
Multiple Model Kalman Filters: A Localization
Technique for RoboCup Soccer

Michael J. Quinlan and Richard H. Middleton

1 Department of Computer Science, University of Texas at Austin, USA
2 Hamilton Institute, NUI Maynooth, Maynooth, Co. Kildare, Ireland

mquinlan@cs.utexas.edu, richard.middleton@nuim.ie

Abstract. In the Standard Platform League (SPL) there are substan-
tial sensor limitations due to the rapid motion of the camera, the limited
field of view of the camera, and the limited number of unique landmarks.
These limitations place high demands on the performance and robust-
ness of localization algorithms. Most of the localization algorithms imple-
mented in RoboCup fall broadly into the class of particle based filters or
Kalman type filters including Extended and Unscented variants. Particle
Filters are explicitly multi-modal and therefore deal readily with ambigu-
ous sensor data. In this paper, we discuss multiple-model Kalman filters
that also are explicitly multi-modal. Motivated by the RoboCup SPL,
we show how they can be used despite the highly multi-modal nature
of sensed data and give a brief comparison with a particle filter based
approach to localization.

1 Introduction

Localization has been studied by many researchers for several years now. Most
of the algorithms implemented in RoboCup fall broadly into the class of particle
based filters (see for example [5]) or Kalman type filters (see for example [6])
including Extended and Unscented ([4]) variants. In some divisions of RoboCup,
algorithms are very well established, given the rich sensor data provided by laser
scanners, omni-directional cameras etc. (see for example [3]). However, in the
standard platform league (formerly the four legged league) there are substantial
sensor limitations particularly with the rapid motion of the camera, and the need
for active perception. In addition, the league has deliberately removed beacons
as unique landmarks, leaving the colored goals as the only unique landmarks on
the field.

Due to the non-uniqueness of most land marks in the SPL, it is important
that any localization algorithm be able to handle this ambiguous data. In partic-
ular, it is clear that in many cases, the relevant probability density functions will
be multi-modal. Whilst it is generally accepted that particle filters can handle
this situation, it seems less well known in the RoboCup domain that Kalman
type filters can be easily adapted to handle multi-modal distributions. In other
research areas, however, multiple model (also called Gaussian Mixture or Gaus-
sian Sum) filters have been used for many decades (see for example [1]).

2 Michael J. Quinlan and Richard H. Middleton

In this paper, we first give a review of multiple-model Kalman filters, with
particular emphasis on features and approximations relevant to real time im-
plementation within the RoboCup framework. We then present examples and
results of the mutliple model Kalman filter.

2 Multiple Model Kalman Filters

2.1 Problem Formulation

In many robotics applications, localization algorithms are concerned with the
problem of estimating the ‘state’ of the robot, from uncertain data. For exam-
ple, in the Standard Platform League, we might typically be concerned with
estimating the location (in 2D cartesian coordinates) and orientation of the
robot given data derived from vision of objects on the field such as goal posts
and field markings. In this case, the state we wish to estimate is written as the
3 dimensional vector

x(t) =

xr(t)yr(t)
θ(t)

 (1)

where (xr, yr) denote the robot’s cartesian coordinates and θ is the robot’s orien-
tation. Often, a probabilistic or statistical representation of uncertainty is used,
though more recently some ‘constraint’ based localization techniques have also
been applied (see for example [2]).

In the probabilistic setting, adopting a Bayesian estimation framework, there
are two components to the state estimation problem:

– Time Update. Firstly, given the pdf of x(t− 1) conditioned on data up to
time (t− 1), p(x(t− 1)) and also given odometry information at time t, we
wish to make an estimate of the conditional density function of x(t), given
data up to time t, p(x−(t)).

– Measurement Update. Secondly, given the conditional pdf, p(x−(t))and
also given measurement data at time t, we wish to find p(x(t)).

In the standard Kalman filter approach, we use a multivariate (n-dimensional)
Gaussian to represent the conditional pdfs of x(t), for example

p(x(t)) =
1

(2π)n/2|P (t)|1/2
e−

1
2 (x(t)−x̂(t))TP−1(t)(x(t)−x̂(t)) (2)

where x̂(t) denotes the expected value of the state at time t, and P (t) represents
the state covariance matrix also at time t. In the standard Kalman filter, or the
extended or unscented versions there are simple expressions that allow computa-
tion of the time update equations (that relate (x̂−(t), P−(t)) to (x̂(t−1), P (t−1))
and measurement update equations that relate (x̂(t), P (t)) to (x̂−(t), P−(t))).

The Kalman filter has an extensive history and has proven very useful in a
wide range of applications, and also enjoys relatively simple computations. At

Multiple Model Kalman Filters 3

each time, given a scalar measurement variable, the computational complexity
of the time update and measurement update equations is typically O(n2) where
n is the dimension of the state variable. Unfortunately, it provides a very poor
representation of multi-modal distributions, since despite the generality available
in (2), this distribution is always unimodal. Fortunately, this difficulty can be
overcome by the use of Gaussian mixtures.

2.2 Gaussian Mixture background

Gaussian mixtures represent the state pdf as a sum of a number of individual
multivariate Gaussians, or multiple models. Each of the N models, for i = 1..N ,
is described by 3 parameters (where for simplicity we drop the explicit depen-
dence on time):

– αi ∈ [0, 1], the probability that model i is correct, that is, the ‘weight’
associated with model i,

– x̂i ∈ Rn, the state estimate for model i,
– Pi = PTi > 0 ∈ Rn×n, the covariance for model i.

For each model, the multivariate normal probability distribution function
(pdf) is given by:

pi(x) = αi
1

(2π)n/2|Pi|1/2
e(−

1
2 (x−x̂i)TP−1

i (x−x̂i)). (3)

The overall mixture pdf is therefore:

p(x) =
N∑
i=1

pi(x). (4)

Note that all variables, αi, x̂i, Pi and N can change with time in the algorithms
to be discussed below.

Some of the key features of this representation are that under certain as-
sumptions, any pdf can be approximated to an arbitrary degree of accuracy by a
Gaussian mixture of sufficient degree (see for example the discussion in [1, §II]).
We first consider the simple case of updates for unambiguous measurements.

2.3 Model update with unambiguous measurements

We first perform an EKF (or UKF as appropriate) update of each of the N
models, for all unambiguous objects from vision (e.g. ball, known goal posts,
field markings that can be uniquely identified from other visual cues). This EKF
(or UKF) measurement update is identical to the regular (that is single model)
update, except that we need to include update equations for the model weight.
For each model, and for each measurement update, an approximate heuristic for
updating the weights is:

αi := αi

(
R

R+ (y − ŷ)2

)
(5)

4 Michael J. Quinlan and Richard H. Middleton

where R is the variance of the measurement considered. Note the update pro-
posed in (5) is simple and has the right general form, that is, zero innovation
keeps the α value high, whilst large innovation shrinks the value. However, as-
suming statistically independent normally distributed measurement errors, and
allowing for vectors of m measurements3 the weights should be updated accord-
ing to:

αi := αi

(
1√

(2π)m|Ση|
e−

1
2η
T (Ση)

−1η

)
(6)

where η = y − ŷ is the innovations associated with the measurement, and Ση
is the variance of the innovations. Note that the innovations variance can be
computed as the sum of the measurement variance R and the variance R̂ of the
prediction, ŷ, that is, Ση = R+ R̂.

One of the problems with the weight update given in (6) is its lack of robust-
ness to outliers. For example, a single, slightly bad measurement where |η| = 4ση
would multiply αi by almost four orders of magnitude less then if η ≈ 0. To cor-
rect this, if we assume a probability of εo that our observation is an outlier (that
is a false positive from vision), then a more appropriate weight update is:

αi := αi

(
(1− εo)

1√
(2π)m|Ση|

e−
1
2η
T (Ση)

−1η + εo

)
. (7)

Having processed all the unambiguous measurements, we now turn to the
problem of processing ambiguous measurements, which gives rise to the problem
of model splitting.

2.4 Model Splitting - ambiguous measurements

When considering an ambiguous measurement update, with M alternate possi-
bilities, an initial distribution with N elements (or models) can be performed by
splitting each of the N initial models into M models (to a total of M ×N mod-
els) and doing a standard measurement update for each possible combination of
model component with each possible measurement component. Note that it is
also possible that splitting could be the results of ambiguous time updates (for
example, if we are uncertain whether the ball has just been kicked). In this case,
similar considerations to those below will apply during the time update portion
of the extended Kalman filter. For now, we look just at the measurement update
equations.

Suppose that we start with N models, and a measurement that is ambigu-
ous, and can therefore be interpreted as M different field objects, such as M
different corner points. For simplicity we consider the case where each of these is
equiprobable, though there is no difficulty in generalizing the algorithms below

3 For example, it may make sense to consider the range and bearing of a single object
as a single, two dimensional vector measurement.

Multiple Model Kalman Filters 5

to cases where each of the measurement ambiguities has different, but known,
probabilities.

The processing of an ambiguous measurement is performed by executing the
following actions:

for each active model i
for j =1 to number of ambiguous choices

create a new copy (child) of model i;
update this new model with measurement type j;
if (update is an outlier) merge4 new model with model i;

end;
renormalize the weights for all children of model i;

end;

Note that the distribution of weights at the end of the inner loop respects
the relative weights after the measurement updates, but renormalizes the total
weight. Clearly, whilst the individual actions within this procedure are relatively
computationally cheap, it can give rise to an exponential growth in the number of
active models, which is clearly impractical. One of the most important problems
therefore in many multiple model Kalman filters is how to control the number of
models. Although pruning (that is deleting) models with very small weights may
be helpful, this is not a complete solution and it is important to have procedures
for merging models.

2.5 Model Merge Equations

We first consider the simpler of the problems associated with merging models,
namely, given a group (often a pair) of models, how do we merge (or join) these
into a single resulting model that approximates the original pdf. There are many
possible algorithms that may be used for merging models, see for example [8].
The discussions here follow closely these algorithms or simplified forms of them.
For simplicity, we describe merging a pair of models, however, the algorithms
below generalize trivially to merging more than two models at once.

Firstly, it is clear that when merging, to preserve the total weight probability
of one of the models being correct, we should have [8, (2.24)]:

αm = α1 + α2 (8)

where αm is the weight of the merged model and α1, α2 are the weights of the
two models to be merged.

4 The model merge procedure will be discussed in Section 2.5. This logic frequently
causes early model merges and thereby reduces the expansion in the number of active
models.

6 Michael J. Quinlan and Richard H. Middleton

Also, we can derive the merged mean as follows5:

x̂m =
1
αm

(α1x̂1 + α2x̂2) (9)

Note however that this merging algorithm can cause ‘drift’, wherein, merging
of a high weight, though slightly uncertain model, and low probability model
with different mean, causes a small shift in the parameter estimates. If this
situation persists (for example when repeatedly observing the same ambiguous
object without any other observations), then the parameter estimates can drift
significantly. To avoid this problem prior to computing the merged covariance,
we follow (9) by the logic:

if α1 > 10 ∗ α2 then x̂m := x̂1

if α2 > 10 ∗ α1 then x̂m := x̂2

If we wish to preserve the overall covariance of the pdf corresponding to the
original pair of pdfs, then the merged covariance matrix is given by:

Pm =
α1

αm

(
P1 + (x̂1 − x̂m)(x̂1 − x̂m)T

)
+
α2

αm

(
P2 + (x̂2 − x̂m)(x̂2 − x̂m)T

)
(10)

Note that it is not obvious that these equations give the ‘optimal’ merge.
In particular, some of the main contribution of the thesis [8], is to pose the
merge problem as an optimization of the difference between the resultant pdf
and the original mixture pdf. In this case, a recursive algorithm for computing
the optimal merge can be generated. For reasons of simplicity and numerical
efficiency, we propose the simpler equations (8),(9),(10). Note however, that (for
example) merging a low weight high variance pdf with a high weight low variance
pdf by this procedure tends to under-estimate the probability of the ‘tail’ of the
distribution, whilst giving better accuracy in the pdf of the main mode of the
distribution.

2.6 Model Merge Decisions

Model merge decisions are complex and there seem to be a number of possible
algorithms for this. The authors of [8] formulate the problem of deciding which
models to merge in an optimization framework. This optimization starts with a
high order mixture model and seeks to find a lower order mixture model that
best fits the original mixture model in the sense of the mean square deviation
of the probability density functions. The only inputs needed are the original
model, and the number of elements (models) in the final mixture. However, the
computations for this kind of procedure seem prohibitive in the RoboCup SPL
environment.
5 Note that when merging, extra care is need to merge the orientation components of

the estimates. For example, merging an orientation of 179◦ with −179◦ should not
give 0◦.

Multiple Model Kalman Filters 7

We therefore propose a computationally simpler procedure, based on a sim-
plified form of the optimization approach. Our approach is based on computing
pairwise merge metrics, that is, a measure of how much ‘information’ will be lost
if this pair of models is merged. One metric proposed for example in [8, pp2.66]
computes the distance metric, dij , for a pair of models indexed by (i, j) as

dij =
(

αiαj
αi + αj

)
(x̂i − x̂j)TP−1

ij (x̂i − x̂j) (11)

where PE is the covariance that would result if the models were to be joined,

Pij =
(

αi
αi + αj

)
Pi +

(
αj

αi + αj

)
Pj +

(
2αiαj
αi + αj

)(
(x̂i − x̂j)(x̂i − x̂j)T

)
(12)

To simplify calculations, and avoid the matrix inverse that may be problem-
atic in higher order systems (for example combined robot, ball and ball velocity
estimation where n = 7), we propose a simpler approximate metric

Dij = (αiαj) (x̂i − x̂j)T (αi∆i + αj∆j)
−1 (x̂i − x̂j) (13)

where ∆i denotes the matrix formed by the diagonal component of Pi.
Given a mechanism, such as (13), for computing a metric on the closeness

of two models, we could repeatedly search for the closest two models to merge.
Note however, that to implement this, we must first compute all N(N − 1)/2
possible distance metrics, find the smallest, merge these, then recompute merge
metrics (or at least the N − 2 metrics associated with the new merged model)
and repeat. Alternatively, it may be simpler to merge based on a threshold using
an algorithm such as that following:

for each active model i
for each active model j

if (mergeMetric(i,j) < threshold) then
model i := mergeTwoModels(i,j);

end;
end;

If this threshold based merge does not achieve sufficient reduction in the
number of models, it can be repeated with larger thresholds.

2.7 Algorithm Implementation

To avoid the overhead of dynamic memory allocation and deletion, (as well as the
potential to inadvertently create memory leaks), we implement a fixed size array
of size MAX_MODELS of models. Each of these models is a normal KF model (that
is, includes the states estimates and the state covariance) and in addition includes
parameters for the weight alpha and a Boolean, active, denoting whether or
not the model is in use.

The execution has main steps as follows:

8 Michael J. Quinlan and Richard H. Middleton

1. Time Update For each of the active models, a call is made to the regular
KF time update on this model, that is, it incorporates locomotion data and
updates the filter covariances.

2. Measurement Update for all Unambiguous Objects For each of the
active models, a regular measurement update is performed as suggested in
Section 2.3.

3. For each Ambiguous Object, split models. Ambiguous objects are:
(i) Unknown Intersections; (ii) Unknown Lines; and (iii) Ambiguous Goal
Posts. For each of these situations, each active model is split according to the
various possibilities for the unknown object. This splitting uses algorithms
as discussed in Section 2.5. After this process, the model weights, αi, are
normalized so that they sum to 1.

4. Merge Models. Since splitting models can leave us with a large number of
possible models, after each ambiguous object update, we merge models to
try to eliminate redundant models.

5. Generate Localization Data for Behavior Following the model merge,
the αi values are again normalized and the best model is selected to represent
the most likely robot position, together with variances of the estimates. Note
however, that we have a special segment of code, so that if there is a valid 2nd
best model, the variance of the estimates reported to behavior is increased to
account for any deviation between the state estimates for the best and 2nd
best models. For example, with respect to orientation, instead of reporting
just the variance σ2

θi1
of the best model i1, the overall heading variance σ2

θ

is computed as
σ2
θ = σ2

θi1
+ αi2 (θi1 − θi2)2 (14)

where i2 denotes the index of the second most likely model.

3 Example and Results

In this section we run through an example of a Multiple Model Extended Kalman
Filter (MM-EKF), as described in Section 2. One of the most demanding local-
ization situations in RoboCup SPL is goal keeper localization since positioning
needs to be very accurate, and in most cases, the only visible unique land marks
are distant goals. In our test case we have a robot standing inside the yellow
goal mouth looking directly up the field (in our coordinate system, the loca-
tion is x=-290, y=0.0, θ=0.0). The robot then pans its head from side-to-side.
In this example, the robot saw 46 unique observations (either the blue goal or
identifiable blue goal posts) and 278 ambiguous observations (unidentifiable blue
goal posts, intersections and lines). This gives an indication of the amount of
information being ignored when not using ambiguous objects.

3.1 Comparison with a Single Model EKF

Firstly, lets present the accuracy results when comparing a MM-EKF to a Single
Model EKF (S-EKF). As expected the MM-EKF easily out performs the S-EKF

Multiple Model Kalman Filters 9

(see Figure 1). Note: the error at the start is due to the robot not intially knowing
its location, once settled both versions converge to a stable location. In this case,
the MM-EKF converged to a location 11.61cm from the true location with an
average orientation error of −1.6◦. While the S-EKF converged to a location
29.12cm from the real location and with an average orientation error of −9.30◦.

0 50 100 150 200
Frames

400
350
300
250
200
150
100

50
0

X
 P

o
s

(c
m

) Truth
KF (Multiple Models)
KF (Single Model)

0 50 100 150 200
Frames

50
0

50
100
150
200
250
300
350

Y
 P

o
s

(c
m

)

0 50 100 150 200
Frames

15

10

5

0

5

10

O
ri

e
n
ta

ti
o
n
 (

d
e
g
re

e
s)

(a)

0 50 100 150 200
Frames

0

50

100

150

200

250

300

350

D
is

ta
n
ce

 (
cm

)

KF (Multiple Models)
KF (Single Model)

(b)

Fig. 1: Accuracy comparison between Multiple Model EKF and Single Model EKF. (a)
Presents the location from the filters in each of x, y and orientation (θ). (b) Total
distance error from actual location.

3.2 Splitting and Merging

We will present two examples of splitting and merging. Firstly, an example of
a merge split/merge cycle where three roughly equal models can converge to a
more likely model after observering only ambiguous information. This example
describes the update taking place at Frame 33 from Figure 1. Originally the
MM-EKF is maintaining three models (as shown in Figure 2 (a)) with α values
of 0.411,0.306 and 0.283 respectively. The opacity of the robot represents the α
value of that model, with a more solid robot representing a higher α.

The first observation considered is the intersection that is 93cm away at an
angle of 60◦, in the ideal case this observation should be matched with the top
left corner of the penalty box. Unfortunately the three models have just enough
uncertainty that they keep the 3 corners to the left of the robot, that is the top
and bottom corners of the penalty box and the corner on the left hand side of
the field. This spilt can be seen in Figure 3 (a), with the corresponding merge (d)
reducing the total down to two models. Next the MM-EKF considers the second
(false) intersection. Again the same three corners are considered valid options
and the proceeding split/merge trees are shown in (b) and (e) respectively (Note:
Model 6 is still alive at the end of the merge but was not graphed due to nothing
combining with it).

10 Michael J. Quinlan and Richard H. Middleton

(a) Before Observations (b) After Observations

Fig. 2: Example of ambiguous observations converging to the correct location. (a) 3
almost equal probability models (α=0.411,0.306,0.283). (b) After the observation of 3
lines and one intersection we are now left with a high certainty model (α=0.824) and
two lower likelihood models (α=0.099,0.077).

The next observation considered is the line to the far left. This should be the
left sideline but its has been reported with an incorrect vision distance. Because
of this error all the alternatives we rejected as outliers, hence no splits or merges
we undertaken. The next considered observation is the left edge of the penalty
box, in this case three of the four models (1,4 & 6) outliered on all but the correct
line, while model 0 was sufficiently uncertain that it also considered the sideline
as an alternative (shown in (c)). For space reasons we have forsaken showing
the splits on the front edge of the penalty box, but rather have shown the final
merge tree of the combined splits for the last two observed lines (f).

Secondly, we show the worst case scenario, that is when the robot has very
little idea where it is (i.e. a high variance in location) and it observes an am-
biguous object (Figure 4). In this case the MM-EKF is maintaining 3 possible
models and then the robot observes an unknown intersection. The models fail to
outlier on most of the possible alternatives and the merging step runs through
a complicated procedure as shown in Figure 4 (b). The end results show very
little improvement in accuracy as no alternative is favored. Luckily this scenario
only occurs when the robot is kidnapped (or at startup) and doesn’t see many
unique objects before seeing an ambiguous object.

3.3 Comparison with a Particle Filter

Here we briefly compare the the MM-EKF to a Particle Filter (PF). The PF
used in this comparison has been run at both the 2007 and 2008 RoboCup
competitions and has been tuned for game performance. While the both filters
provide similar accuracy, the MM-EKF can do so with a high certainty. This
is due to the PF using a small number of particles (100) to simultaneous track
position and handle noise/outliers/kidnapping. While the MM-EKF can perform
optimal updates based on the observations for each model, while relying on more

Multiple Model Kalman Filters 11

(a) Split Intersection 1 (b) Split Intersection 2 (c) Split Line 2

(d) Merge Intersection 1 (e) Merge Intersection 2 (f) Merge Lines 2 & 3

Fig. 3: (a)-(f) present the sequence of splits and merges that take place due to the
observations.

sophisticated approaches to outliers and kidnapping. It should also be noted that
even when running so few particles the MM-EKF is substantially faster in terms
of execution time, averaging less then 35% of time required to process a vision
frame.

4 Conclusions

In this paper, we have discussed the background and implementation of mul-
tiple model Kalman filter based localization, with particular emphasis on the
RoboCup Soccer Standard Platform League. The MM-EKF is able to directly
handle the ambiguous information, and therefore resultant multi-modal distri-
butions common in the SPL. It shows performance that is substantially better
than standard EKF implementations, and at least in a preliminary test, out-
performs a particle filter applied to the same problem. The main complexity
with the MM-EKF is the merge decisions required to keep the number of active
models limited to a fairly low number. We have given some simple algorithms
designed to achieve this with low average, and moderate peak CPU demands.
Further work on a more detailed comparison with a wider variety of particle
filters is required to give a more accurate picture of the relative merits of the
different approaches.

References

1. D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum
approximations”, IEEE Transactions on Automatic Control, V17, N4, pp439-448,
1972.

12 Michael J. Quinlan and Richard H. Middleton

(a) Split when models are uncertain

(b) Merge after uncertain split

Fig. 4: Example of the worst case splitting/merging that can occur when seeing an
ambiguous object. In this case the robot was unsure of its own location and observed an
intersection. Unable to outlier many of the alternatives forced it perform a complicated
merge.

(a) (b)

Fig. 5: Comparison of the MM-EKF (a) and a Particle Filter (b). The shaded area
represents the uncertainty (two standard deviations).

2. D. Goehring, H. Mellmann and H.-D. Burkhard “Constraint Based Object State
Modeling.” In: European Robotics Symposium, Lecture Notes in Artificial Intel-
ligence. Springer 2008.

3. J.-S. Gutmann, T. Weigel and B. Nebel, “Fast Accurate and Robust Self Localiza-
tion in the RoboCup Environment”, Proc 1999 RoboCup Symposium, Stockholm.

4. S. Julier, J. Uhlmann, and H.F. Durrant-Whyte, “A new method for the non-
linear transformation of means and covariances in filters and estimators”, IEEE
Transactions on Automatic Control, V45, N3, pp477-482, 2000.

5. S. Lenser and M. Velosa, “Sensor resetting localization for poorly modeled mobile
robots”, Proc. of ICRA-2000, San Francisco, April 2000.

6. R.H. Middleton, M. Freeston and L. McNeill, ”An Application of the Extended
Kalman Filter to Robot Soccer Localisation and World Modelling”, Proc. IFAC
Symposium on Mechatronic Systems, Sydney, September, 2004.

7. W. Nistico and M. Hebbel, “Temporal Smoothing Particle Filter for Vision Based
Autonomous Mobile Robot Localization”, Proc. 5th International Conference on
Informatics in Control, Automation and Robotics, Funchal, May, 2008.

8. J.L. Williams, “Gaussian Mixture Reduction For Tracking Multiple Maneuvering
Targets In Clutter”, PhD Thesis, AFIT/GE/ENG/03-19, Wright-Patterson Air
Force Base, Ohio, 2003.

