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Tracking multiple targets with uncertain target dynamics

is a difficult problem, especially with nonlinear state and/or

measurement equations. With multiple targets, representing

the full posterior distribution over target states is not practical.

The problem becomes even more complicated when the number

of targets varies, in which case the dimensionality of the state

space itself becomes a discrete random variable. The probability

hypothesis density (PHD) filter, which propagates only the

first-order statistical moment (the PHD) of the full target

posterior, has been shown to be a computationally efficient

solution to multitarget tracking problems with a varying number

of targets. The integral of PHD in any region of the state space

gives the expected number of targets in that region.

With maneuvering targets, detecting and tracking the changes

in the target motion model also become important. The target

dynamic model uncertainty can be resolved by assuming multiple

models for possible motion modes and then combining the

mode-dependent estimates in a manner similar to the one used

in the interacting multiple model (IMM) estimator. This paper

propose a multiple-model implementation of the PHD filter,

which approximates the PHD by a set of weighted random

samples propagated over time using sequential Monte Carlo

(SMC) methods. The resulting filter can handle nonlinear,

non-Gaussian dynamics with uncertain model parameters in

multisensor-multitarget tracking scenarios. Simulation results

are presented to show the effectiveness of the proposed filter over

single-model PHD filters.
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I. INTRODUCTION

Tracking a maneuvering target using multiple
models has been shown to be highly effective in many
applications. In single-model filters, if the model
used by the filter does not match the actual system
dynamics, the filter will tend to diverge since the
actual errors fall outside the range predicted by the
filter using its error covariance [7]. Maneuvering
targets might switch between different modes of
operation, and tracking using a single-model filter
might fail since the filter may be accurate for only
one mode of operation. In multiple-model approaches,
several filters, each matched to a different target
motion mode, operate in parallel, and then the
overall state estimate is given by a weighted sum
of the estimates from each filter. In many target
tracking problems with linear, Gaussian systems, the
interacting multiple model (IMM) estimator [7—9],
in which a bank of different hypothetical target
motion models is used, has been proven to have
better performance than the (single-model) Kalman
filter. For example, in the target tracking benchmark
problem [6], in which performances of different
algorithms for tracking highly maneuvering targets
were compared, the IMM estimator outperformed the
Kalman and ®—¯ filters and yielded one of the best
solutions. Extensions of multiple models to particle
filters [12, 30] have also resulted in better results for
nonlinear, non-Gaussian systems than single-model
particle filters.
Tracking multiple maneuvering targets is much

more difficult than tracking a single maneuvering
target since there is a challenge in correctly
associating the measurements with the targets. In the
literature, extensions of the IMM estimator to work
with standard tracking algorithms have resulted in the
IMMJPDA (IMM estimator with the joint probabilistic
data association algorithm) [5, 10, 14], IMM/MHT
(IMM estimator with the multiple hypothesis tracking
algorithm) [16, 23] and the joint IMMPDA particle
filter [11]. A drawback of these algorithms is that all
of them involve the model-data association problem
and the problem is further complicated in a cluttered
environment.
The fully Bayesian perspective of multitarget

problems, using techniques like grid approaches,
are very computationally challenging and not of
practical interest when the number of targets is large.
One alternative, computationally efficient solution
to multiple target tracking problems that avoids
model-data association difficulties is the probability
hypothesis density (PHD) filter [27]. The PHD is
the first-order statistical moment of the full joint
multitarget posterior distribution. The recursive PHD
filter completely characterizes the statistics of the
dynamic Poisson point process under the assumption
that the predicted multitarget density is Poisson
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distributed. Discussion about dynamic Poisson point
processes in parametric estimation context can be
found in [15, 21, 33]. The mathematical derivations
of the PHD filter equations based on probability
generating functionals and functional derivatives
are given in [28]. The PHD is different from the
ordinary probability density function (pdf) and it
does not necessarily integrate to unity over the whole
state space. In contrast, the integral of PHD over a
region gives the expected number of targets in
that region.
The PHD filter has been shown to be a

computationally tractable method for unified group
target detection, tracking and classification [24] and
for cluster tracking [26]. Further, the PHD filter
resembles the general single-target single-sensor
Bayesian filtering, hence it can be implemented
using any nonlinear filtering method that can handle
multi-modal densities. For example, [17] describes a
spectral compression-based PHD filter. A sequential
Monte Carlo (SMC) implementation of the PHD
filter [3] has been shown to be efficient in a cluttered
environment, and a similar implementation [32]
handled missed detections well. Particle system
implementations of the PHD filter can also be found
in [29, 35, 36].
This paper proposes a multiple-model PHD

(MMPHD) filter to address the problem of tracking
multiple maneuvering targets using the SMC
approach. SMC approaches have the advantages
of computational tractability [31] and provable
convergence properties [4, 20], and are applicable
under the most general circumstances since no
assumptions need to be made on the form of
the underlying probability density. The SMC
approximation of the MMPHD filter is applicable to
track multiple maneuvering targets with nonlinear,
non-Gaussian dynamics. The implementation of
the proposed filter is detailed, and an application is
considered. The results show the effectiveness of the
proposed filter over single-model PHD filters.
This paper is organized as follows. Section II

summarizes the PHD filter. Section III describes the
problem of tracking multiple maneuvering targets,
and includes an illustration of the MMPHD filter. In
Section IV, a target tracking example is presented
with simulation results to compare the performance
of the MMPHD filter with that of single-model
PHD filters. Finally, conclusions are given in
Section V.

II. PHD FILTER

In tracking multiple targets, if the number of
targets is unknown and varying with time, it is not
possible to compare states with different dimensions
using ordinary Bayesian statistics of fixed dimensional

spaces. However, the problem can be addressed
by using finite set statistics (FISST) [18, 25] to
incorporate comparisons of state spaces of different
dimensions. FISST facilitates the construction of
multitarget densities from multiple-target transition
functions by computing set derivatives of belief-mass
functions [25], which makes it possible to combine
states of different dimensions. The main practical
difficulty with this approach is that the dimension of
the full state space becomes large when many targets
are present, which increases the computational load
exponentially in the number of targets. Since the PHD
is defined over the state space of one target in contrast
to the full posterior distribution, which is defined over
the state space of all the targets, the computational
cost of propagating the PHD over time is much
lower than propagating the full posterior density. A
comparison of multitarget filtering using the complete
FISST particle filter and the PHD particle filter in
terms of computation and estimation accuracy is given
in [32].
In general, a PHD-based multitarget tracker will

experience more difficulty in resolving closely-spaced
targets than the tracker based on the full target
posterior. However, if the pdfs of individual targets
is highly concentrated around their means compared
with the target separation, so that the individual target
pdfs do not overlap significantly, it will become
possible to resolve targets using the PHD filter as
well. A theoretical explanation about the capability
of the PHD filter to resolve closely-spaced targets in
Gaussian context is given in [27].
By definition, the PHD Dkjk(xk j Z1:k), with

single-target state vector xk, and given all the
measurements up to time step k, is the density whose
integral on any region S of the state space is the
expected number of targets Nkjk contained in S. That
is,

Nkjk =

Z

S

Dkjk(xk j Z1:k)dxk: (1)

Since this property uniquely characterizes the PHD
and the first-order statistical moment of the full
target posterior distribution possesses this property,
the first-order statistical moment of the full target
posterior is indeed the PHD. The first moment of
the full target posterior, or the PHD, given all the
measurement Z1:k up to time step k, is given by the
set integral [27]

Dkjk(xk j Z1:k) =

Z
fkjk(fxkg[Y j Z1:k)±Y: (2)

The reader is refered to [27] for detailed mathematical
explanations about the PHD filter. The approximate
expected target states are given by the local maxima
of the PHD. The following section gives the
prediction and update steps of one cycle of the PHD
filter.
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A. Prediction

In a general scenario of interest, there are target
disappearances, target spawning, and entry of new
targets. We denote the probability that a target with
state xk¡1 at time step (k¡1) will survive at time step
k by ekjk¡1(xk¡1), the PHD of spawned targets at time
step k from a target with state xk¡1 by bkjk¡1(xk j xk¡1),
and the PHD of newborn spontaneous targets at time
step k by °k(xk). Then, the predicted PHD is given by

Dkjk¡1(xk j Z1:k¡1) = °k(xk)

+

Z
[ekjk¡1(xk¡1)fkjk¡1(xk j xk¡1)+ bkjk¡1(xk j xk¡1)]

£Dk¡1jk¡1(xk¡1 j Z1:k¡1)dxk¡1 (3)

where fkjk¡1(xk j xk¡1) denotes the single-target
Markov transition density. The prediction
equation (3) is lossless since there are no
approximations.

B. Update

The predicted PHD can be corrected with the
availability of measurements Zk at time step k to get
the updated PHD. We assume that the number of false
alarms is Poisson distributed with the average rate
of ¸k and that the probability density of the spatial
distribution of false alarms is ck(zk). Let the detection
probability of a target with state xk at time step k be
pD(xk). Then, the updated PHD at time step k is given
by

Dkjk(xk j Z1:k)
»=

"X

zk2Zk

pD(xk)fkjk(zk j xk)

¸kck(zk)+Ãk(zk j Z1:k¡1)
+ (1¡pD(xk))

#

£Dkjk¡1(xk j Z1:k¡1) (4)

where the likelihood function Ã(¢) is given by

Ãk(zk j Z1:k¡1) =

Z
pD(xk)fkjk(zk j xk)Dkjk¡1(xk j Z1:k¡1)dxk

(5)

and fkjk(zk j xk) denotes the single-sensor/single-target
likelihood. The update equation (4) is not lossless
since approximations are made on predicted
multitarget posterior to obtain the closed-form
solution (4). The reader is referred to [27] for further
explanations.

III. MULTIPLE-MODEL PHD FILTER

This section first describes the mathematical
formulation of the problem of tracking multiple
maneuvering targets and the solution to it using
the MMPHD algorithm. This is followed by the

implementation details of the algorithm using an SMC
approach.

A. Problem Formulation

The general parameterized target dynamics of the
jth target are given by

x
j
k = ar,k(x

j
k¡1,wr,k¡1,r

j
k ), j = 1, : : : ,NXk (6)

where x
j
k is the target state vector at time step k, N

X
k is

the number of targets at time step k, ar,k, in general, is
a nonlinear function, wr,k¡1 is the mode-dependent

process noise vector of known statistics, and rjk 2
f1, : : : ,Nrg is the model index parameter governed
by an underlying Markov process with the model
transition probability

fkjk¡1(rk = q j rk¡1 = p) = hpq: (7)

We denote the PHD of the mode-dependent
full target state distribution at time step k by
Dkjk(xk,rk j Z1:k). Once again we consider target
survival, target spawning, and appearance of
completely new targets given by ekjk¡1(¢), bkjk¡1(¢),
and °k(¢), respectively.
The measurements originate from either targets or

clutter. We denote the total number of measurements
at time step k by NZk . The target-originated
measurement due to the jth target on ith sensor is
given by

z
i,j
k = gr,k(x

j
k,vr,k,r

j
k ) (8)

where gr,k, in general, is a nonlinear function and vr,k
is a mode-dependent measurement noise vector of
known statistics. Some targets may not be detected at
time step k. We denote the probability that the target
with state xk is detected at time step k by pD(xk).

B. Multiple-Model Approach to Target Tracking

The multiple-model approach to tracking
maneuvering targets by detecting maneuvers and
identifying the appropriate model has been shown to
be highly effective. In this approach, a finite number
of filters operate in parallel, and the target motion is
assumed to follow one of the models in the mode set
of the tracker. Considering the compromise between
complexity and performance, the IMM approach has
been shown to be the most effective of the known
multiple-model approaches, including the generalized
pseudo-Bayesian (GPB) [1, 13] algorithms. A GPB
algorithm of order n (GPBn) requires N

n
r filters in

its bank, where Nr is the number of models. The
IMM estimator performs nearly as well as GPB2, but
requires only Nr filters operating in parallel. Thus,
it has significantly less computational complexity,
which is almost the same as that of GPB1. Further, the
IMM estimator does not require maneuver detection
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decisions as in the case of variable state dimension
(VSD) filter [7] algorithms, and undergoes a soft
switching between models based on the updated mode
probabilities.
The multiple-model approach used in the proposed

MMPHD algorithm is structurally similar to that of
the IMM estimator in the mixing and combination
stages. The MMPHD filter also requires, implicitly,
only Nr PHD filters to operate in parallel when there
are Nr models describing target dynamics. Further,
the MMPHD filter does not require a maneuver
detection decision and undergoes a soft switching
between the models. The IMM estimator differs
from the multiple-model approach presented here
in that the former uses only first- and second-order
statistics of the target densities in the the mixing
and combination stages. The techniques used in the
IMM estimator cannot be applied to combine the
mode-dependent PHD filter outputs since the densities
are not necessarily Gaussian. Further, the densities
might be multi-modal when they represent multiple
targets; thus, it is not reasonable to approximate them
by only first- and second-order statistics. Thus, the
multiple-model approach presented here uses the
branched true densities, i.e., the complete densities
conditioned on each model, in the mixing and update
stages. This approach can handle multi-modal target
densities at the expense of increased computational
load compared with the IMM estimator. One cycle of
the recursive MMPHD algorithm can be described in
three stages as follows.
1) The Mixing Stage: In this stage, each

mode-matched filter is fed with a different density
that is a combination of the previous mode-dependent

densities. The initial density D̃kjk¡1(xk¡1,rk = q j Z1:k¡1)
fed to the PHD filter, which is matched to the target
model q, is calculated on the basis of Markovian
model transition probability matrix [hpq] and
mode-dependent prior density Dk¡1jk¡1(xk¡1,rk¡1 =
p j Z1:k¡1), i.e.,

D̃kjk¡1(xk¡1,rk = q j Z1:k¡1)

=

NrX

p=1

Dk¡1jk¡1(xk¡1,rk¡1 = p j Z1:k¡1)hpq,

q= 1, : : : ,Nr: (9)

Target spawning, birth, and disappearance are not
considered at the mixing stage and they are considered

in the prediction stage. The densities D̃kjk¡1(¢) and
Dk¡1jk¡1(¢) in (9) are similar to probability densities
except that they do not integrate to unity. The mixing
described in (9) is then similar to total probability
theorem.
2) The Prediction Stage: Once the initial density

for the PHD filter that is matched to target model q is
calculated, the mode-dependent predicted density is

calculated as

Dkjk¡1(xk,rk = q j Z1:k¡1) = °k(xk ,rk = q)

+

Z
[ekjk¡1(xk¡1)fkjk¡1(xk j xk¡1,rk = q)

+ bkjk¡1(xk j xk¡1,rk = q)]

£ D̃kjk¡1(xk¡1,rk = q j Z1:k¡1)dxk¡1: (10)

The prediction of the mode-dependent PHD cannot be
just applied to that of the single-model PHD, which
is matched to the target model, because the PHD of
spontaneous target birth °k(¢) and target spawning
bkjk¡1(¢) are also mode dependent. The integral of
the mode-dependent PHD Dkjk¡1(xk,rk = q j Z1:k¡1)
over a region gives the expected (predicted) number
of targets in that region assuming all the targets are
travelling with the target dynamics described by
model q.
3) The Update Stage: With the availability of

measurements at time step k, the mode-dependent
updated density is calculated as (for q= 1, : : : ,Nr)

Dkjk(xk,rk = q j Z1:k)

»=

2
4X

zk2Zk

pD(xk)fkjk(zk j xk,rk = q)

¸kck(zk)+Ãk(zk j Zk¡1)
+ (1¡pD(xk))

3
5

£Dkjk¡1(xk,rk = q j Z1:k¡1) (11)

where the likelihood function Ã(¢) is given by

Ãk(zk j Z1:k¡1)

=

Z
pD(xk)fkjk(zk j xk,rk = q)Dkjk¡1(xk,rk = q j Z1:k¡1)dxk :

(12)

Although there is no explicit mode probability update
in the MMPHD filter, the update stage implicitly
updates the mode probabilities as well. Therefore,
the updated mode probability for a particular model
can be calculated by integrating the mode-dependent
updated PHD divided by the total expected number
of targets. The total number of targets can be found
by summing up all the integrals of the updated
mode-dependent PHDs. The updated mode probability
for a particular target, assuming that the target
densities do not overlap, can be found by integrating
the mode-dependent PHD over the region in which
that target is represented. However, it is not necessary
to calculate the numerical value of the updated mode
probability in the recursive MMPHD filter since the
mode-dependent density as a whole is used in the
mixing stage to feed the filter.
Using multiple-model algorithms for benign

nonmaneuvering targets might degrade the
performance of the tracker and increases the
computational load. However, with higher target
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maneuverability, a multiple-model approach is needed.
The decision about whether a multiple model is
preferred or not is done based on the maneuvering
index [7], which quantifies the maneuverability
of the target in terms of the process noise, sensor
measurement noise, and sensor revisit interval. A
study that compares the IMM estimator with the
Kalman filter based on the maneuvering index is given
in [22].

C. Particle Implementation

This section describes the SMC approach to the
MMPHD filter. This approach provides a mechanism
to represent the posterior MMPHD by a set of random
samples or particles, which consists of state and
model information with associated weights. The key
idea in this implementation is to include the model
index parameters in the sample set with the associated
weights to represent the mode-dependent posterior
density. Although it does not appear explicitly, there
are several PHD filters, each matched to different
target dynamics, running in parallel in the MMPHD
filter. The model index parameter in a sample directs
the MMPHD filter to choose the PHD filter that
matches the associated target model. Further, the
number of samples used in each PHD filter is not
necessarily the same for different target models.
Since the mode probabilities are updated through the
update step of the filter, the PHD filter that matches
the target motion will contain the higher number
of samples. This makes the filter computationally
efficient compared with a filter that uses an equal
number of samples to represent the PHD matched to
each model.
The particle filter implementation of the proposed

algorithm can be considered as a special case of
the algorithm given in [3] with some modifications.
The target state is augmented with the model index
parameter and the prediction and update operators of
the algorithm given in [3] are modified in order to
include target motion model uncertainty.
The SMC implementation considered here is

structurally similar to the sampling importance
resampling (SIR) type of particle filter [2]. Let the
posterior MMPHD Dk¡1jk¡1(xk¡1,rk¡1 j Z1:k¡1) be

represented by a set of particles fw(s)k¡1,x
(s)
k¡1,r

(s)
k¡1g

Lk¡1
s=1 .

That is,

Dk¡1jk¡1(xk¡1,rk¡1 j Z1:k¡1)

=

Lk¡1X

s=1

w(s)k¡1±(xk¡1¡ x
(s)
k¡1,rk¡1¡ r

(s)
k¡1) (13)

where ±(¢) is the Dirac Delta function.
In contrast to particle filters, the total weightPLk¡1
s=1 w

(s)
k¡1 is not equal to one; instead, it gives the

expected number of targets nXk¡1 at time step (k¡ 1),

which follows from the property that the integral
of the PHD over the state space gives the expected
number of targets. Further, the posterior model
probabilities corresponding to a particular target are
approximately equal to the proportion of the total

sample weights in the index set fr(s)k¡1g
Lk¡1
s=1 for each

model corresponding to that target.
1) Prediction: The MMPHD filter prediction step

involves predicting the models in addition to state
prediction. The model prediction for existing targets is
performed based on the model transition probabilities

fkjk¡1(rk j rk¡1). Model samples fr
(s)
kjk¡1g

Lk¡1
s=1 from the

model-predicted MMPHD D̃kjk¡1(xk¡1,rk j Z1:k¡1)
are generated by importance sampling from a
proposal density ¼k(¢ j rk¡1). We generate independent
and identically distributed (IID) model samples

fr(s)kjk¡1g
Lk¡1+Jk
s=Lk¡1+1

corresponding to new spontaneously

born targets by sampling from another proposal
density ¯k(¢). Then,

r(s)kjk¡1 »

½
¼k(¢ j rk¡1) s= 1, : : : ,Lk¡1

¯k(¢) s= Lk¡1+1, : : : ,Lk¡1+ Jk

(14)

where ¼k(¢ j rk¡1) and ¯k(¢) are probability mass
functions. Then, a discrete weighted approximation to

the model predicted MMPHD D̃kjk¡1(xk¡1,rk j Z1:k¡1) is
given by

D̃kjk¡1(xk¡1,rk j Z1:k¡1) =

Lk¡1+JkX

s=1

$(s)
kjk¡1±(xk¡1¡ x

(s)
k¡1,rk ¡ r

(s)
kjk¡1)

(15)
where

$(s)
kjk¡1 =

8
>>>>>>>>>><
>>>>>>>>>>:

fkjk¡1(r
(s)
kjk¡1 j r

(s)
k¡1)

¼k(r
(s)
kjk¡1 j r

(s)
k¡1)

w(s)k¡1

s= 1, : : : ,Lk¡1

μk(r
(s)
kjk¡1)

¯k(r
(s)
kjk¡1)

1

Jk

s= Lk¡1+1, : : : ,Lk¡1+ Jk

:

(16)

In (16), the probability mass function μk(¢) denotes
the model distribution of spontaneous target births at
time step k. The number of new particles Jk can be
a function of time step k to accommodate a varying
number of targets.
We now apply importance sampling to generate

state samples that approximate the predicted MMPHD

Dkjk¡1(xk,rk j Z1:k¡1). We generate fx
(s)
kjk¡1g

Lk¡1
s=1 state

samples from the proposal density qk(¢ j xk¡1,rkjk¡1,Zk)

and IID state samples fx(s)kjk¡1g
Lk¡1+Jk
s=Lk¡1+1

corresponding

to new spontaneously born targets from another
proposal density pk(¢ j rkjk¡1,Zk¡1). That is,
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x(s)kjk¡1 »

½
qk(¢ j xk¡1,rkjk¡1,Zk) s= 1, : : : ,Lk¡1

pk(¢ j rkjk¡1,Zk) s= Lk¡1+1, : : : ,Lk¡1+ Jk
: (17)

Then, the weighted approximation of the predicted
MMPHD is given by

Dkjk¡1(xk,rk j Z1:k¡1) =

Lk¡1+JkX

s=1

w(s)kjk¡1±(xk ¡ x
(s)
kjk¡1,rk ¡ r

(s)
kjk¡1) (18)

where

w(s)
kjk¡1 =

8
>>><
>>>:

ekjk¡1(x
(s)
kjk¡1)fkjk¡1(x

(s)
kjk¡1 j x

(s)
k¡1jk¡1,r

(s)
kjk¡1) + bkjk¡1(x

(s)
kjk¡1 j x

(s)
k¡1jk¡1,r

(s)
kjk¡1)

qk(x
(s)
kjk¡1 j x

(s)
kjk¡1,r

(s)
kjk¡1,Zk)

$(s)
kjk¡1 s= 1, : : : ,Lk¡1

°k(x
(s)
kjk¡1 j r

(s)
kjk¡1)

pk(x
(s)
kjk¡1 j r

(s)
kjk¡1,Zk)

$(s)
kjk¡1 s= Lk¡1+1, : : : ,Lk¡1+ Jk

:

(19)

The functions that characterize the Markov target
transition density fkjk¡1(¢), target spawning bkjk¡1(¢)
and entry of new targets °k(¢) in (19) are conditioned
on the particular motion model. Thus, although it
is not explicitly explained by the equations, there
are Nr PHD filters running in parallel in this
implementation.
2) Update: With the available set of

measurements Zk at time step k, the updated particle
weights can be calculated by

w¤(s)k =

2
4(1¡pD(x(s)kjk¡1)) +

NZ
kX

i=1

pD(x
(s)
kjk¡1)fkjk(z

i
k j x

(s)
kjk¡1,r

(s)
kjk¡1)

¸kck(z
i
k) +ªk(z

i
k)

3
5w(s)

kjk¡1

(20)where

ªk(z
i
k) =

Lk¡1+JkX

s=1

pD(x
(s)
kjk¡1)fkjk(z

i
k j x

(s)
kjk¡1,r

(s)
k )w

(s)
kjk¡1:

(21)

The single-target/single-sensor measurement
likelihood function fkjk(¢) in (20) and (21) is written
as dependent on the model, considering a general case
in which the measurement model can also be mode
dependent.
3) Resample: To perform resampling, since the

weights are not normalized to unity in PHD filters, the
expected number of targets is calculated by summing
up the total weights, i.e.,

n̂Xk =

Lk¡1+JkX

s=1

w¤(s)k : (22)

Then the updated particle set fw¤(s)k =nXk ,x
(s)
kjk¡1,

r(s)kjk¡1g
Lk¡1+Jk
s=1 is resampled to get fw(s)k =n

X
k ,x

(s)
k ,r

(s)
k g

Lk
s=1

such that the total weight after resampling remains

nXk . Now, the discrete approximation of the updated
posterior MMPHD at time step k is given by

Dkjk(xk,rk j Z1:k) =
LkX

s=1

w(s)k ±(xk ¡ x
(s)
k ,rk ¡ r

(s)
k ):

(23)

The mode-dependent posterior PHDs can be easily
identified by grouping the particles based on model
index parameters.

IV. SIMULATIONS

A. Scenario

This section presents a two-dimensional
tracking example to compare the MMPHD filter’s
performance with that of the single-model PHD filters,
namely, a constant-velocity model PHD filter and a
coordinated-turn model PHD filter. The test scenario
is constructed as follows.

1) The observations are taken from four
fixed bearing-only sensors located at (0,0) m,
(0,1£ 104) m, (1£ 104,0) m, and (1£ 104,1£ 104) m.
The measurements are available at discrete-time
sampling interval T = 60 s. The target-generated
measurements corresponding to target j on sensor i
are given by

zi,jk = tan
¡1

Ã
yjk ¡ y

i
S

xjk ¡ x
i
S

!
+ vi,jk (24)

where vi,jk is an IID sequence of zero-mean Gaussian

variables with standard deviation 0.01 rad. (xjk,y
j
k) and

(xiS,y
i
S) denote the locations of target j and sensor i

at time step k, respectively. The average false alarm
rate ¸k = 4£ 10

¡3 rad¡1, the volume of observation of
each sensor = 2¼ rad, the false alarms are distributed
uniformly within the sensor field of view, and the
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Fig. 1. Target trajectory (I–initial, F–final, Si–sensor).

probability of target detection pD(xk) = 1, regardless
of the target state xk.
2) Two maneuvering targets, namely, target 1 and

target 2, are travelling from initial target positions
(¡3£ 103,5£103) m and (1:4£ 104,8£ 103) m,
respectively. This simulation does not include
any spawning of new targets from existing ones.
Target 1 moves eastward for 20 min at a nearly
constant velocity with an initial velocity of 5 ms¡1,
before executing a 9±/min (which amounts to an
acceleration of about 0.1 ms¡2) coordinated turn
[7] in the anticlockwise direction for 10 min. Then
it moves northward for another 20 min, followed
by a clockwise 9±/min coordinated turn for 10 min.
Target 2 moves southward for 10 min at a nearly
constant velocity with an initial velocity of 5 ms¡1,
before executing a coordinated turn of 9±/min in
the clockwise direction for 10 min. Then it moves
westward at nearly a constant velocity for 30 min
followed by an anticlockwise coordinated turn of
9±/min for 10 min. The target trajectories are shown
in Fig. 1. This scenario leads to a maneuvering index1

of more than 1.
3) The single target Markov transition equation

that characterizes the constant velocity target
dynamics (rk = 1) is given by

x
j
k = A

j
1,kx

j
k¡1+w

j
1,k (25)

where x
j
k = [x

j
k, _x

j
k,y

j
k , _y

j
k] is the state of the jth

target, which consists of target position (xjk,y
j
k) and

target velocity ( _xjk, _y
j
k) at time step k, and w

j
1,k is an

i.i.d sequence of zero-mean Gaussian vectors with
covariance §jk . The matrices A

j
1,k and §

j
1,k are given

1The measurement contribution part of the posterior Cramér-Rao

lower bound is used to obtain the measurement standard deviation

in calculating the maneuvering index.

as follows

Aj1,k =

2
6664

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

3
7775 (26)

§j1,k =

2
66666666664

T3

3

T2

2
0 0

T2

2
T 0 0

0 0
T3

3

T2

2

0 0
T2

2
T

3
77777777775

l (27)

where l = 1£ 10¡4 m2s¡3 is the level of the power
spectral density of the corresponding continuous
process noise.
4) The single-target Markov transition equation

that characterizes the coordinated turn target dynamics
(rk = 2) is given by

x
j
k = A

j
2,kx

j
k¡1+w

j
2,k (28)

where xjk = [x
j
k, _x

j
k,y

j
k , _y

j
k ,−

j
k] is the augmented state

vector of the jth target, which consists of target
position (xjk,y

j
k), target velocity ( _x

j
k, _y

j
k), and turn rate

−jk at time step k, and w
j
2,k is an i.i.d sequence of

zero-mean Gaussian vectors with covariance §j2,k. The

matrices Aj2,k and §
j
2,k are given as follows

Aj2,k =

2
66666666666664

1
sin−jk¡1T

−jk¡1
0 ¡

1¡ cos−jk¡1T

−jk¡1
0

0 cos−jk¡1T 0 ¡sin−jk¡1T 0

0
1¡ cos−jk¡1T

−jk¡1
1

sin−jk¡1T

−jk¡1
0

0 sin−jk¡1T 0 cos−jk¡1T 0

0 0 0 0 1

3
77777777777775

(29)

§j2,k =

2
66666666666664

T3l1
3

T2l1
2

0 0 0

T2l1
2

Tl1 0 0 0

0 0
T3l1
3

T2l1
2

0

0 0
T2l1
2

Tl1 0

0 0 0 0 Tl2

3
77777777777775

(30)

where the levels of the power spectral densities are
l1 = 1£ 10

¡4 m2s¡3 and l2 = 1£ 10
¡10 rad2s¡3. Since

the turn rate −jk is unknown, it is included in the state
vector and must be estimated.
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5) The Markovian model transition probability
matrix in the MMPHD filter is taken as

[hpq] =

2
664
1¡

T

¿1

T

¿1
T

¿2
1¡

T

¿2

3
775 (31)

with sojourn times [7] ¿1 = 20 min and ¿2 = 10 min.
The initial model probabilities for both models are
0.5.
6) We assume that the probability of target

survival = 0:99, the probability of target spawning = 0,
and the probability of spontaneous target birth = 0:01.
The birth model that describes the entry of new targets
is taken as follows.
The x and y position elements of the state vector

of newborn particles are normally distributed centered
around every two intersecting measurements with
a standard deviation of 200 m. This one point
initialization is done to all intersecting measurement
pairs within the surveillance region, which is a
square region defined by (¡5£ 103,¡5£ 103) m
and (1:5£ 104,1:5£ 104) m as the lower left and
upper right corners, respectively. The velocity and
turn rate elements of the state vector for the newborn
particles are distributed uniformly within the interval
[¡5,5] ms¡1 and [¡0:02,0:02] rads¡1, respectively.
7) 1000 particles are used to represent one

target and Jk = (10£ number of intersecting
measurement points within the surveillance region)
particles are used to represent new spontaneously
born targets in all the tracking algorithms. Before
simulations begin, all PHD filters are initialized
with 1000 particles normally distributed with mean
[¡3£ 103 m,5 ms¡1,5£ 103 m,0 ms¡1,0 rads¡1]
and covariance diag[4£104 m2,1 m2s¡2,4£
104 m2,1 m2s¡2,4£ 10¡4 rad2s¡2] representing
target 1, and the model index parameters of the initial
particles are taken as 1, i.e., the constant-velocity
model, in the MMPHD filter.
8) The PHD filter does not provide a mechanism

to get the target state estimates directly. One way
of getting the estimates is by identifying the local
maxima of the density. An expectation maximization
based peak extraction algorithm to obtain the target
state estimates can be found in [34]. For simplicity
and to avoid added computational load we use the
K-means clustering algorithm [19] to associate
particles to targets2 based on the position elements
of the particle state vectors. The targets are associated
to tracks using the nearest neighbor approach based
on the mean of each target cluster.

Although we have assumed Gaussian process noise
in this particular example, the MMPHD algorithm

2We assume that the targets are sufficiently far apart that a particle

represents only one target at any particular time.

presented in Section III is able to deal with any
process noise as long as the samples can be drawn
from the process noise distribution. Since the PHD
recursion given in this paper is valid only for single
sensor, the measurements are grouped from each
sensor and used to update the filter iteratively.

B. Simulation Results

Fig. 2 illustrates the model-switching property of
the MMPHD filter by plotting number of particles
in each model against time. The particles considered
here are of equal weight, so the proportion of the
particles in each model of a particular target gives
the approximate posterior model probabilities of that
target. Fig. 2 also illustrates the number of targets
estimated from the PHD filter. At the beginning of
the scenario, all PHD filters assume that there is only
one track, i.e. target 1, within the surveillance region
and the particles corresponding to target 1 in the
MMPHD filter are shown in Fig. 2(a). However, it can
be seen in Fig. 2(b) that the total number of particles
corresponding to target 2 increases with time at the
beginning until it reaches nearly 1000, which is the
number of particles assigned to represent one target.
Once the track is formed, the MMPHD filter clearly
displays the model switching property for target 2 and
assigns more particles to the model that matches with
the target motion.
Figs. 3 and 4 show the root-mean-squared

errors (RMSE) of position and velocity estimates,
respectively. All figures indicate that the overall
performance of the MMPHD filter is significantly
better than that of both single-model PHD filters.
Further, the single-model PHD filters show poor
adaptation to target maneuvers and yield larger
estimation errors. Fig. 5 compares the RMSEs of
turn rate estimates of the MMPHD filter and the
single-model PHD filter that uses the coordinated-turn
model. The single-model PHD filter that uses the
constant-velocity model is not considered since there
is no turn rate estimate in that filter. Table I gives the
average of the estimation errors; note that the values
for the MMPHD filter show significant improvements
over the single-model PHD filters.
The average computational times (based on 100

Monte Carlo runs) on dual 2.4 GHz Intel Xeon
processors for a tracking period of 60 time steps are
205 s, 201 s, and 199 s with standard deviation 2.6 s,
1.7 s, and 2.5 s for multiple model, constant-velocity
model, and coordinated-turn model PHD filter
algorithms, respectively. All filters were implemented
in MATLAB. Thus, if the same number of sample
points are used, the MMPHD filter is only marginally
more expensive compared with single-model PHD
filters since the only additional calculation required
in the MMPHD filter is to generate model index
parameters in the mixing stage.
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Fig. 2. Model switching in MMPHD filter (100 Monte Carlo runs). (a) Target 1. (b) Target 2.

Fig. 3. Target position estimation RMSE (100 Monte Carlo runs). (a) Target 1. (b) Target 2.

Fig. 4. Target velocity estimation RMSE (100 Monte Carlo runs). (a) Target 1. (b) Target 2.

V. CONCLUSIONS

This paper considered the problem of tracking
multiple maneuvering targets with nonlinear,
non-Gaussian dynamics in a cluttered environment.
The filter proposed to solve this problem is a
multiple-model extension to the PHD filter using the
SMC approach. The PHD filter is a computationally
efficient solution to multitarget tracking problems, and
the SMC implementation makes the filter applicable
in general scenarios with nonlinear, non-Gaussian

systems. This paper presented a new multiple-model
approach to enhance the PHD filter’s capability to
handle target maneuvers.
The MMPHD filter was compared with

single-model PHD filters. It resulted in significantly
better tracking performance compared with the
single-model PHD filters. The single-model
PHD filters that matched only one kind of target
dynamics showed poor adaptation to maneuvers,
resulting in large estimation errors when the target
maneuverability is high. We can conclude that a
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Fig. 5. Target turn rate estimation RMSE (100 Monte Carlo runs). (a) Target 1. (b) Target 2.

TABLE I

Average Target State Estimation RMSE

(Based on 100 Monte Carlo Runs)

Constant

Multiple Velocity Coordinated

Model Model Turn

PHD PHD PHD Units

Target 1 (position) 95.48 311.56 168.59 m

Target 2 (position) 210.89 401.88 237.09 m

Target 1 (velocity) 0.69 1.38 1.15 ms¡1

Target 2 (velocity) 1.17 1.57 1.29 ms¡1

Target 1 (turn rate) 0.00086 – 0.00121 rads¡1

Target 2 (turn rate) 0.00106 – 0.00110 rads¡1

multiple-model approach is essential to ensure
satisfactory performance in such cases.
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