0.27  (*0.02) 1.0 

3 Intersection 0.24  (*0.06) 0.988 

4 Colour 0.22  (*0.05) 0.967 

5 SSH 0.21  (*0.01) 0.996 

 All 0.79 0.985 

 best of EuroSDR test 0.51 - 

EuroSDR_Aerial2 

1 2D_line 0.73  (*0.30) 1.0 

2 Parallel_Edge 0.33  (*0.01) 1.0 

3 Colour 0.26  (*0.02) 1.0 

4 SSH 0.25  (*0.01) 0.995 

 All 0.90 0.996 

 best of EuroSDR test 0.65 - 

EuroSDR_Aerial3 

1 2D_line 0.82  (*0.29) 0.999 

2 Parallel_Edge 0.47  (*0.02) 1.0 

3 SSH 0.30  (*0.01) 1.0 

 All 0.97 1.0 

 best of EuroSDR test 0.72 - 

EuroSDR_Ikonos1sub1 

1 Intersection 0.62  (*0.38) 0.994 

2 SSH 0.40  (*0.03) 1.0 

3 2D_line 0.35  (*0.03) 1.0 

 All 0.94 1.0 

 best of EuroSDR test 0.48 - 

EuroSDR_Ikonos3sub1 

1 2D_line 0.88  (*0.03) 1.0 

2 SSH 0.73  (*0.00) 1.0 

3 Intersection 0.30  (*0.12) 1.0 

 All 0.95 1.0 

 best of EuroSDR test 0.81 - 

EuroSDR_Ikonos3sub2 

1 2D_line 0.92  (*0.07) 1.0 

2 SSH 0.89  (*0.00) 1.0 

3 Intersection 0.14  (*0.07) 1.0 

 All 1.0 1.0 

 best of EuroSDR test 0.85 - 

Uraga 

1 Intersection 0.59  (*0.25) 1.0 

2 SSH 0.26  (*0.02) 0.980 

3 Colour 0.19  (*0.05) 0.983 

4 Topology 0.11  (*0.11) 0.940 

 All 0.71 0.986 

Algiers 

1 SSH 0.44  (*0.11) 0.998 

2 2D_line 0.33  (*0.06) 1.0 

 All 0.61 0.998 

Zeebrugge 

1 Colour 0.43  (*0.03) 0.995 

2 2D_line 0.38  (*0.07) 0.994 

3 Parallel_Edge 0.35  (*0.07) 0.978 

4 Intersection 0.18  (*0.02) 0.994 

5 3D_line 0.11  (*0.08) 0.990 

 All 0.88 0.990 

Table 1. Evaluation results for the EuroSDR datasets and three 

different topographic road databases. (*proportion of 

data exclusively validated by a module)   

3.1 Datasets 

EuroSDR_Aerial1-3 The three scanned aerial images (RGB, 

0.5m GSD) are part of the EuroSDR benchmark dataset. For the 

experiments we used the reference dataset from the EuroSDR 

test as input data. As this dataset contains no errors, we 

simulated errors by rotating the reference data against the 

imagery by 180o. Hence, the verification approach should reject 

these objects. The scenes are named according to the original 

test. 

• Aerial1: suburban area (43km correct roads) 

• Aerial2: hilly rural scene with medium complexity (22km) 

• Aerial3: hilly rural scene with low complexity (23km) 
 

EuroSDR_Ikonos: The three Ikonos tiles are a part of the 

EuroSDR benchmark dataset. The imagery consists of four 

bands (RGB,IR) pan-sharpened with 1.0 m GSD. As described 

above we used the EuroSDR reference dataset in addition with 

simulated errors for the experiments. 

• Ikonos1sub1: suburban area in hilly terrain (18km) 

• Ikonos3sub1 and Ikonos3sub2: rural hilly scenes with low 

complexity (8km and 6km) 
 

Uraga: The aerial image (RGB 0.2 m GSD) was provided by 

the Japanese mapping agency. The scene shows suburban area 

in hilly terrain containing a recently finished redevelopment 

project of a main road. The vector data originate from the 

Digital Japan Basic Map and include 17 km of road network, of 

which 3.5 km are marked as incorrect by the manual update 

process. Many narrow roads and significant shadow effects lead 

to a high complexity of the scene. 
 

Algiers: This Ikonos image shows a rural area near Algiers, 

where the roads usually have weak contrast to their 

surroundings. The meta data of the image are similar to those of 

EuroSDR_Ikonos. The vector dataset is part of the MGCP, 

which is an international topographic map of 1:50.000. It 

contains 670 km of roads, of which 7.5 km were identified to be 

wrong during a manual quality assessment process. 
 

Zeebrugge: The 12x16km2 RGB image mosaic with 0.5 m 

GSD shows Zeebrugge, Belgium, and its surrounding area. The 

scene contains a dense urban area with multistory houses, but 

also suburban and rural regions. In addition to the imagery an 

nDSM, computed by dense matching, with 1.5 m GSD was 

available for the experiments. The input vector dataset contains 

630 km of roads, of which 41 km were marked as incorrect by a 

manual update that was used as a reference.  
 

3.2 Results and Discussion 
 

All test results are summarized in Table 1. For each dataset, the 

entries are ordered by the completeness values of the modules. 

In order to restrict the size of the table, only modules that 

validated more than 10% of the roads are listed. In addition to 

the final solution, containing the information of all modules, the 

best result from the EuroSDR test is given for each dataset. In 

order to make our object-based results comparable to those of 

the EuroSDR test, which relies on centrelines, we always 

considered the lengths of the database objects to compute 

completeness and correctness. Completeness denotes the length 

ratio of correctly validated roads compared to the total length of 

all correct roads in the reference, whereas correctness denotes 

the length ratio of correctly validated roads with respect to the 

total length of all validated roads.  
 

General: As for the completeness, it can be seen in Table 1 that 

the strongest module mostly produce similar results as the best 

EuroSDR approach did. However, the combined solution is 
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always better, which we interpret as a benefit from the decision 

level fusion strategy. The constantly high correctness values 

indicate that our solution is independent from the imagery and 

the complexity of a scene. The latter issue is important for our 

motivating task, because any object passing the test will never 

be investigated by a human editor; if the object is wrong, it will 

remain in the database as an undetected error. The EuroSDR 

results for correctness are not displayed in Table1. They are 

basically not comparable to ours because the verification task 

allows us to introduce strong prior knowledge from the outdated 

database, which was not true for the EuroSDR participants.  
 

Aerial2, Aerial3, Ikonos3sub1, Ikonos3sub1: The best results 

were produced by the line-based approaches. This was already 

true for the EuroSDR test, where the winners rely on the same 

basic approach (Wiedemann and Ebner, 2000). As all the scenes 

show good contrast and a homogenous background the 

completeness is always high. The modules Parallel_Edge and 

SSH also successfully validated the scenes, but did not provide 

much additional information compared to the 2D_line module, 

which can be seen from the numbers in brackets. The slightly 

better result of the 2D_line module compared to the line based 

approaches of the EuroSDR test originates from our object 

based strategy, which better compensates problems with 

junctions and smaller occlusions.   
 

Aerial1, Ikonos1_sub1: These two scenes show a strong 

benefit obtained by combining different approaches. Similar to 

the approaches used by EuroSDR participants, our modules are 

always able to deal with smaller parts of the scene quite well, 

either with the rural or with the suburban part. For the suburban 

regions the modules based on colour classification and edge 

intersections were most successful. The latter one had not been 

used in the EuroSDR test and is mainly responsible for the 

better result of the proposed approach. 
 

Uraga: The narrow roads and the low sun angle lead to strong 

shadow effects on the road surfaces. As both the SSH and the 

colour module are based on models that can deal with shadow 

effects, they still delivered reasonable results where the other 

modules failed. Furthermore, the high resolution of the imagery 

(0.2 m) enhances the success of the area based models. Finally, 

the consideration of the network topology leads to a significant 

amount of positive response for many short roads in that scene. 
 

Algiers: As the scene shows comparably low contrast between 

roads and background, the SSH based model performs strong by 

considering a large surrounding area of a road. 
 

Zeebrugge: The comparably huge dataset contains roads of 

many different characteristics and thus does not favour any 

module. As this dataset contains an nDSM, the 3D_line module 

has a strong impact in the city centre. 
 

Grassland and building detection modules: As these modules 

do not validate roads, they do not occur in the result tables. 

However, they raise the correctness value compared to the 

single solutions. For Zeebrugge the correctness of the combined 

solution increases from 0.981 without these modules to 0.990 

with these modules, thus nearly halving the error.  

 
4. CONCLUSIONS 

The results presented in this paper show that the combination of 

relatively simple road detection approaches leads to good 

results, even for complex scenes. The comparison of our results 

with those of the EuroSDR test demonstrated the strength of the 

proposed approach. Furthermore, it was shown that the achieved 

correctness is widely independent from the image data and the 

complexity of a particular scene. 
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