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Molecular mechanisms involved in pathogenesis of malignant melanoma have been 

widely studied and novel therapeutic treatments developed in recent past years. 

Molecular targets for therapy have mostly been recognized in the RAS–RAF–MEK–ERK 

and PI3K–AKT signaling pathways; small-molecule inhibitors were drawn to speci�cally 

target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired 

resistance and various evidences suggest that inhibition of a single effector of the signal 

transduction cascades involved in melanoma pathogenesis may be ineffective in blocking 

the tumor growth. In this sense, a wider comprehension of the multiple molecular alter-

ations accounting for either response or resistance to treatments with targeted inhibitors 

may be helpful in assessing, which is the most effective combination of such therapies. 

In the present review, we summarize the known molecular mechanisms underlying either 

intrinsic and acquired drug resistance either alternative roads to melanoma pathogene-

sis, which may become targets for innovative anticancer approaches.

Keywords: molecular melanoma classi�cation, melanoma pathogenesis, signal transduction cascades, targeted-

therapy resistance, alternative therapeutic targets

Introduction

Melanoma is a heterogeneous disease, with complex pathogenetic mechanisms, as a consequence 
of speci�c genetic alterations within several functionally related molecular pathways (1). In fact, 
studies on genetic and molecular characteristics of melanoma have provided the identi�cation of 
some speci�c alterations in pathways controlling cell proliferation, di�erentiation, and survival. 
From the practical point of view, increasing evidences indicate that some di�erences in biological 
and clinical behaviors within the traditional subgroups of melanomas de�ned by conventional 
diagnostic procedures are due to the existence of di�erent “molecular subtypes” of the disease (2). 
Actually, the criteria commonly used to classify melanomas are based on: (a) relationship between 
the degree of sun exposition and the site of primary tumor [according to such criteria, melanomas 
are classi�ed into four groups: melanoma on skin with or without chronic sun-damage (CSD or 
non-CSD melanoma); melanoma on palms, soles, and nail bed (acral melanoma); and melanoma 
on mucous membrane (mucosal melanoma)] (1) or (b) evaluation of the tumor growth pattern 
[according to this criterion, four histological types of melanoma have been described: super�cial 
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spreading melanoma (SSM), lentigo maligna melanoma (LMM), 
nodular melanoma (NM), and acral lentiginous melanoma 
(ALM)] (3).

Despite the incidence of melanoma has been growing faster 
than other human cancers during last decades among Caucasian 
populations (4), most of melanoma cases is diagnosed at early 
stages of the disease. When patients instead present with an 
advanced disease (i.e., melanoma is not localized anymore and 
dissemination of tumor cells to loco-regional or distant sites 
occurs), very poor survival rates have been reported, due to the 
lack of e�ective therapies (3). �is, however, happened until 
few years ago. Very recent advances in molecular oncology 
have indeed yielded new treatment strategies that target either 
key e�ectors of the pathways found to play a major role in the 
pathogenesis of melanoma – such as those depending on activa-
tion of BRAF, NRAS, or cKIT genes – either immune regulatory 
molecules involved in suppression of the antitumor immune 
response – such as T-lymphocyte-associated antigen 4 (CTLA4), 
programed cell death 1 (PD-1), and its ligand (PD-L1) (5).

Although inhibitors of oncogenic BRAF generally exert a 
temporary therapeutic e�cacy in patients with metastatic BRAF-
mutated melanoma, recent evidences seem to indicate that subsets 
of such cases may present a long-term response to single-agent 
BRAF inhibition (6). Combination of BRAF and MEK inhibitors 
has been even proposed as a new targeted-therapy standard of 
care for BRAFV600-positive metastatic melanomas (7).

Monoclonal antibodies directed against the immune 
 checkpoints – such as CTLA-4 (ipilimumab), PD-1 (nivolumab 
and pembrolizumab), or PD-L1 (BMS936559, MPDL3280A, and 
MEDI4736) – have been demonstrated to achieve durable anti-
tumoral responses with signi�cantly prolonged overall survivals 
in patients with metastatic melanoma (8). Despite the increased 
attention is currently paid to cancer immunotherapy (especially, 
treatments targeting PD-1/PD-L1 molecules)  –  which may 
become the standard of care in treating all unresectable stage III 
and IV melanomas, regardless of the BRAF mutational status, we 
here focused on molecular mechanisms involved in development 
and progression of the disease. Knowledge of such signaling 
events may contribute to better de�ne the di�erent subsets of 
melanoma patients as well as the molecular subtypes participat-
ing in response and resistance to targeted therapeutic approaches.

Mechanisms of Melanomagenesis

CDKN2A-Dependent Pathway
The cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes 
two proteins: p16CDKN2A and p14CDKN2A (9, 10). CDKN2A is a 
recessive tumor suppressor gene and mutations in this gene 
are 7–10 times more frequent in patients with a strong family 
history of melanoma, compared to the vast majority (about 
90%) of patients with disease classified as sporadic (11). 
In physiological conditions, the system p16CDKN2A inhibits 
protein kinase cyclin-dependent kinase 4 (CDK4)/Cyclin 
D1 (CCND1), which in turn affects the cell-cycle progres-
sion depending on the RB (retinoblastoma susceptibility) 
protein (12) (Figure  1). Two major alterations reported in 
melanoma for this pathway are inactivation of p16CDKN2A and 

amplification of CCND1: the first alteration is due to genetic 
(gene mutations, chromosomal rearrangements) or epigenetic 
(methylation of promoter regions) mechanisms, while the 
second one mainly occurs in melanomas negative for muta-
tions in BRAF and NRAS genes (1, 13). In a small fraction of 
metastatic melanoma (about 15% of cases), however, CCND1 
amplification and BRAF mutations are coexisting and confer 
resistance to treatment with BRAF inhibitors (14). Similarly, 
p14CDKN2A interferes with the murine double minute 2 (MDM2) 
protein, preventing the degradation of the p53 and favoring 
its control on cell-cycle progression (15) (Figure 1). In mela-
noma, reducing levels of the p53 protein contributes to boost 
aggressiveness and refractoriness to therapy; inactivation 
of p53 can be due to mutations of p14CDKN2A or to increased 
expression of MDM2 or, alternatively, to silencing of the TP53 
gene (by epigenetic mechanisms or, to a less extent, sequence 
mutations) (12, 15).

MAPK-Dependent Pathway
�e NRAS and BRAF molecules belong to the mitogen-activated 
protein kinase (MAPK) signal transduction pathway, which 
mediate the response of cells to mitotic extracellular stimuli and 
play a central role in regulating cell growth, survival, and cell pro-
liferation. �e products of the RAS gene family are small proteins 
bound to the cytoplasmic membrane, with three tissue-speci�c 
isoforms: HRAS, KRAS, and NRAS. Among them, NRAS muta-
tions are the most detected in melanoma (2, 12, 16, 17). NRAS is 
able to activate speci�c cytoplasmic proteins downstream: RAF 
and phosphatidylinositol 3 kinase (PI3K) (16).

�e RAF kinase family consists of three proteins (ARAF, 
BRAF, and CRAF), whose activation is depending on forma-
tion of complexes by these di�erent isoforms (18, 19). All three 
proteins participate into the transduction of the signal within 
the MAPK pathway (12, 18). In melanocytes, BRAF induces 
the activation of MEK kinase, which in turn activates ERK, 
�nal e�ector of MAPK cascade (Figure 1). In melanoma, the 
BRAF gene is mutated in 40–60% of cases; the most prevalent 
mutation (about 90% of cases) is represented by the replace-
ment of glutamic acid with valine at codon 600 (BRAFV600E) 
(20). �e BRAFV600E variant, as the remaining mutations in the 
BRAF kinase domain, induces continuous stimulation of cell 
proliferation and tumor growth through activating phospho-
rylation of ERK. However, the demonstration that BRAF is 
even mutated in common nevi (21) suggests that its oncogenic 
activation is necessary, but not su�cient, for the development 
of melanoma. In melanocytes, occurrence of BRAF mutations 
enhances the expression of p16CDKN2A (with normal levels of 
p14CDKN2A), and subsequent induction of cellular senescence 
and cell-cycle arrest mechanisms. �is phenomenon appears as 
a “protective” reaction, in response to an erroneous mitogenic 
signal (22). As a con�rmation of this, p16CDKN2A expression is 
reduced or absent in approximately one-third of melanomas 
with BRAFV600E mutation (22). Similarly, oncogenic activation 
of BRAF is able to promote the malignant transformation of 
melanocytes de�cient in p53 (23). �erefore, BRAF cooper-
ates with members of both pathways controlled by CDKN2A 
(Figure 1).
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PI3K-Dependent Pathway
�e second pathway depending on RAS for cell growth regula-
tion is constituted by the signal transduction PTEN–PI3K–AKT 
cascade (16). Under physiological conditions, intracellular levels 
of PIP2 and PIP3 phosphoinositols are increased by activation 
of PIK3 and reduced by the activity of the phosphatase PTEN 
protein (24). High PIP3 levels sequentially activate downstream 
AKT (mainly, AKT3 in melanoma) and its substrate mTOR, 
modulating the synthesis of proteins involved in cell growth 
and survival as well as in apoptosis. In melanoma, PTEN gene is 
deleted in 30–40% of sporadic cases (with loss of the correspond-
ing protein in 5–20% of primary melanomas) and in 30–50% of 
the cell lines (2, 24). Increased expression of AKT3 is present in 
50% of dysplastic nevi, 70% of primary melanomas, and 70% of 
metastases (24). �e activation of AKT: (a) promotes cell prolif-
eration through the induction and stabilization of CCND1; (b) 
inhibits apoptosis by inactivation of many pro-apoptotic proteins, 
such as BAD (BCL-2 antagonist of cell death) and MDM2 (which 
causes the degradation of p53) (1, 12) (Figure 1). In summary, 
the combined e�ect of PTEN inactivation and PI3K–AKT 
stimulation results in an aberrant growth of neoplastic cells, with 
acquisition of resistance to apoptosis.

Other Proliferation-Controlling Effectors
Among gene products that operate downstream of the signal 
transduction BRAF–MEK–ERK pathway, the microphthalmia-
associated transcription factor (MITF) seems to play the most 
relevant role in melanoma (25). In addition to its involvement 
in skin pigmentation, MITF participates in controlling the 
proliferation and di�erentiation of melanocytes (26, 27). MITF 

FIGURE 1 | Major pathways involved in melanoma. Pathways associated 

with cell proliferation, survival, and differentiation are schematically presented. 

Arrows, activating signals; interrupted lines, inhibiting signals. AMPK, 

AMP-activated protein kinase; Aurk, Aurora kinase; BAD, BCL-2 antagonist of 

cell death; CDK4, cyclin-dependent kinase 4; CDKN2A, cyclin-dependent 

kinase inhibitor of kinase 2A; ERK, extracellular-related kinase; HGF, 

hepatocyte growth factor; MITF, microphthalmia-associated transcription 

factor; MEK, mitogen-activated protein kinase-extracellular-related kinase; 

PI3K, phosphatidylinositol 3 kinase; PTEN, phosphatase and tensin homolog; 

RB, retinoblastoma protein; TERT, telomerase reverse transcriptase.

activity is complex: a low or absent expression predisposes to 
apoptosis; intermediate protein levels promote proliferation and 
cell survival; its overexpression induces cell di�erentiation and, 
subsequently, exerts an anti-proliferative e�ect (25, 27) (Figure 1; 
for further details, see below). In melanoma, constitutive acti-
vation of ERK – mainly, stimulated by oncogenic activation of 
upstream MAPK components – is associated with a marked deg-
radation of MITF (28). �erefore, the intracellular levels of MITF 
are dependent on the activation status of the BRAF gene. Low 
intracellular levels of the MITF protein have been reported in 
invasive melanomas and were associated with a worse prognosis 
and clinical progression of the disease (29).

Speci�c sequence variations of cKIT, a tyrosine kinase receptor 
for stem cell factor, may cause stimulation of the MAPK pathway 
through constitutive activation of the kinase domain, resulting in 
induction of cell proliferation (30). In particular, cKIT mutations 
have been reported in acral (10% of cases), mucosal (15–20% of 
cases), and chronically sun-exposed (5% of cases) melanomas 
(1, 31). In addition, cKIT ampli�cations or increased gene copies 
were observed at higher levels in the same series (31).

�e pathogenetic scenario previously described cannot be 
considered inclusive of all molecular alterations that in recent 
years have been described in melanoma. Among these, it is 
worth mentioning the alterations of the following e�ectors: 
GNAQ/GNA11 genes, which encode signal transmission proteins 
activating the MAPK pathway, are quite exclusively mutated 
in uveal melanomas (32); WNT (mainly, the WNT2 isoform), 
inhibiting apoptosis in melanoma cells and acting as a potential 
marker of melanocytic malignant transformation (33); iNOS, 
which regulates the intracellular level of nitric oxide, a free 
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radical involved in the induction of apoptosis, whose increased 
production can stimulate the development and progression of 
melanoma (34); NF-kB, which is frequently activated in mela-
noma, contributing to the disease progression (12); MET, a mem-
brane receptor, activated by binding the hepatocyte growth factor 
(HGF) ligand, whose increased expression – o�en due to gene 
ampli�cation – is involved in enhanced cell invasiveness (35, 36). 
Moreover, tumor microenvironment (altered distribution and 
concentration of chemokines, non-activation of cell-mediated 
immunity, induction of immune-suppressive mechanisms) may 
play an important role in the formation and maintenance of 
metastases (37, 38).

Molecular Subtypes of Melanoma

Considering the distinct molecular pathways as a unique func-
tional network (Figure 1), it becomes clear why changes attribut-
able to the in�uence of di�erent genes can coexist in melanoma. 
For example, mutations in BRAF can be found associated with 
alterations in PI3K pathway, but roughly none of them coexist 
with NRAS mutations; since BRAF- and PI3K-driven cascades 
are activated downstream of NRAS, the presence of activating 
NRAS mutations makes unnecessary the occurrence of BRAF 
and PI3K activation (39). Similarly, oncogenic mutations in 
BRAF do not fully activate downstream ERK when intracellular 
mechanisms controlling senescence and/or apoptosis are active 
(12, 22). Simplifying these complex processes underlying the 
di�erent phases of disease development and progression, it is 
possible to select distinct molecular subtypes of melanoma. �e 
characterization of these subtypes becomes extremely important 
for a more correct therapeutic approach, especially a�er the 
introduction of targeted biological therapies into clinical practice.

 1. MAPK subtype: mutations in BRAF (targetable with speci�c 
BRAF-mutant inhibitors or unspeci�c inhibitors of the 
downstream activated MEK), which can coexist with other 
molecular alterations, providing a further strati�cation of 
patients:
a. activation of the PI3K–AKT–mTOR system, with 

increased levels of AKT3 expression and/or loss of 
PTEN. �is subtype may bene�t of treatment with 
inhibitors of PI3K, AKT, and mTOR (40);

b. impairment of the p16CDKN2A–CDK4–RB pathway, 
with inactivation of p16CDKN2A and/or ampli�cation of 
CDK4. It may be treated with CDK4/6 inhibitors (41);

c. ampli�cation of the MITF gene, with or without altera-
tions of the corresponding protein expression levels. 
It may bene�t of treatment with inhibitors of histone 
deacetylase (HDAC), able to interfere with the expres-
sion of MITF protein (42, 43).

 2. NRAS subtype: mutations in NRAS, playing a crucial role 
in initiation and promotion of many human cancers, with 
increased levels of phospho-ERK expression, associated 
with possible activation of PI3K-AKT pathway (44). �is 
subtype may bene�t of treatment with inhibitors of PI3K or 
MEK (45–47). Poor e�ects have instead been reported using 
the speci�c inhibitors of farnesyl transferase (48, 49).

 3. cKIT subtype: mutations in cKIT, with or without gene 
ampli�cation and/or increased levels of protein expression. 
For this subtype, the cKIT inhibitors are utilized in pres-
ence of speci�c activating mutations (in particular, variants 
K642E and L576P as well as those in exon 11), which are 
primarily responsive (50).

 4. GNAQ/GNA11 subtype: mutations in GNAQ or GNA11, 
with increased levels of expression of phospho-ERK. It may 
be treated with MEK inhibitors (47).

Molecular analyses have revealed that roughly 50% of mela-
nomas harbor BRAF mutations, whereas NRAS mutations are 
observed in 15–20% of them (44, 51). Since BRAF and NRAS 
mutations are mutually exclusive in nearly all cases (52, 53), it is 
widely recognized that about two-thirds of patients present a mela-
noma with activation of the MAPK pathway, carrying a mutated 
BRAF or NRAS gene. �e BRAF mutations are especially found in 
younger individuals and in those with melanomas that originate 
on the skin not chronically exposed to the sun (54). Nearly, all 
mutations in BRAF gene are represented by a substitution of valine 
at position 600 (V600) (20). Among them, 75% of BRAF variants 
are represented by the V600E mutation, 19% by the V600K muta-
tion, the remaining 6% by V600D or V600R mutations (55).

�e second-generation of RAF inhibitors, speci�cally targeting 
the mutated BRAF protein – such as vemurafenib, dabrafenib, and 
LGX818, potently inhibit MEK phosphorylation and cell growth 
in BRAF-mutated melanomas, being highly e�ective in inducing 
rapid tumor regression among melanoma patients (56–58). MEK 
is a molecular target in MAPK pathway, immediately downstream 
of BRAF. In experimental cellular models, treatment with inhibi-
tors of MEK is e�ective on lines mutated in either BRAF or NRAS 
(59). Allosteric inhibitors, such as selumetinib and trametinib, 
and adenosine triphosphate (ATP) non-competitive inhibitors, 
such as cobimetinib and MEK162, speci�c for MEK1 and MEK2 
kinases are being investigated in BRAF- or NRAS-mutated 
cutaneous melanoma as well as in metastatic uveal melanoma 
(60–62). �e NRAS mutations are associated with a more aggres-
sive clinical course in melanoma patients (63); tumors carrying 
such mutations may bene�t of the simultaneous inhibition of the 
MAPK and PI3K pathways (59, 64).

Resistance to Targeted Therapies in 
MAPK and NRAS Subtypes

Overall, MAPK and NRAS subtypes represent vast majority of 
melanoma cases. Tumor responses produced by the main tar-
geted inhibitors in such melanomas are largely partial and tumor 
resistance typically develops in few months as a consequence of 
the activation of alternative proliferation-inducing pathways (58, 
59). Taking in mind the complexity of the molecular mechanisms 
involved in pathogenesis of melanoma, it is mostly expected that 
inhibition of a single component in signaling pathways cannot 
yield a durable antitumor response and, conversely, that combina-
tions of drugs targeting di�erent key e�ectors controlling tumor 
growth may be the solution for a more e�ective cancer therapy.

Moreover, several evidences indicate that molecularly het-
erogeneous cell types may coexist in primary melanomas (65–68). 
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Considering the various pathways involved in melanoma progres-
sion as a complex electrical circuit, it is indeed likely that di�erent 
switches can constitutively activate di�erent molecular processes, 
which contribute to the di�erent characteristics of malignant 
cells (survival, independence on apoptotic stimuli, invasiveness, 
metastatic potential, etc.). When individual pathways are phar-
macologically targeted, two scenarios may arise: (a) melanoma 
cells may selectively activate alternative pathways that allow them 
to escape the growth block induced by targeted agents; or (b) the 
selective pressure may induce proliferation of subclones with 
molecular features di�erent from those presented by vast majority 
of cell constituting the primary tumor. Recent evidence that the 
combined use of inhibitors, which simultaneously target multiple 
pathway e�ectors, is much more e�ective than treatment with sin-
gle or sequentially administered drugs (69–71) strongly supports 
the latter hypothesis, about the induction of subclonal selection 
from the heterogeneous tumors undergoing targeted therapies. In 
Figure 2, the advantage of the initial treatment with multiple target 
inhibitors is schematized. �is is consistent with several indications 
coming from resistance studies in other malignancies (72–74).

To date, several mechanisms of resistance to targeted therapies 
(mostly, BRAF-mutant inhibitors) have been reported in mela-
noma (Figure 3).

Intrinsic Resistance

Lack of antitumor response to commonly used BRAF inhibitors, 
vemurafenib and dabrafenib, was observed in about one-��h of 
treated patients (75). Such an observation is strongly indicative 
for the existence of an intrinsic resistance to these drugs, which 
may be due to:

 - inactivation of PTEN tumor suppressor gene, with subse-
quent induction of downstream AKT activity (76);

 - increased intracellular levels of the cyclin D1 protein (due to 
gene ampli�cation and/or expression enhancement), which 
overcome the inhibitory e�ects exerted by p16CDKN2A kinase 
and promote stimulation of the RB signaling (14). On this 

regard, cyclin D1 accumulation in melanoma cells has been 
recently reported to be partially dependent on inactivation 
of the FBXO4 gene, which encodes an enzyme regulating the 
cyclin D1 proteolysis (77);

 - silencing of the NF1 gene, which activates RAS and down-
regulates the senescence processes controlling cell prolifera-
tion (78);

 - activation of protein kinase D3 (PRKD3), enhancing the 
activity of the PI3K–AKT pathway, in response to the inhibi-
tion of the oncogenic BRAF (79).

Although apparently unrelated, all these di�erent molecular 
alterations are able to confer resistance to BRAF or MEK inhibi-
tors in melanoma cells, through their tight interaction with the 
activity of the RAF–MEK–ERK signaling cascade. Activating 
mutations in BRAF strongly stimulates cell-cycle progression 
through constitutive stimulation of the downstream MEK–ERK 
e�ectors (20). Moreover, activated BRAF usually drives melano-
cytic proliferation but seems to be insu�cient to promote mela-
noma growth and progression, unless alterations in additional 
cell-cycle regulating factors – such as p53 impairment, p16CDKN2A 
loss, increased levels of active AKT – coexist (2, 12).

Acquired Resistance

Two distinct schemes may be delineated for acquired resistance 
(Figure 3). �e �rst one is based on changes progressively induced 
by BRAF inhibition within the same MAPK pathway. Reactivation 
of MAPK signaling represents the main mechanism of acquired 
resistance to BRAF inhibitors and it may be achieved through sev-
eral modi�cations: MEK-activating mutations, COT/MAP3K8 
kinase up-regulation (inducing a MEK–ERK activation, which is 
thus independent on upstream BRAF status), BRAFV600E splicing 
variants (unresponsive to BRAF inhibitors), BRAF-mutated gene 
ampli�cation (rendering insu�cient the BRAF inhibition levels) 
(56, 75). Both NRAS activation [through acquired mutations 
and/or functional inductions – such as its reactivation secondary 
to the reduced negative feedback by active ERK (80)] – and loss 
of NF1 have also been reported (81). Although NRAS and NF1 
act upstream of BRAF in the MAPK pathway, hyperactive NRAS 
can restore MAPK signaling in the context of BRAF inhibition via 
paradoxical activation of CRAF (82).

�e second scheme includes MAPK pathway-independent 
mechanisms of acquired resistance, based on rescue of the sup-
pressed ERK activity through changes in alternative pathways 
controlling cell proliferation (Figure 3). �ey include activation 
of the receptor tyrosine kinases (RTKs)  –  such as the platelet-
derived growth factor receptor β (PDGFRβ) (83) or the EPHA2, a 
member of the RTK subfamily erythropoietin-producing hepato-
cellular (EPH) receptors (84, 85); activation of the HGF/MET sys-
tem (86); ampli�cation of the CCND1 gene – with increased levels 
of the corresponding protein and subsequent activation of the 
CDK4/6-RB cascade; lack of the PTEN function (87) or enhance-
ment of the IGF-1R receptor activity (88) – with stimulation of 
the PI3K–AKT pathway; induction of the complex constituted by 
the signal transducer and activator of transcription 3 (STAT3) and 
the paired box homeotic gene 3 (PAX3) e�ectors – with increased 
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AKT activity (89, 90). In this scheme, BRAF inhibition does not 
produce a signi�cant antitumor e�ect, since tumor growth and 
survival become independent upon RAF–MEK–ERK signaling.

RAS Activation
In about half of melanomas, presence of BRAF-mutant mono-
mers determines a constitutive activation of the downstream 
ERK e�ector. A�er BRAF inhibition, ERK signaling is switched 
o�, with a reduced negative feedback on RAS. Vemurafenib and 
dabrafenib potently inhibit BRAF-mutant monomers and turn 
down the ERK activity, progressively reducing the negative 
feedback on RAS-driven signal transduction. �e result is a 
progressive restoration of functional levels of active RAS-GTP, 
able to induce the generation of RAF dimers, which are resist-
ant to RAF inhibitors. �e RAF homodimers (CRAF–CRAF) 
or heterodimers (BRAF-mutant–CRAF) can re-stimulate the 
MEK–ERK signaling cascade, with constitutive reactivation of 
ERK (82, 91). �e RAS-driven signal transduction can be also 
stimulated by activation of the �broblast growth factor recep-
tor 3 (FGFR3), again conferring resistance to vemurafenib in 
BRAFV600E melanoma cells (92). Increased intracellular levels of 
the RAF dimers – as consequence of the activated RAS-driven 
signal transduction  –  play also a role into the pathogenesis of 
squamous cell carcinomas, which represent a peculiar side e�ect 
in subsets of patients treated with BRAF inhibitors (93). RAF 
dimerization is particularly promoted by these agents in cells 
lacking BRAF mutations, leading to induction of keratinocyte 
proliferation through activation of the MAPK pathway (94–96). 
Activating mutations in NRAS (usually, a�ecting the codon 61 

of the gene) can be also induced by the treatment with BRAF 
inhibitors (97, 98).

Changes in BRAF
In a subset of melanomas, ampli�cation of the BRAF-mutant 
allele  –  which has been detected at low level in untreated 
cells – may be induced in response to BRAF or MEK inhibitors, also 
contributing to resistance to these targeted drugs (99). Moreover, 
the intracellular accumulation of a splicing variant of the BRAF-
mutant mRNA has been described in a subset of BRAF-inhibitor-
resistant melanoma cells (82). In fact, such resistant cells express 
a truncated form of BRAFV600E, p61BRAFV600E, which lacks the 
region of RAS-binding domain and results constitutively activated 
through dimerization of the truncated BRAF-mutant isoforms 
(82). �e �nal e�ect is a transactivation of the MEK–ERK signal 
cascade, with acquisition of resistance to BRAF inhibitors (82). 
Moreover, the vemurafenib-resistant BRAF-mutant melanomas 
may acquire dependency on the presence of the targeted drug 
for their proliferation, such that interruption in administering 
the BRAF inhibitor may lead to regression of non-lethal drug-
resistant tumors (100). On this basis, it has been postulated that a 
discontinuation in the treatment with these agents may delay the 
development of lethal drug-resistant cell clones (100).

ERK Activation via Alternative Kinases
Resistance to BRAF inhibitors may involve an alternative way of 
stimulation of the ERK signaling. Ampli�cation of the MET recep-
tor and increased levels of its ligand, HGF, play both a role in either 
intrinsic or acquired resistance to BRAF inhibition (86, 101). In 
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particular, activation of the HGF–MET system strongly stimulates 
the signal transduction of the downstream PI3K–AKT pathway 
(101). According to this, administration of a HGF or MET 
 inhibitor in combination with a BRAF inhibitor may prevent the 
resistance induced by using the BRAF inhibitor alone (86).

Other RTKs contribute to anti-BRAF drug resistance. �e 
IGF-1R signaling also activates the MAPK pathway, participating 
into the di�erent phases of melanocytic transformation and pro-
gression (102). Interruption of IGF-1R signaling has been shown 
to inhibit tumor growth and block metastasis formation in a wide 
variety of tumor models (88). �e activated IGF-1R-dependent 
signal transduction also targets the PI3K–AKT pathway (102). 
Coupled inhibition with IGF-1R and MEK inhibitors induce 
growth arrest in BRAF inhibitor-resistant cells (88).

In a manner independent on the MAPK pathway activation,  
up-regulation of the PDGFRβ receptor may promote the expres-
sion of the transcriptional activation factors STAT3 or PAX3, 
increasing cell survival and thus reducing the e�ectiveness of 
BRAF or MEK inhibition (83, 103). As con�rmation of this, 
inactivation of such genes may restore the block of malignant 
proliferation in vemurafenib-resistant melanoma cells (89, 90). 
Down-regulation of STAT3, by BRAF–MEK inhibitors may 
decrease the activity of anti-apoptotic protein Mcl-1 and reduce 
melanoma cell survival (104). In contrast, cells presenting up-
regulation of STAT3 – as consequence of RTK activation – may 
acquire independency on activity of the MAPK pathway for 
their proliferation and survival, with subsequent development 
of resistance to BRAF and MEK inhibitors (89, 90, 105). Finally, 
activation of RTK may be also driven by induction of the EPHA2 
signaling; in melanoma cells resistant to vemurafenib, EPHA2 
overexpression seems to contribute to cell survival and viability 
as well as to promotion of metastasis formation (84, 85).

Vast majority of data evaluating the role played by RTK-
dependent changes in acquired resistance to targeted drugs were 
produced by in vitro studies on melanoma cell lines and awaited 
to be con�rmed in vivo on clinical samples.

Reactivation of MEK-ERK Pathway
BRAF or MEK inhibitors may upregulate MAP3K8 gene, giving 
an overexpression of the corresponding COT kinase, which 
in turn may stimulate the downstream MEK–ERK signaling 
cascade and lead to the development of resistance to such drugs 
(106). Alternatively, acquisition of activating mutations in either 
MAP2K1 or MAP2K2 genes (encoding MEK1 or MEK2 proteins) 
may directly reactivate the MAPK pathway (107). In particular, 
mutations in MAP2K1 gene may constitutively activate the kinase 
domain of the correspondent MEK1 protein, which therefore 
becomes either independent on activity of the upstream BRAF 
kinase either insensitive to MEK inhibitors (75).

Several alterations described for the resistance to inhibitors 
of mutated BRAF play a similar role in acquisition of resistance 
to MEK inhibitors. �ey include BRAF-mutant ampli�cation, 
STAT3 up-regulation, or MAP2K1/MAP2K2 mutations (75, 105). 
�e activation of the PI3K–AKT pathway also represents one of 
the main mechanisms of resistance to MEK inhibitors in BRAF-
mutant melanomas. As con�rmation of this, inactivation of such 
a pathway through up-regulation of the PTEN tumor suppressor 

gene markedly increases the sensitiveness of melanoma cells to 
MEK inhibitors (108).

Resistance Through Phenotype Switching
Although other MAPK-independent mechanisms have also been 
identi�ed, resistance still cannot be explained in up to 40% of all 
patient samples (75, 109), suggesting that additional and perhaps 
alternative systems, likely involving epigenetic events or stromal 
factors (101), remain to be identi�ed. Recently, the occurrence of 
“phenotype switching” has been indicated as an escape mecha-
nism (Figure 4). Essentially by switching from a proliferative to 
an invasive state, melanoma cells can acquire resistance to tar-
geted therapeutics. Phenotype switching possesses a remarkable 
similarity to the epithelial-to-mesenchymal-like transition that 
has been described to occur in cancer stem cells in other tumor 
types (110) and, interestingly, the characteristics of this phenom-
enon may provide targets for new therapeutic intervention. �e 
observations on this phenomenon challenged a previous model 
of melanoma progression that evokes one-way changes in gene 
expression. Expression pro�ling of melanoma cell lines identi�ed 
two transcription signatures, corresponding with proliferative 
and invasive cellular phenotypes, and in vivo melanoma cells may 
switch between these two states (29). Melanoma cells with pro-
liferative signature are faster growing but less motile than those 
with invasive signature, being indeed detected most frequently 
in the peripheral margin of growing tumors. Melanoma cells 
undergo such a transcriptional signature switching in vivo, likely 
regulated by local microenvironmental conditions (29, 111).

Proliferative pro�le is based on up-regulation of MITF and 
other melanocytic genes (e.g., TYR, DCT, MLANA) as well as on 
involvement of additional neural crest-related factors (e.g., SOX10, 
TFAP1A, and EDNRB) (29, 111). �is signature is associated with 
high rates of proliferation, low motility, and sensitivity to growth 
inhibition by TGF-beta. �e invasive signature down-regulates 
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these same genes and instead up-regulates others ones (e.g., 
INHBA, COL5A1, and SERPINE1), which are involved in modi-
fying the extracellular environment (112). �is second pro�le is 
associated with lower rates of proliferation, high motility, and 
resistance to growth inhibition by TGF-beta. In particular, MITF 
acts as a master regulator of melanocyte development, function, 
and survival, by modulating various di�erentiation and cell-cycle 
progression genes (28, 113) (see Figure 1). As mentioned above, 
MITF is ampli�ed in a fraction of human melanomas (28). In 
addition to transcriptional regulation, MITF is subject to various 
post-translational modi�cations, which mainly include MAPK-
driven phosphorylations (113). �ese kinases reside within 
various important homeostatic signaling pathways and might 
therefore modulate MITF transcriptional activity in response to 
speci�c environmental signals. Genes targeted by MITF can be 
classi�ed into two groups: di�erentiation and survival genes. �e 
ability of MITF to regulate cell-cycle progression might also be 
mediated by modulation of CDK2 or the anti-apoptotic factor 
BCL2 (114). MITF can act as an anti-proliferative transcription 
factor able to induce G1 cell-cycle arrest that is dependent on 
MITF-mediated activation of the p21 cyclin-dependent kinase 
inhibitor gene (113). MITF cooperates with the retinoblastoma 
protein Rb1; combination of the MITF-mediated activation of 
p21 expression and hypo-phosphorylation of Rb1 contributes to 
cell-cycle exit and activation of a di�erentiation program. MITF 
ampli�cation was prevalent in metastatic disease and correlated 
with decreased overall patient survival. Coexistence of high MITF 
expression levels and BRAF mutations is able to transform human 
melanocytes; thus, MITF can function as a melanoma oncogene 
(28, 113). Moreover, a reduction of MITF activity sensitizes 
melanoma cells to chemotherapeutic agents.

It has been evidenced that melanoma cell lines with high 
levels of MITF (MITFhigh) were sensitive to either BRAFV600E or 
MEK inhibition, whereas cells with low MITF levels (MITFlow) 
displayed intrinsic resistance against the same drugs (112). Cells 
with a so-called proliferative signature had a higher proliferation 
rate and expressed melanocyte di�erentiation markers, includ-
ing MITFhigh. In contrast, cell lines with an invasive signature 
displayed increased motility and migration, expressed genes 
involved in microenvironment modulation. �e recent �nding 
that MITFlow cells are intrinsically resistant to targeted therapy 
suggests that acquisition of an invasive phenotype results in 
resistance to MAPK inhibitors (112).

Proliferative melanoma cells could even adopt invasive char-
acteristics upon MAPK inhibition (115), indicating that targeted 
therapy could promote phenotype switching, potentially resulting 
in disease progression. �is hypothesis is supported by the dis-
covery that BRAF inhibition can induce invasion and metastasis 
in vivo when tumors become resistant to therapy (115). �erefore, 
melanoma cells may use phenotype switching as a mechanism 
to evade growth arrest. On this regard, the reduced sensitivity 
to BRAF and MEK inhibition is a clear indication that invasive 
cells are less dependent on cell-regulation by MAPK activity. 
Accumulation of several genetic and/or epigenetic alterations 
may participate in reverting the phenotype and allowing survival 
in the presence of BRAF or MEK inhibition. Current  treatment 
strategies are aimed at eradicating the most proliferative cells, 

which may not necessarily be the most malignant. Future strate-
gies to identify novel drugs and active treatments will have to 
take into consideration that both proliferative and invasive 
populations should be targeted. Anyway, phenotype switching is 
a phenomenon that cannot be ignored, especially if some treat-
ments might induce switching to the invasive phenotype, thereby 
promoting metastasis formation.

Alternative Pathways in Melanoma Growth

As previously stated, cancer genomic analysis has revealed a 
marked heterogeneity within tumors (116). Although some 
common alterations (mutations in oncogenes and tumor sup-
pressor genes) exist, the pattern of alterations in many other 
genes is highly variable between individual tumors, resulting in 
considerable intra-tumor heterogeneity (117). �is heterogene-
ity may represent the result of events that are positively selected 
during tumor progression and are in�uenced by a variety of 
factors, including the host’s genome, epigenetic changes, tumor 
microenvironment, immunologic features, and therapeutic 
interventions. Metastatic lesions, although originating from one 
or more subclones in primary tumor, continue to evolve a�er 
colonization of distant sites, thereby developing even greater 
levels of intra-tumor heterogeneity. Such heterogeneity raises 
a number of important issues. Clinically, intra-tumor hetero-
geneity has implications for detection of genetic events and for 
targeted therapy. Tumor sampling may have a major in�uence on 
whether all genetic alterations within a tumor will be detected, 
and therefore, on whether the most appropriate therapy will be 
o�ered to patients. Furthermore, genetic alterations that confer 
resistance to certain targeted therapies may only be present 
in speci�c subclones within a tumor mass, and if they are not 
detected, the patient may be subjected to inappropriate therapies.

Autophagy

�e wholeness of the signaling network that protects the integrity 
of the genome during the cell cycle is a fundamental blockade 
against cell transformation. Additional protective mechanisms 
are senescence, apoptosis, and autophagy. �erefore, an extensive 
analysis of these events in cancer cells o�ers the opportunity 
to develop new strategies for cancer control. Autophagy is a 
fundamental process in normal and tumor cells in response to a 
variety of external stimuli (118). However, the role of autophagy is 
still controversial; it may represent a mechanism of protection or 
promotion of cell death. In addition, the signi�cance of autophagy 
in cancer cells is also underlined by the consideration that the 
response of some types of cancer cells to chemotherapy and radio-
therapy is mediated by the activation of it, indicating a potential 
bene�t an induction of autophagic cell death in cancer treatments.

Autophagy is a main lysosome-dependent process for the 
elimination of damaged or dysfunctional cellular components. 
In most cells, this self-digesting mechanism is active at a basal 
rate to maintain the balance between synthesis, degradation, 
and recycling of its constituents (119). Induction of autophagy 
leads to formation of an isolated membrane, the phagophore, 
from which it derives a double membrane cytoplasmic structure 
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called an auto phagosome (120). �e vesicular structure contains 
cytoplasmic material, which fuses itself with the lysosome, 
leading to the formation of an autophago-lysosome. Finally, the 
enclosed cytoplasmic content is degraded and catabolites are 
recycled (120). Autophagy is highly regulated; it is retained at 
a basal level and induced when necessary (121). In melanocytic 
cell lineage, autophagy regulators control many cellular traf-
�cking pathways including melanin synthesis and melanosome 
formation. Autophagy has also a role in removing melanosomes 
in melanoma (121).

Multiprotein complexes are responsible for vesicle initiation, 
elongation, and fusion with the lysosome (120, 121). �e initial 
step of autophagy involves ULK1/2 kinases, negatively regulated 
by mTOR. �e inactivation of ULK1 in mammalian cells is suf-
�cient to inhibit autophagy induced by amino acid deprivation 
(122). On the contrary, regulators inducing autophagy include 
tumor suppressors, such as PTEN, TSC1, TSC2, and DAPK; 
stress-activated signaling molecules, such as cJun N terminal 
kinase (JNK); and those that respond to low energy, such as the 
AMPK. Inhibitors of PI3K, AKT, RAS, mTORC1, and Bcl2 are able 
to inactivate autophagy (122). At present, it has been established 
that autophagy is involved in many biological functions, such as 
cell survival, apoptosis, metabolism, development, aging, and 
immunity, contributing to the etiology of many complex diseases, 
such as cancer, neurodegenerative, and metabolic disorders (121).

Metformin and Autophagy in Melanoma
�e most widely used oral antidiabetic drug metformin belongs 
to the family of biguanide drugs and it has been shown to inhibit 
the energy-sensitive AMPK target, leading to reduced protein 
synthesis and cell proliferation (123). Metformin was reported 
to act as an e�cient anticancer drug in various tumors (124) as 
well as to inhibit the proliferation and invasion of melanoma 
cells (125).

Metformin inhibits mitochondrial oxidative phosphorylation, 
causing a decrease in ATP synthesis and an increase in the intra-
cellular levels of adenosine monophosphate (AMP) (126, 127). 
�e reduction in cellular energy charge causes metabolic stress 
that induces the activation of AMPK. �is signaling pathway 
down-regulates processes that consume energy and activates pro-
cesses that generate ATP, in keeping with the physiological role 
of AMPK as a primary regulator of cellular energy homeostasis 
(128). Activated AMPK phosphorylates downstream proteins, 
resulting in stimulation of catabolic pathways that generate ATP 
(such as glucose uptake, glycolysis, fatty acid b-oxidation, and 
mitochondrial biogenesis) and suppression of anabolic pathways, 
depending on supply of cellular ATP (such as gluconeogenesis, 
glycogen, cholesterol biosynthesis, protein, and fatty acid synthe-
sis) (123, 128). In addition to such e�ects on lipid and glucose 
metabolism, AMPK – through interference with the AKT–mTOR 
pathway (Figure  1)  –  is implicated in other cellular processes, 
such as cell growth and proliferation, cell-cycle regulation, apop-
tosis, and autophagy (129). Overall, metformin, as an activator of 
AMPK and an inhibitor of mTOR, may stimulate autophagy. In 
colon cancer cells and in xenogra� models, metformin induces 
autophagy via AMPK (130). One study also highlighted the role 
of p53 in the induction of autophagy (131).

�erapeutic approaches using di�erent agents able to reprogram 
energy metabolism are particularly attractive. AMPK activators 
like metformin or phentformin have been reported to inhibit the 
proliferation of transformed cells (123, 132–134). In particular, 
metformin induces cell-cycle arrest in the G0/G1 cell-cycle phase 
and a strong inhibition of cell viability by induction of autophagy 
and apoptosis in di�erent melanoma cells independently of the 
BRAF or NRAS mutational status (132). In BRAF-mutated mela-
nomas, metformin used in combination with the BRAF inhibitor 
vemurafenib has shown a synergic antitumor e�ect to induce 
melanoma cell death (135). Furthermore, it has been reported 
that when another biguanide, phenformin, may cooperate with 
vemurafenib or classical chemotherapies in inhibiting the growth 
of melanoma cells (134, 136). �is combined therapy could 
bypass the resistance found in response to BRAFV600E inhibitors. 
However, precautions must be taken with the use of phentformin 
in humans. Indeed, this biguanide is reported to have more toxic 
e�ects compared with metformin due to an unacceptable inci-
dence of severe lactic acidosis in treated patients (124).

Treatment of normal human melanocytes that express 
endogenous AMPK with metformin did not a�ect cell viability, 
suggesting that metformin activity is restricted to transformed 
cell lines and likely re�ects a tumor speci�c regulation (123, 133). 
In melanoma cells, metformin can inhibit mTOR independently 
of AMPK activation and induces cell-cycle arrest, autophagy, 
and cell death. Moreover, metformin activates AMPK/p53 axis, 
to promote inhibition of melanoma metastasis, as well as induces 
down-regulation of NF-kB/STAT3 pathway, to inhibit melanoma-
initiating cells (MIC) (130, 131, 137). On this regard, MIC seem 
to be constituted by subclones in transition to proliferative 
phenotype (see above), which may be at the origin of melanoma 
metastasis (138). �is could represent a further indication that 
cells within the population of tumor cells in growing melanomas 
do not display the same tumorigenic potential.

Metformin inhibits melanoma invasion and metastasis forma-
tion in mice, through dose-dependent inhibition of the expression 
of proteins involved in epithelial–mesenchymal transition (EMT) 
(139). In particular, metformin inhibits transcription factors 
required for controlling the expression of genes involved in EMT, 
such as N-cadherin, SPARC, or �bronectin (139). Again, this pro-
cess is dependent on activation of AMPK and tumor suppressor 
protein p53 (130, 131, 139). Furthermore, it is well established 
that melanoma cell invasion depends on expression of matrix 
metalloproteinases 2 and 9 (MMP-2 and MMP-9, respectively) 
(140). Both MMPs are highly expressed in melanoma cells, and 
a direct relationship between melanoma progression and MMP 
expression has been established (140). Moreover, inhibition of 
MMP activity has been previously investigated as a new therapeu-
tic strategy to control metastatic spreading. Metformin reduces 
global MMP activity and, more speci�cally, expression and activ-
ity of MMP-2 and MMP-9. Decreasing EMT protein expression 
and MMP inhibition may thus represent the main mechanisms 
by which metformin negatively regulate melanoma invasiveness.

Taking into account, the drastic e�ect of the metformin on 
melanoma cell growth, survival, invasion, and in vivo metastasis 
development, it might be worth evaluating the treatment with 
this biguanide in patients with metastatic melanoma.
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Additional Mutated Genes

Using new sequence-based approaches to comprehensively scan 
the genome for non-coding mutations with potential functional 
impact, mutations in the telomerase reverse transcriptase (TERT) 
promoter, which encodes the catalytic subunit of telomerase, were 
identi�ed at high frequencies in cutaneous melanoma (141). TERT 
promoter mutations were found to have a UV signature and to 
lead to an increased TERT gene expression, being associated with 
poor prognosis in melanoma patients (141). Two recent reports 
described activating mutations in TERT promoter in up to 71% of 
cutaneous melanomas (142, 143). �e mutations result in a two to 
fourfold increase in gene expression. Telomerase overexpression 
allows neoplastic cells to continuously proliferate without enter-
ing senescence or apoptosis by maintaining telomere length and 
avoiding chromosomal instability. Further studies are required to 
fully elucidate the role of these mutations in melanoma.

Germline mutations in BAP1 (located at 3p21) were reported 
to predispose to melanocytic tumors, including uveal and cutane-
ous melanomas (144). In addition, co-segregation with a germline 
mutation in TERT promoter has been observed in an informative 
melanoma-prone family (142), suggesting that this gene may 
also act as a rare high-penetrance melanoma susceptibility gene. 
Together, these genes account for melanoma susceptibility in a 
small proportion of melanoma-prone families.

A rare mutation (p.Ser270Asn) with founder e�ect in the 
protection of telomeres 1 (POT1) gene has been identi�ed in 
melanoma-prone families (145). Carriers of this variant had 
increased telomere lengths and numbers of fragile telomeres, 
suggesting that such a variant perturbs telomere maintenance. 
POT1 is a component of the telomeric shelterin complex that 
directly binds with high speci�city to single-stranded telom-
eric repeats (146). POT1 prevents inappropriate processing of 
exposed chromosome ends by DNA damage response pathways 
and regulates telomerase function, thereby having a critical role 
in maintaining telomere integrity and regulating telomere length 
(147). POT1 is a susceptibility gene for familial melanoma in other 
populations; POT1 variants were indeed found in an independent 
study of melanoma-prone families from the UK and Australia 
(148). Although the real role of POT1 in melanoma  –  as for 
TERT – needs to be fully understood, all these �ndings suggest 
that genes involved in telomere maintenance may contribute to 
the disease pathogenesis.

Epigenetic Targets

New sequencing approaches have also unveiled a number of 
mutations in genes coding for chromatin-remodeling proteins. 
Chromatin remodeling o�en involves modi�cation of histones, 
by addition or removal of covalently bound methyl, acetyl, or 
ubiquitin residues as well as by ATP-dependent remodeling of 
nucleosomes (149). One chromatin-remodeling group that is 
involved in melanoma development and progression is the SWI/
SNF complex (150). Inactivating mutations in SWI/SNF family 
member genes (ARID1A, ARID1B, ARID2, and SMARCA4) and 
in members of another chromatin-remodeling family referred to 
as the poly comb complex (EZH2, BMI1, and JARID1B/KDM5B) 

have been found altered in melanoma (107, 151–153). �e role of 
chromatin-remodeling proteins in cancer is not fully understood. 
One of the most widely accepted theories is that alterations of these 
proteins result in cellular de-di�erentiation (149). Potentially, 
reversion of such alterations using therapeutic agents, thereby 
forcing cancer cells to regain a di�erentiated state, may prove to 
be clinically valuable. �e role of epigenetic factors in melanoma 
pathogenesis is yet to be fully elucidated. In addition, alterations 
in DNA methylation – as hypo-methylation, leading to aberrant 
gene expression, and focal CpG island hyper methylation, which 
is generally associated with gene down-regulation – have been 
described (154). Non-coding RNAs, both short (e.g., microRNAs) 
and long, are known to be aberrantly expressed in melanoma 
and play as yet incompletely de�ned roles in pathogenesis (155). 
Novel compounds targeting these alterations are in development.

Epigenetic manipulation is a novel approach to cancer 
therapy that remains to be further explored in solid tumors 
(156). Epigenetic alterations may contribute to melanomagenesis 
by down-regulating tumor suppressor genes, apoptotic factors, 
and DNA repair enzymes as well as by participating in resistance 
mechanisms to therapies (157). Epigenetic drugs also seem to 
favor the endogenous antitumor immune response via several 
mechanisms (158). Furthermore, epigenetic drugs have shown 
the ability of restoring apoptotic processes that, when deregulated, 
appear crucial in the resistance to chemotherapeutics, immune 
responses, and targeted agents, such as BRAF and MEK inhibitors 
(88, 156, 158). Epigenetic mechanisms represent an important 
challenge for melanoma treatment.

Histone modi�cations are increasingly being involved in chro-
matin structure and gene expression regulation. In particular, 
EZH2, the catalytic subunit of the polycomb repressive complex 
2 (PRC2), is overexpressed in many di�erent types of cancers 
including melanoma, where it represses tumor suppressor genes 
(153). EZH2 is an important driver of melanoma progression 
and EZH2 inhibitors promising therapeutic agents. Several 
epigenetic drugs including the clinically used inhibitors of DNA 
methyltransferases (DNMTi) and histone deacetylases (HDACi) 
as well as the most recently discovered inhibitors of EZH2 are 
available and may be used in combination with immune and 
targeted therapies (159).

Aurora Kinases

�e aurora kinase family in mammals includes aurora kinase A 
(AurkA), B (AurkB), and C (AurkC) (160). �ey have many roles 
in the regulation of cell division, ensuring proper chromosome 
assembly, formation of the mitotic spindle, and cytokinesis. 
AurkA is particularly important for regulation of microtubule 
nucleation at spindle poles, whereas AurkB is essential for 
chromosome condensation, kinetochore function, cytokinesis, 
and the proper function of the spindle assembly (161). AurkA 
has long been recognized as an oncogene, due to its overexpres-
sion and ampli�cation in several human cancers; however, it is 
unlikely to act as oncoprotein, since its over expression neither 
transforms primary cells nor leads to tumor formation (162). 
Overexpression of the aurora kinases induces aneuploidy and 
genomic instability, which have a leading role in the pathogenesis 
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of various tumors (160). Nonetheless, their powerful roles in cell-
cycle regulation and suitability for inhibition by small-molecule 
antagonists make both AurkA and AurkB promising anticancer 
therapy targets.

AurkA associates with many other key targets involved in 
tumorigenesis (163). Functionally interacting proteins include 
MYC, NF-kB, AKT1, and p53 (see Figure 1). Phosphorylating 
activity by AurkA removes inhibition of nuclear factor NF-kB, 
supporting transcription of pro-survival genes, and stimulates 
cell migration (164). Overexpression of AurkB, whose main 
partner is the survivin protein, is associated with poor outcomes 
in colon cancer, anaplastic thyroid cancer, and glioblastoma 
(165). Finally, both AurkA and AurkB associate with polo-like 
kinases and other additional partners crucial for oncogenic activ-
ity (162). For example, up-regulation of both AurkA and AurkB 
can contribute to cancerogenesis through the phosphorylation 
of p53, which accelerates MDM2-dependent degradation of 
the same p53 protein by the poly-ubiquitination-proteasome 
pathway (166). By contrast, AurkA activity is suppressed by p53 
binding, leading to an increased AurkA activation in p53-mutant 
tumors (89).

Overexpression of these kinases has been observed in several 
tumor types – including carcinomas of the colon, breast, pros-
tate, pancreas, thyroid, and head and neck – being associated 
with advanced clinical stage and poor prognosis (89). Inhibition 
of AurkA protein, which seems to be expressed at high levels 
in melanoma (163), has been shown to limit tumor growth, 
impair mitosis, and induce senescence in melanoma, suggest-
ing a potential role as therapy target (167). AurkA inhibitor 
enhanced the e�ect of B-RAF and MEK inhibitors on melanoma 
cell growth in a 3D human skin reconstruction model (167). 
Combined BRAF/AurkA inhibition might o�er a therapeutic 
alternative to BRAF/MEK inhibition for BRAF-mutated mela-
nomas, while a combination of MEK/AurkA inhibitors could 
represent a possible option for patients without BRAF muta-
tions. Moreover, a triple drug combination including inhibitors 
of BRAF, MEK, and AurkA o�ered increased e�cacy against 
melanoma cell growth (167); it might become a potential inno-
vative treatment strategy.

Future Perspectives

�e introduction of novel techniques for genetic analyses 
may lead to a much better understanding of the mechanisms 
involved in the pathogenesis of melanoma. Assays for assessing 
the variations in DNA copy number have been introduced in 
clinical practice and are now commonly used to assist pathologic 
distinction between benign and malignant melanocytic lesions. 
A panel of molecular tests based on mutation analyses in targ-
etable e�ectors of the main pathways underlying development 
and progression of melanoma (particularly, components of the 
MAPK signaling cascade) – using next-generation sequencing 
(NGS) approaches  –  is being utilized for predicting purposes 
(168). Individual targeted therapies have shown promising early 
responses, but these encouraging results are mitigated by the 
rapid and frequent emergence of resistance (169). Combining 
immunotherapies and small inhibitor therapies could potentially 

alleviate the shortcomings of individual agents, leading to 
more durable responses, and, subsequently, longer survivals 
in higher numbers of patients (170). To date, in patients with 
melanomas harboring genetic alterations for which speci�c 
targeted therapies are not available, immunotherapies may be 
promising therapeutic options (171). Overall, considerable 
research is under way to elucidate which molecular mechanisms 
possess a clinical relevance; this could be helpful to also explore 
mechanisms of resistance and develop strategies to prevent or 
circumvent them.

Detailed genetic analysis in terms of massively parallel 
sequencing is rapidly evolving from a research tool to a potentially 
useful and widespread clinical standard for the management of 
cancer patients, particularly as the number of available targeted 
agents’ increases. �e aim is to quickly translate successful 
experimental therapeutic approaches to the clinic, with patients 
receiving a personalized selection of the tested therapeutic 
modalities based on the sequencing pro�les of their tumors. 
Large sequencing studies have identi�ed several novel genetic 
alterations in melanoma (172), and additional mutations will 
inevitably be identi�ed.

Important challenges will be to personalize and combine 
available therapeutic options based on anticipated mechanisms 
of resistance relevant to each tumor. Results from NGS-based 
analysis of multiple melanoma biopsies obtained before treat-
ment, during response to therapy, and a�er disease progression 
are starting to emerge, revealing important aspects of in  vivo 
resistance mechanisms. �e discovery of new therapeutic com-
pounds is also awaited for a further improvement in treating 
melanomas that are resistant to existing therapies. E�orts to 
improve durability of responses will likely include double, triple, 
and even quadruple drug regimens.

Nevertheless, strategies to combine the most e�ective targeted 
treatments with cancer immunotherapy, which is becoming the 
standard of care in advanced melanoma, will be useful to both 
improve the clinical management and achieve much longer 
survivals among patients with such a disease.

A�er a very long period of dormancy in melanoma treatment, 
a new era of successful molecular-based therapeutic strategies 
has begun.

Author Contributions

GP, conceived of the study, dra�ed the manuscript. MO, dra�ed 
the manuscript. MCo, MCa, MS, and AM, performed data col-
lection and interpretation. PP, prepared all Figures. PA, revised 
manuscript critically. AC, performed �nal approval of the 
manuscript.

Acknowledgments

Authors would like to thank other members of the Italian 
Melanoma Intergroup (IMI): G. Botti, C. Caracò, N. Mozzillo, 
P. Queirolo, and I. Stanganelli. Work was partially supported 
by the Italian Ministry of Health “Progetto Ricerca Finalizzata” 
and Sardinia Regional Government (Regione Autonoma della 
Sardegna).

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


August 2015 | Volume 5 | Article 18312

Palmieri et al. Complex molecular features in melanoma pathogenesis

Frontiers in Oncology | www.frontiersin.org

References

 1. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. 

Distinct sets of genetic alterations in melanoma. N Engl J Med (2005) 

353:2135–47. doi:10.1056/NEJMoa050092 

 2. �ompson JF, Scolyer RA, Ke�ord RF. Cutaneous melanoma. Lancet (2005) 

365:687–701. doi:10.1016/S0140-6736(05)70937-5 

 3. Balch CM, Gershenwald JE, Soong SJ, �ompson JF, Atkins MB, Byrd DR, 

et al. Final version of 2009 AJCC melanoma staging and classi�cation. J Clin 

Oncol (2009) 27:6199–206. doi:10.1200/JCO.2009.23.4799 

 4. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et  al. 

Cancer incidence and mortality worldwide: sources, methods and major pat-

terns in GLOBOCAN 2012. Int J Cancer (2015) 136:E359–86. doi:10.1002/

ijc.29210 

 5. Lo JA, Fisher DE. �e melanoma revolution: from UV carcinogenesis to 

a new era in therapeutics. Science (2014) 346:945–9. doi:10.1126/science. 

1253735 

 6. Puzanov I, Amaravadi RK, McArthur GA, Flaherty KT, Chapman PB, Sosman 

JA, et al. Long-term outcome in BRAF(V600E) melanoma patients treated 

with vemurafenib: patterns of disease progression and clinical management 

of limited progression. Eur J Cancer (2015) 51:1435–43. doi:10.1016/j.

ejca.2015.04.010 

 7. Long GV, Stroyakovsky DL, Gogas H, Levchenko E, de Braud F, Larkin JMG, 

et al. Overall survival in COMBI-d, a randomized, double-blinded, phase III 

study comparing the combination of dabrafenib and trametinib with dab-

rafenib and placebo as �rst-line therapy in patients (pts) with unresectable 

or metastatic BRAF V600E/K mutation-positive cutaneous melanoma. J Clin 

Oncol (2015) 33(Suppl):abstr102. 

 8. Simeone E, Grimaldi AM, Ascierto PA. Anti-PD1 and anti-PD-L1 in the 

treatment of metastatic melanoma. Melanoma Manag (2015) 2:41–50. 

doi:10.2217/MMT.14.30 

 9. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, et al. Analysis 

of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma 

susceptibility locus. Nat Genet (1994) 8:23–6. doi:10.1038/ng0994-22 

 10. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor 

locus: all for one or one for all. Nat Rev Mol Cell Biol (2006) 7:667–77. 

doi:10.1038/nrm1987 

 11. Meyle KD, Guldberg P. Genetic risk factors for melanoma. Hum Genet (2009) 

126:499–510. doi:10.1007/s00439-009-0715-9 

 12. Palmieri G, Capone ME, Ascierto ML, Gentilcore G, Stroncek DF, 

Casula M, et  al. Main roads to melanoma. J Transl Med (2009) 7:86. 

doi:10.1186/1479-5876-7-86 

 13. Palmieri G, Casula M, Sini MC, Ascierto PA, Cossu A. Issues a�ecting 

molecular staging in the management of patients with melanoma. J Cell Mol 

Med (2007) 11:1052–68. doi:10.1111/j.1582-4934.2007.00091.x 

 14. Smalley KS, Lioni M, Dalla Palma M, Xiao M, Desai B, Egyhazi S, et  al. 

Increased cyclin D1 expression can mediate BRAF inhibitor resistance in 

BRAF V600E- mutated melanomas. Mol Cancer �er (2008) 7:2876–83. 

doi:10.1158/1535-7163.MCT-08-0431 

 15. Box NF, Terzian T. �e role of p53 in pigmentation, tanning and melanoma. Pigment 

Cell Melanoma Res (2008) 21:525–33. doi:10.1111/j.1755-148X.2008.00495.x 

 16. Giehl K. Oncogenic Ras in tumor progression and metastasis. Biol Chem 

(2005) 386:193–205. doi:10.1515/BC.2005.025 

 17. Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG. Examination 

of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. 

J Invest Dermatol (2006) 126:154–60. doi:10.1038/sj.jid.5700026 

 18. Wellbrock C, Karasarides M, Marais R. �e RAF proteins take centre stage. 

Nat Rev Mol Cell Biol (2004) 5:875–85. doi:10.1038/nrm1498 

 19. Rebocho AP, Marais R. ARAF acts as a sca�old to stabilize BRAF:CRAF 

heterodimers. Oncogene (2013) 32:3207–12. doi:10.1038/onc.2012.330 

 20. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations 

of the BRAF gene in human cancer. Nature (2002) 417:949–54. doi:10.1038/

nature00766 

 21. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. 

High frequency of BRAF mutations in nevi. Nat Genet (2003) 33:19–20. 

doi:10.1038/ng1054 

 22. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van 

der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest 

of human naevi. Nature (2005) 436:720–4. doi:10.1038/nature03890 

 23. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey 

RD, et  al. BRAF mutations are su�cient to promote nevi formation and 

cooperate with p53 in the genesis of melanoma. Curr Biol (2005) 15:249–54. 

doi:10.1016/j.cub.2005.01.031 

 24. Arcaro A, Guerreiro AS. �e phosphoinositide 3-kinase pathway in human 

cancer: genetic alterations and therapeutic implications. Curr Genomics 

(2007) 8:271–306. doi:10.2174/138920207782446160 

 25. Wellbrock C, Rana S, Paterson H. Oncogenic BRAF regulates melanoma 

proliferation through the lineage speci�c factor MITF. PLoS One (2008) 

3:2734. doi:10.1371/journal.pone.0002734 

 26. Steingrímsson E, Copeland NG, Jenkins NA. Melanocytes and the microph-

thalmia transcription factor network. Annu Rev Genet (2004) 38:365–411. 

doi:10.1146/annurev.genet.38.072902.092717 

 27. Yajima I, Kumasaka MY, �ang ND, Goto Y, Takeda K, Iida M, et al. Molecular 

network associated with MITF in skin melanoma development and progres-

sion. J Skin Cancer (2011) 2011:730170. doi:10.1155/2011/730170 

 28. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy 

S, et  al. Integrative genomic analyses identify MITF as a lineage survival 

oncogene ampli�ed in malignant melanoma. Nature (2005) 436:117–22. 

doi:10.1038/nature03664 

 29. Hoek KS, Eichho� OM, Schlegel NC, Döbbeling U, Kobert N, Schaerer 

L, et al. In vivo switching of human melanoma cells between proliferative 

and invasive states. Cancer Res (2008) 68:650–6. doi:10.1158/0008-5472.

CAN-07-2491 

 30. Smalley KS, Sondak VK, Weber JS. c-Kit signaling as the driving oncogenic 

event in sub-groups of melanomas. histology and histopathology cellular and 

molecular biology. J Pathol (2009) 29:643–50. 

 31. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. 

KIT gene mutations and copy number in melanoma subtypes. Clin Cancer 

Res (2008) 14:6821–8. doi:10.1158/1078-0432.CCR-08-0575 

 32. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien 

JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue 

naevi. Nature (2009) 457:599–602. doi:10.1038/nature07586 

 33. Kashani-Sabet M, Range J, Torabian S, Nosrati M, Simko J, Jablons DM, et al. 

A multi-marker assay to distinguish malignant melanomas from benign nevi. 

Proc Natl Acad Sci U S A (2009) 106:6268–72. doi:10.1073/pnas.0901185106 

 34. Sikora AG, Gelbard A, Davies A, Sano D, Ekmekcioglu S, Kwon J, et  al. 

Targeted inhibition of inducible nitric oxide synthase inhibits growth of 

human melanoma in vivo and synergizes with chemo-therapy. Clin Cancer 

Res (2010) 16:1834–44. doi:10.1158/1078-0432.CCR-09-3123 

 35. Clague MJ. Met receptor: a moving target. Sci Signal (2011) 4:e40. doi:10.1126/

scisignal.2002422 

 36. Lee YJ, Kim DH, Lee SH, Kim DW, Nam HS, Cho MK. Expression of the 

c-Met proteins in malignant skin cancers. Ann Dermatol (2011) 23:33–8. 

doi:10.5021/ad.2011.23.1.33 

 37. Braeuer RR, Zigler M, Villares GJ, Dobro� AS, Bar-Eli M. Transcriptional con-

trol of melanoma metastasis: the importance of the tumor microenvironment. 

Semin Cancer Biol (2011) 21:83–8. doi:10.1016/j.semcancer.2010.12.007 

 38. Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular pro�ling to 

identify relevant immune resistance mechanisms in the tumor microenviron-

ment. Curr Opin Immunol (2011) 23:286–92. doi:10.1016/j.coi.2010.11.013 

 39. Smalley KS. Understanding melanoma signaling networks as the basis for 

molecular targeted therapy. J Invest Dermatol (2010) 130:28–37. doi:10.1038/

jid.2009.177 

 40. Jang S, Atkins MB. Which drug, and when, for patients with BRAF-mutant mel-

anoma? Lancet Oncol (2013) 14:e60–9. doi:10.1016/S1470-2045(12)70539-9 

 41. Lee B, Sandhu S, McArthur G. Cell cycle control as a promising tar-

get in melanoma. Curr Opin Oncol (2015) 27:141–50. doi:10.1097/

CCO.0000000000000159 

 42. Boyle GM, Martyn AC, Parsons PG. Histone deacetylase inhibi-

tors and malignant melanoma. Pigment Cell Res (2005) 18:160–6. 

doi:10.1111/j.1600-0749.2005.00228.x 

 43. Yokoyama S, Feige E, Poling LL, Levy C, Widlund HR, Khaled M, et  al. 

Pharmacologic suppression of MITF expression via HDAC inhibitors in 

the melanocyte lineage. Pigment Cell Melanoma Res (2008) 21:457–63. 

doi:10.1111/j.1755-148X.2008.00480.x 

 44. Fedorenko IV, Gibney GT, Smalley KS. NRAS mutant melanoma: biological 

behavior and future strategies for therapeutic management. Oncogene (2013) 

32:3009–18. doi:10.1038/onc.2012.453 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1056/NEJMoa050092
http://dx.doi.org/10.1016/S0140-6736(05)70937-5
http://dx.doi.org/10.1200/JCO.2009.23.4799
http://dx.doi.org/10.1002/ijc.29210
http://dx.doi.org/10.1002/ijc.29210
http://dx.doi.org/10.1126/science.1253735
http://dx.doi.org/10.1126/science.1253735
http://dx.doi.org/10.1016/j.ejca.2015.04.010
http://dx.doi.org/10.1016/j.ejca.2015.04.010
http://dx.doi.org/10.2217/MMT.14.30
http://dx.doi.org/10.1038/ng0994-22
http://dx.doi.org/10.1038/nrm1987
http://dx.doi.org/10.1007/s00439-009-0715-9
http://dx.doi.org/10.1186/1479-5876-7-86
http://dx.doi.org/10.1111/j.1582-4934.2007.00091.x
http://dx.doi.org/10.1158/1535-7163.MCT-08-0431
http://dx.doi.org/10.1111/j.1755-148X.2008.00495.x
http://dx.doi.org/10.1515/BC.2005.025
http://dx.doi.org/10.1038/sj.jid.5700026
http://dx.doi.org/10.1038/nrm1498
http://dx.doi.org/10.1038/onc.2012.330
http://dx.doi.org/10.1038/nature00766
http://dx.doi.org/10.1038/nature00766
http://dx.doi.org/10.1038/ng1054
http://dx.doi.org/10.1038/nature03890
http://dx.doi.org/10.1016/j.cub.2005.01.031
http://dx.doi.org/10.2174/138920207782446160
http://dx.doi.org/10.1371/journal.pone.0002734
http://dx.doi.org/10.1146/annurev.genet.38.072902.092717
http://dx.doi.org/10.1155/2011/730170
http://dx.doi.org/10.1038/nature03664
http://dx.doi.org/10.1158/0008-5472.CAN-07-2491
http://dx.doi.org/10.1158/0008-5472.CAN-07-2491
http://dx.doi.org/10.1158/1078-0432.CCR-08-0575
http://dx.doi.org/10.1038/nature07586
http://dx.doi.org/10.1073/pnas.0901185106
http://dx.doi.org/10.1158/1078-0432.CCR-09-3123
http://dx.doi.org/10.1126/scisignal.2002422
http://dx.doi.org/10.1126/scisignal.2002422
http://dx.doi.org/10.5021/ad.2011.23.1.33
http://dx.doi.org/10.1016/j.semcancer.2010.12.007
http://dx.doi.org/10.1016/j.coi.2010.11.013
http://dx.doi.org/10.1038/jid.2009.177
http://dx.doi.org/10.1038/jid.2009.177
http://dx.doi.org/10.1016/S1470-2045(12)70539-9
http://dx.doi.org/10.1097/CCO.0000000000000159
http://dx.doi.org/10.1097/CCO.0000000000000159
http://dx.doi.org/10.1111/j.1600-0749.2005.00228.x
http://dx.doi.org/10.1111/j.1755-148X.2008.00480.x
http://dx.doi.org/10.1038/onc.2012.453


August 2015 | Volume 5 | Article 18313

Palmieri et al. Complex molecular features in melanoma pathogenesis

Frontiers in Oncology | www.frontiersin.org

 45. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman 

KN, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors over-

come acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, 

mediated by NRAS or MEK mutations. Mol Cancer �er (2012) 11:909–20. 

doi:10.1158/1535-7163.MCT-11-0989 

 46. Niessner H, Forschner A, Klumpp B, Honegger JB, Witte M, Bornemann A, 

et al. Targeting hyperactivation of the AKT survival pathway to overcome 

therapy resistance of melanoma brain metastases. Cancer Med (2013) 

2:76–85. doi:10.1002/cam4.50 

 47. Salama AK, Kim KB. MEK inhibition in the treatment of advanced mela-

noma. Curr Oncol Rep (2013) 15:473–82. doi:10.1007/s11912-013-0336-2 

 48. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev 

Cancer (2003) 3:11–22. doi:10.1038/nrc969 

 49. Saxena N, Lahiri SS, Hambarde S, Tripathi RP. RAS: target for cancer therapy. 

Cancer Invest (2008) 26:948–55. doi:10.1080/07357900802087275 

 50. Flaherty KT, Hodi FS, Bastian BC. Mutation-driven drug develop-

ment in melanoma. Curr Opin Oncol (2010) 22:178–83. doi:10.1097/

CCO.0b013e32833888ee 

 51. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, et al. Mutually 

exclusive N-Ras Q61R and BRAF V600E mutations at the single-cell level 

in the same human melanoma. Oncogene (2006) 25:3357–64. doi:10.1038/

sj.onc.1209379 

 52. �omas NE. BRAF somatic mutations in malignant melanoma and melanocytic 

naevi. Melanoma Res (2006) 16:97–103. doi:10.1097/01.cmr.0000215035.38436.87 

 53. Colombino M, Lissia A, Capone M, De Giorgi V, Massi D, Stanganelli 

I, et  al. Heterogeneous distribution of BRAF/NRAS mutations among 

Italian patients with advanced melanoma. J Transl Med (2013) 11:202. 

doi:10.1186/1479-5876-11-202 

 54. Menzies AM, Haydu LE, Visintin L, Carlino MS, Howle JR, �ompson 

JF, et  al. Distinguishing clinicopathologic features of patients with V600E 

and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res (2012) 

18:3242–9. doi:10.1158/1078-0432.CCR-12-0052 

 55. Keith T, Flaherty KT, Hodi FS, Fisher DE. From genes to drugs: targeted 

strategies for melanoma. Nat Rev Cancer (2012) 12:349–61. doi:10.1038/

nrc3218 

 56. Ascierto PA, Grimaldi AM, Anderson AC, Bifulco C, Cochran A, Garbe C, 

et  al. Future perspectives in melanoma research: meeting report from the 

“melanoma bridge”, Napoli, December 5th-8th 2013. J Transl Med (2014) 

12:277. doi:10.1186/s12967-014-0277-z 

 57. Menzies AM, Long GV. Systemic treatment for BRAF-mutant melanoma: 

where do we go next? Lancet Oncol (2014) 15:e371–81. doi:10.1016/

S1470-2045(14)70072-5 

 58. Fedorenko IV, Gibney GT, Sondak VK, Smalley KS. Beyond BRAF: where 

next for melanoma therapy? Br J Cancer (2015) 112:217–26. doi:10.1038/

bjc.2014.476 

 59. Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma 

with synthetic small molecules and phytochemicals. Cancer Lett (2015) 

359:20–35. doi:10.1016/j.canlet.2015.01.016 

 60. Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from 

bench to bedside. J Hematol Oncol (2013) 6:27. doi:10.1186/1756-8722-6-27 

 61. Kim DW, Patel SP. Pro�le of selumetinib and its potential in the treatment of 

melanoma. Onco Targets �er (2014) 7:1631–9. doi:10.2147/OTT.S51596 

 62. King JW, Nathan PD. Role of the MEK inhibitor trametinib in the treatment of 

metastatic melanoma. Future Oncol (2014) 10:1559–70. doi:10.2217/fon.14.89 

 63. Bucheit AD, Syklawer E, Jakob JA, Bassett RL Jr, Curry JL, Gershenwald JE, 

et al. Clinical characteristics and outcomes with speci�c BRAF and NRAS 

mutations in patients with metastatic melanoma. Cancer (2013) 119:3821–9. 

doi:10.1002/cncr.28306 

 64. Jaiswal BS, Janakiraman V, Kljavin NM, Eastham-Anderson J, Cupp JE, Liang 

Y, et al. Combined targeting of BRAF and CRAF or BRAF and PI3K e�ector 

pathways is required for e�cacy in NRAS mutant tumors. PLoS One (2009) 

4:e5717. doi:10.1371/journal.pone.0005717 

 65. Lin J, Takata M, Murata H, Goto Y, Kido K, Ferrone S, et al. Polyclonality 

of BRAF mutations in acquired melanocytic nevi. J Natl Cancer Inst (2009) 

101:1423–7. doi:10.1093/jnci/djp309 

 66. Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, et al. 

BRAF/NRAS mutation frequencies among primary tumors and metastases 

in patients with melanoma. J Clin Oncol (2012) 30:2522–9. doi:10.1200/

JCO.2011.41.2452

 67. Yancovitz M, Litterman A, Yoon J, Ng E, Shapiro RL, Berman RS, et  al. 

Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary 

and metastatic melanoma. PLoS One (2012) 7:e29336. doi:10.1371/journal.

pone.0029336 

 68. Colombino M, Sini M, Lissia A, De Giorgi V, Stanganelli I, Ayala F, et  al. 

Discrepant alterations in main candidate genes among multiple primary 

melanomas. J Transl Med (2014) 12:117. doi:10.1186/1479-5876-12-117 

 69. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et  al. 

Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N 

Engl J Med (2014) 371:1867–76. doi:10.1056/NEJMoa1408868 

 70. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin 

J, et  al. Combined BRAF and MEK inhibition versus BRAF inhibition 

alone in melanoma. N Engl J Med (2014) 371:1877–88. doi:10.1056/

NEJMoa1406037 

 71. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, 

Stroiakovski D, et al. Improved overall survival in melanoma with combined 

dabrafenib and trametinib. N Engl J Med (2015) 372:30–9. doi:10.1056/

NEJMoa1412690 

 72. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. �e molecular 

evolution of acquired resistance to targeted EGFR blockade in colorectal 

cancers. Nature (2012) 486:537–40. doi:10.1038/nature11219 

 73. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt 

AJ, et al. Mechanisms of resistance to crizotinib in patients with ALK gene 

rearranged non-small cell lung cancer. Clin Cancer Res (2012) 18:1472–82. 

doi:10.1158/1078-0432.CCR-11-2906 

 74. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et  al. 

Emergence of KRAS mutations and acquired resistance to anti-EGFR ther-

apy in colorectal cancer. Nature (2012) 486:532–6. doi:10.1038/nature11156 

 75. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, 

et al. �e genetic landscape of clinical resistance to RAF inhibition in met-

astatic melanoma. Cancer Discov (2014) 4:94–109. doi:10.1158/2159-8290.

CD-13-0617 

 76. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, et  al. 

PTEN loss confers BRAF inhibitor resistance to melanoma cells through 

the suppression of BIM expression. Cancer Res (2011) 71:2750–60. 

doi:10.1158/0008-5472.CAN-10-2954 

 77. Lee EK, Lian Z, D’Andrea K, Letrero R, Sheng W, Liu S, et al. �e FBXO4 

tumor suppressor functions as a barrier to BrafV600E-dependent metastatic 

melanoma. Mol Cell Biol (2013) 33:4422–33. doi:10.1128/MCB.00706-13 

 78. Whittaker SR, �eurillat JP, Van Allen E, Wagle N, Hsiao J, Cowley GS, et al. 

A genome-scale RNA interference screen implicates NF1 loss in resistance 

to RAF inhibition. Cancer Discov (2013) 3:350–62. doi:10.1158/2159-8290.

CD-12-0470 

 79. Chen J, Shen Q, Labow M, Gaither LA. Protein kinase D3 sensitizes RAF 

inhibitor RAF265 in melanoma cells by preventing reactivation of MAPK sig-

naling. Cancer Res (2011) 71:4280–91. doi:10.1158/0008-5472.CAN-10-3761 

 80. Carlino MS, Todd JR, Gowrishankar K, Mijatov B, Pupo GM, Fung C, et al. 

Di�erential activity of MEK and ERK inhibitors in BRAF inhibitor resistant 

melanoma. Mol Oncol (2014) 8:544–54. doi:10.1016/j.molonc.2014.01.003 

 81. Nissan MH, Pratilas CA, Jones AM, Ramirez R, Won H, Liu C, et al. Loss 

of NF1 in cutaneous melanoma is associated with RAS activation and 

MEK dependence. Cancer Res (2014) 74:2340–50. doi:10.1158/0008-5472.

CAN-13-2625 

 82. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. 

RAF inhibitor resistance is mediated by dimerization of aberrantly spliced 

BRAF(V600E). Nature (2011) 480:387–90. doi:10.1038/nature10662 

 83. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et  al. Melanomas 

acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregula-

tion. Nature (2010) 468:973–7. doi:10.1038/nature09626 

 84. Miao B, Ji Z, Tan L, Taylor M, Zhang J, Choi HG, et al. EPHA2 is a mediator of 

vemurafenib resistance and a novel therapeutic target in melanoma. Cancer 

Discov (2015) 5:274–87. doi:10.1158/2159-8290.CD-14-0295

 85. Paraiso KH, Das �akur M, Fang B, Koomen JM, Fedorenko IV, John JK, 

et al. Ligand-independent EPHA2 signaling drives the adoption of a targeted 

therapy-mediated metastatic melanoma phenotype. Cancer Discov (2015) 

5:264–73. doi:10.1158/2159-8290.CD-14-0293

 86. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. 

Tumour micro-environment elicits innate resistance to RAF inhibitors 

through HGF secretion. Nature (2012) 487:500–4. doi:10.1038/nature11183 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1158/1535-7163.MCT-11-0989
http://dx.doi.org/10.1002/cam4.50
http://dx.doi.org/10.1007/s11912-013-0336-2
http://dx.doi.org/10.1038/nrc969
http://dx.doi.org/10.1080/07357900802087275
http://dx.doi.org/10.1097/CCO.0b013e32833888ee
http://dx.doi.org/10.1097/CCO.0b013e32833888ee
http://dx.doi.org/10.1038/sj.onc.1209379
http://dx.doi.org/10.1038/sj.onc.1209379
http://dx.doi.org/10.1097/01.cmr.0000215035.38436.87
http://dx.doi.org/10.1186/1479-5876-11-202
http://dx.doi.org/10.1158/1078-0432.CCR-12-0052
http://dx.doi.org/10.1038/nrc3218
http://dx.doi.org/10.1038/nrc3218
http://dx.doi.org/10.1186/s12967-014-0277-z
http://dx.doi.org/10.1016/S1470-2045(14)70072-5
http://dx.doi.org/10.1016/S1470-2045(14)70072-5
http://dx.doi.org/10.1038/bjc.2014.476
http://dx.doi.org/10.1038/bjc.2014.476
http://dx.doi.org/10.1016/j.canlet.2015.01.016
http://dx.doi.org/10.1186/1756-8722-6-27
http://dx.doi.org/10.2147/OTT.S51596
http://dx.doi.org/10.2217/fon.14.89
http://dx.doi.org/10.1002/cncr.28306
http://dx.doi.org/10.1371/journal.pone.0005717
http://dx.doi.org/10.1093/jnci/djp309
http://dx.doi.org/10.1200/JCO.2011.41.2452
http://dx.doi.org/10.1200/JCO.2011.41.2452
http://dx.doi.org/10.1371/journal.pone.0029336
http://dx.doi.org/10.1371/journal.pone.0029336
http://dx.doi.org/10.1186/1479-5876-12-117
http://dx.doi.org/10.1056/NEJMoa1408868
http://dx.doi.org/10.1056/NEJMoa1406037
http://dx.doi.org/10.1056/NEJMoa1406037
http://dx.doi.org/10.1056/NEJMoa1412690
http://dx.doi.org/10.1056/NEJMoa1412690
http://dx.doi.org/10.1038/nature11219
http://dx.doi.org/10.1158/1078-0432.CCR-11-2906
http://dx.doi.org/10.1038/nature11156
http://dx.doi.org/10.1158/2159-8290.CD-13-0617
http://dx.doi.org/10.1158/2159-8290.CD-13-0617
http://dx.doi.org/10.1158/0008-5472.CAN-10-2954
http://dx.doi.org/10.1128/MCB.00706-13
http://dx.doi.org/10.1158/2159-8290.CD-12-0470
http://dx.doi.org/10.1158/2159-8290.CD-12-0470
http://dx.doi.org/10.1158/0008-5472.CAN-10-3761
http://dx.doi.org/10.1016/j.molonc.2014.01.003
http://dx.doi.org/10.1158/0008-5472.CAN-13-2625
http://dx.doi.org/10.1158/0008-5472.CAN-13-2625
http://dx.doi.org/10.1038/nature10662
http://dx.doi.org/10.1038/nature09626
http://dx.doi.org/10.1158/2159-8290.CD-14-0295
http://dx.doi.org/10.1158/2159-8290.CD-14-0293
http://dx.doi.org/10.1038/nature11183


August 2015 | Volume 5 | Article 18314

Palmieri et al. Complex molecular features in melanoma pathogenesis

Frontiers in Oncology | www.frontiersin.org

 87. Carlino MS, Gowrishankar K, Saunders CA, Pupo GM, Snoyman S, Zhang 

XD, et  al. Antiproliferative e�ects of continued mitogen-activated protein 

kinase pathway inhibition following acquired resistance to BRAF and/

or MEK inhibition in melanoma. Mol Cancer �er (2013) 12:1332–42. 

doi:10.1158/1535-7163.MCT-13-0011 

 88. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, 

Cipolla AK, et  al. Acquired resistance to BRAF inhibitors mediated by a 

RAF kinase switch in melanoma can be overcome by cotargeting MEK and 

IGF- 1R/PI3K. Cancer Cell (2010) 18:683–95. doi:10.1016/j.ccr.2010.11.023 

 89. Liu F, Cao J, Wu J, Sullivan K, Shen J, Ryu B, et al. Stat3-targeted therapies 

overcome the acquired resistance to vemurafenib in melanomas. J Invest 

Dermatol (2013) 133:2041–9. doi:10.1038/jid.2013.32 

 90. Vultur A, Villanueva J, Krepler C, Rajan G, Chen Q, Xiao M, et  al. MEK 

inhibition a�ects STAT3 signaling and invasion in human melanoma cell 

lines. Oncogene (2014) 33:1850–61. doi:10.1038/onc.2013.131 

 91. Griewank KG, Scolyer RA, �ompson JF, Flaherty KT, Schadendorf D, Murali R.  

Genetic alterations and personalized medicine in melanoma: progress and 

future prospects. J Natl Cancer Inst (2014) 106:djt435. doi:10.1093/jnci/

djt435 

 92. Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ, et  al. Reactivation of 

 mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/

Ras mediates resistance to vemurafenib in human B-RAF V600E mutant mela-

noma. J Biol Chem (2012) 287:28087–98. doi:10.1074/jbc.M112.377218 

 93. Curry JL, Torres-Cabala CA, Kim KB, Tetzla� MT, Duvic M, Tsai KY, et al. 

Dermatologic toxicities to targeted cancer therapy: shared clinical and histo-

logic adverse skin reactions. Int J Dermatol (2014) 53:376–84. doi:10.1111/

ijd.12205 

 94. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, 

et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and 

enhance growth. Nature (2010) 464:431–5. doi:10.1038/nature08833 

 95. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, 

et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progres-

sion through CRAF. Cell (2010) 140:209–21. doi:10.1016/j.cell.2009.12.040 

 96. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors 

transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. 

Nature (2010) 464:427–30. doi:10.1038/nature08902 

 97. Mandalà M, Voit C. Targeting BRAF in melanoma: biological and clinical 

challenges. Crit Rev Oncol Hematol (2013) 87:239–55. doi:10.1016/j.

critrevonc.2013.01.003 

 98. Romano E, Pradervand S, Paillusson A, Weber J, Harshman K, Muehlethaler 

K, et al. Identi�cation of multiple mechanisms of resistance to vemurafenib 

in a patient with BRAFV600E-mutated cutaneous melanoma successfully 

rechallenged a�er progression. Clin Cancer Res (2013) 19:5749–57. 

doi:10.1158/1078-0432.CCR-13-0661 

 99. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, 

Engelman JA. BRAF gene ampli�cation can promote acquired resistance 

to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. 

Sci Signal (2010) 3:ra84. doi:10.1126/scisignal.2001148 

 100. Dhas �akur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque 

MP, et al. Modelling vemurafenib resistance in melanoma reveals a strategy to 

forestall drug resistance. Nature (2013) 494:251–5. doi:10.1038/nature11814 

 101. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al. Widespread 

potential for growth-factor driven resistance to anticancer kinase inhibitors. 

Nature (2012) 487:505–9. doi:10.1038/nature11249 

 102. Ucar DA, Kurenova E, Garrett TJ, Cance WG, Nyberg C, Cox A, et  al. 

Disruption of the protein interaction between FAK and IGF- 1R inhibits 

melanoma tumor growth. Cell Cycle (2012) 11:3250–9. doi:10.4161/cc.21611 

 103. Hartsough EJ, Aplin AE. A STATement on vemurafenib-resistant melanoma. 

J Invest Dermatol (2013) 133:1928–9. doi:10.1038/jid.2013.136 

 104. Becker TM, Boyd SC, Mijatov B, Gowrishankar K, Snoyman S, Pupo GM, 

et al. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 tran-

scription factor. Oncogene (2014) 33:1158–66. doi:10.1038/onc.2013.45 

 105. Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, et al. STAT3 mediates 

resistance to MEK inhibitor through microRNA miR- 17. Cancer Res (2011) 

71:3658–68. doi:10.1158/0008-5472.CAN-10-3647 

 106. Johannessen CM, Boehm JS, Kim SY, �omas SR, Wardwell L, Johnson LA, 

et al. COT drives resistance to RAF inhibition through MAP kinase pathway 

reactivation. Nature (2010) 468:968–72. doi:10.1038/nature09627 

 107. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, �eurillat JP, 

et al. A landscape of driver mutations in melanoma. Cell (2012) 150:251–63. 

doi:10.1016/j.cell.2012.06.024 

 108. Deng W, Gopal YN, Scott A, Chen G, Woodman SE, Davies MA. Role 

and therapeutic potential of PI3K-mTOR signaling in de novo resistance 

to BRAF inhibition. Pigment Cell Melanoma Res (2012) 25:248–58. 

doi:10.1111/j.1755-148X.2011.00950.x 

 109. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et  al. Acquired 

resistance and clonal evolution in melanoma during BRAF inhibitor therapy. 

Cancer Discov (2014) 4:80–93. doi:10.1158/2159-8290.CD-13-0642 

 110. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et  al. An 

epithelial-mesenchymal transition gene signature predicts resistance to 

EGFR and PI3K inhibitors and identi�es Axl as a therapeutic target for 

overcoming EGFR inhibitor resistance. Clin Cancer Res (2013) 19:279–90. 

doi:10.1158/1078-0432.CCR-12-1558 

 111. Kemper K, de Goeje PL, Peeper DS, van Amerongen R. Phenotype switching: 

tumor cell plasticity as a resistance mechanism and target for therapy. Cancer 

Res (2014) 74:5937–41. doi:10.1158/0008-5472.CAN-14-1174 

 112. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, 

Piris A, et al. A melanoma cell state distinction in�uences sensitivity to MAPK 

pathway inhibitors. Cancer Discov (2014) 4:816–27. doi:10.1158/2159-8290.

CD-13-0424 

 113. Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte 

development and melanoma oncogene. Trends Mol Med (2006) 12:406–14. 

doi:10.1016/j.molmed.2006.07.008 

 114. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, et al. 

Critical role of CDK2 for melanoma growth linked to its melanocyte-spe-

ci�c transcriptional regulation by MITF. Cancer Cell (2004) 6:565–76. 

doi:10.1016/j.ccr.2004.10.014 

 115. Zipser MC, Eichho� OM, Widmer DS, Schlegel NC, Schoenewolf NL, Stuart 

D, et al. A proliferative melanoma cell phenotype is responsive to RAF/ MEK 

inhibition independent of BRAF mutation status. Pigment Cell Melanoma Res 

(2011) 24:326–33. doi:10.1111/j.1755-148X.2010.00823.x 

 116. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. 

Intratumor heterogeneity and branched evolution revealed by multiregion 

sequencing. N Engl J Med (2012) 366:883–92. doi:10.1056/NEJMoa1113205 

 117. Neelakantan D, Drasin DJ, Ford HL. Intratumoral heterogeneity: clonal 

cooperation in epithelial-to-mesenchymal transition and metastasis. Cell 

Adh Migr (2014) 16:0. doi:10.4161/19336918.2014.972761 

 118. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell (2008) 

132:27–42. doi:10.1016/j.cell.2007.12.018 

 119. Klionsky DJ. Autophagy. Curr Biol (2005) 15:R282–3. doi:10.1016/j.

cub.2005.04.013 

 120. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adapta-

tions. Nat Cell Biol (2007) 9:1102–9. doi:10.1038/ncb1007-1102 

 121. Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy 

regulation in mammalian cells. Cell Res (2010) 20:748–62. doi:10.1038/

cr.2010.82 

 122. Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, 

et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell 

Death Di�er (2009) 16:87–93. doi:10.1038/cdd.2008.131 

 123. Woodard J, Platanias LC. AMP-activated kinase (AMPK)-generated signals 

in malignant melanoma cell growth and survival. Biochem Biophys Res 

Commun (2010) 398:135–9. doi:10.1016/j.bbrc.2010.06.052 

 124. Pollak M. Metformin and other biguanides in oncology: advancing the 

research agenda. Cancer Prev Res (Phila) (2010) 3:1060–5. doi:10.1158/1940-

6207.CAPR-10-0175 

 125. Janjetovic K, Harhaji-Trajkovic L, Misirkic-Marjanovic M, Vucicevic 

L, Stevanovic D, Zogovic N, et  al. In  vitro and in  vivo anti-melanoma 

action of metformin. Eur J Pharmacol (2011) 668:373–82. doi:10.1016/j.

ejphar.2011.07.004 

 126. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. 

Dimethylbiguanide inhibits cell respiration via an indirect e�ect targeted on 

the respiratory chain complex I. J Biol Chem (2000) 275:223–8. doi:10.1074/

jbc.275.1.223 

 127. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-di-

abetic e�ects through inhibition of complex 1 of the mitochondrial respira-

tory chain. Biochem J (2000) 348:607–14. doi:10.1042/0264-6021:3480607 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1158/1535-7163.MCT-13-0011
http://dx.doi.org/10.1016/j.ccr.2010.11.023
http://dx.doi.org/10.1038/jid.2013.32
http://dx.doi.org/10.1038/onc.2013.131
http://dx.doi.org/10.1093/jnci/djt435
http://dx.doi.org/10.1093/jnci/djt435
http://dx.doi.org/10.1074/jbc.M112.377218
http://dx.doi.org/10.1111/ijd.12205
http://dx.doi.org/10.1111/ijd.12205
http://dx.doi.org/10.1038/nature08833
http://dx.doi.org/10.1016/j.cell.2009.12.040
http://dx.doi.org/10.1038/nature08902
http://dx.doi.org/10.1016/j.critrevonc.2013.01.003
http://dx.doi.org/10.1016/j.critrevonc.2013.01.003
http://dx.doi.org/10.1158/1078-0432.CCR-13-0661
http://dx.doi.org/10.1126/scisignal.2001148
http://dx.doi.org/10.1038/nature11814
http://dx.doi.org/10.1038/nature11249
http://dx.doi.org/10.4161/cc.21611
http://dx.doi.org/10.1038/jid.2013.136
http://dx.doi.org/10.1038/onc.2013.45
http://dx.doi.org/10.1158/0008-5472.CAN-10-3647
http://dx.doi.org/10.1038/nature09627
http://dx.doi.org/10.1016/j.cell.2012.06.024
http://dx.doi.org/10.1111/j.1755-148X.2011.00950.x
http://dx.doi.org/10.1158/2159-8290.CD-13-0642
http://dx.doi.org/10.1158/1078-0432.CCR-12-1558
http://dx.doi.org/10.1158/0008-5472.CAN-14-1174
http://dx.doi.org/10.1158/2159-8290.CD-13-0424
http://dx.doi.org/10.1158/2159-8290.CD-13-0424
http://dx.doi.org/10.1016/j.molmed.2006.07.008
http://dx.doi.org/10.1016/j.ccr.2004.10.014
http://dx.doi.org/10.1111/j.1755-148X.2010.00823.x
http://dx.doi.org/10.1056/NEJMoa1113205
http://dx.doi.org/10.4161/19336918.2014.972761
http://dx.doi.org/10.1016/j.cell.2007.12.018
http://dx.doi.org/10.1016/j.cub.2005.04.013
http://dx.doi.org/10.1016/j.cub.2005.04.013
http://dx.doi.org/10.1038/ncb1007-1102
http://dx.doi.org/10.1038/cr.2010.82
http://dx.doi.org/10.1038/cr.2010.82
http://dx.doi.org/10.1038/cdd.2008.131
http://dx.doi.org/10.1016/j.bbrc.2010.06.052
http://dx.doi.org/10.1158/1940-6207.CAPR-10-0175
http://dx.doi.org/10.1158/1940-6207.CAPR-10-0175
http://dx.doi.org/10.1016/j.ejphar.2011.07.004
http://dx.doi.org/10.1016/j.ejphar.2011.07.004
http://dx.doi.org/10.1074/jbc.275.1.223
http://dx.doi.org/10.1074/jbc.275.1.223
http://dx.doi.org/10.1042/0264-6021:3480607


August 2015 | Volume 5 | Article 18315

Palmieri et al. Complex molecular features in melanoma pathogenesis

Frontiers in Oncology | www.frontiersin.org

 128. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, Depinho RA, 

et al. �e tumor suppressor LKB1 kinase directly activates AMP-activated 

kinase and regulates apoptosis in response to energy stress. Proc Natl Acad 

Sci U S A (2004) 101:3329–35. doi:10.1073/pnas.0308061100 

 129. Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control 

of metabolism and cell growth. Future Oncol (2010) 6:457–70. doi:10.2217/

fon.09.174 

 130. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, Deberardinis RJ, Zhao F, 

et  al. Systemic treatment with the antidiabetic drug metformin selectively 

impairs p53-de�cient tumor cell growth. Cancer Res (2007) 67:6745–52. 

doi:10.1158/0008-5472.CAN-06-4447 

 131. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. 

Targeting cancer cell metabolism: the combination of metformin and 2-deox-

yglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer 

Res (2010) 70:2465–75. doi:10.1158/0008-5472.CAN-09-2782 

 132. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et  al. 

Metformin inhibits melanoma development through autophagy and 

apoptosis mechanisms. Cell Death Dis (2011) 2:e199. doi:10.1038/

cddis.2011.86 

 133. Petti C, Vegetti C, Molla A, Bersani I, Cleris L, Mustard KJ, et  al. AMPK 

activators inhibit the proliferation of human melanomas bearing the 

activated MAPK pathway. Melanoma Res (2012) 22:341–50. doi:10.1097/

CMR.0b013e3283544929 

 134. Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH, et  al. 

Phenformin enhances the therapeutic bene�t of BRAF(V600E) inhibition 

in melanoma. Proc Natl Acad Sci U S A (2013) 110:18226–31. doi:10.1073/

pnas.1317577110 

 135. Niehr F, von Euw E, Attar N, Guo D, Matsunaga D, Sazegar H, et  al. 

Combination therapy with vemurafenib (PLX4032/RG7204) and metformin 

in melanoma cell lines with distinct driver mutations. J Transl Med (2011) 

9:76. doi:10.1186/1479-5876-9-76 

 136. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, 

et al. Overcoming intrinsic multidrug resistance in melanoma by blocking 

the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. 

Cancer Cell (2013) 23:811–25. doi:10.1016/j.ccr.2013.05.003 

 137. Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S, et  al. 

Secretome from senescent melanoma engages the STAT3 pathway to favor 

reprogramming of naive melanoma towards a tumor-initiating cell pheno-

type. Oncotarget (2013) 4:2212–24. 

 138. Hoek KS, Goding CR. Cancer stem cells versus phenotype-switch-

ing in melanoma. Pigment Cell Melanoma Res (2010) 23:746–59. 

doi:10.1111/j.1755-148X.2010.00757.x 

 139. Cerezo M, Tomic T, Ballotti R, Rocchi S. Is it time to test biguanide metformin 

in the treatment of melanoma? Pigment Cell Melanoma Res (2015) 28:8–20. 

doi:10.1111/pcmr.12267 

 140. Frank A, David V, Aurelie TR, Florent G, William H, Philippe B. Regulation of 

MMPs during melanoma progression: from genetic to epigenetic. Anticancer 

Agents Med Chem (2012) 12:773–82. doi:10.2174/187152012802650228 

 141. Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W. Genome-wide analysis 

of noncoding regulatory mutations in cancer. Nat Genet (2014) 46:1160–5. 

doi:10.1038/ng.3101 

 142. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT 

promoter mutations in familial and sporadic melanoma. Science (2013) 

339:959–61. doi:10.1126/science.1230062 

 143. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly 

recurrent TERT promoter mutations in human melanoma. Science (2013) 

339:957–9. doi:10.1126/science.1229259 

 144. Carbone M, Ferris LK, Baumann F, Napolitano A, Lum CA, Flores 

EG, et  al. BAP1 cancer syndrome: malignant mesothelioma, uveal 

and cutaneous melanoma, and MBAITs. J Transl Med (2012) 10:179. 

doi:10.1186/1479-5876-10-179 

 145. Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, et al. Rare 

missense variants in POT1 predispose to familial cutaneous malignant 

melanoma. Nat Genet (2014) 46:482–6. doi:10.1038/ng.2941 

 146. Loayza D, De Lange T. POT1 as a terminal transducer of TRF1 telomere 

length control. Nature (2003) 423:1013–8. doi:10.1038/nature01688 

 147. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev 

Genet (2008) 42:301–34. doi:10.1146/annurev.genet.41.110306.130350 

 148. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z, 

et al. POT1 loss-of-function variants predispose to familial melanoma. Nat 

Genet (2014) 46:478–81. doi:10.1038/ng.2947 

 149. Sarris M, Nikolaou K, Talianidis I. Context-speci�c regulation of cancer epig-

enomes by histone and transcription factor methylation. Oncogene (2012) 

33:1207–17. doi:10.1038/onc.2013.87 

 150. Mehrotra A, Mehta G, Aras S, Trivedi A, de la Serna IL. SWI/SNF chromatin 

remodeling enzymes in melanocyte di�erentiation and melanoma. Crit Rev 

Eukaryot Gene Expr (2014) 24:151–61. doi:10.1615/CritRevEukaryotGeneE

xpr.2014007882 

 151. Kuźbicki L, Lange D, Straczyńska-Niemiec A, Chwirot BW. JARID1B expres-

sion in human melanoma and benign melanocytic skin lesions. Melanoma 

Res (2013) 23:8–12. doi:10.1097/CMR.0b013e32835d5d6f 

 152. Chang X, Sun Y, Han S, Zhu W, Zhang H, Lian S. miR-203 inhibits mela-

noma invasive and proliferative abilities by targeting the polycomb group 

gene BMI1. Biochem Biophys Res Commun (2015) 456:361–6. doi:10.1016/j.

bbrc.2014.11.087 

 153. Ti�en J, Gallagher SJ, Hersey P. EZH2: an emerging role in melanoma biol-

ogy and strategies for targeted therapy. Pigment Cell Melanoma Res (2015) 

28:21–30. doi:10.1111/pcmr.12280 

 154. van den Hurk K, Niessen HE, Veeck J, van den Oord JJ, van Steensel MA, 

Zur Hausen A, et  al. Genetics and epigenetics of cutaneous malignant 

melanoma: a concert out of tune. Biochim Biophys Acta (2012) 1826:89–102. 

doi:10.1016/j.bbcan.2012.03.011 

 155. Greenberg ES, Chong KK, Huynh KT, Tanaka R, Hoon DS. Epigenetic 

biomarkers in skin cancer. Cancer Lett (2014) 342:170–7. doi:10.1016/j.

canlet.2012.01.020 

 156. Xia C, Leon-Ferre R, Laux D, Deutsch J, Smith BJ, Frees M, et al. Treatment of 

resistant metastatic melanoma using sequential epigenetic therapy (decitabine 

and panobinostat) combined with chemotherapy (temozolomide). Cancer 

Chemother Pharmacol (2014) 74:691–7. doi:10.1007/s00280-014-2501-1 

 157. Griewank KG, Ugurel S, Schadendorf D, Paschen A. New developments in 

biomarkers for melanoma. Curr Opin Oncol (2013) 25:145–51. doi:10.1097/

CCO.0b013e32835dafdf 

 158. La Porta CA. Melanoma and epigenetic treatment: past and future. Anticancer 

Agents Med Chem (2012) 12:202–9. doi:10.2174/187152012800228760 

 159. Geutjes EJ, Bajpe PK, Bernards R. Targeting the epigenome for treatment of 

cancer. Oncogene (2012) 31:3827–44. doi:10.1038/onc.2011.552 

 160. Vader G, Lens SM. �e aurora kinase family in cell division and cancer. 

Biochim Biophys Acta (2008) 1786:60–72. doi:10.1016/j.bbcan.2008.07.003

 161. Mahen R, Venkitaraman AR. Pattern formation in centrosome assembly. 

Curr Opin Cell Biol (2012) 24:14–23. doi:10.1016/j.ceb.2011.12.012 

 162. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like 

kinases and aurora kinases in cancer. Nat Rev Cancer (2010) 10:825–41. 

doi:10.1038/nrc2964 

 163. Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL Jr, Golemis EA. 

Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol 

Life Sci (2013) 70:661–87. doi:10.1007/s00018-012-1073-7 

 164. Lim KH, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, et  al. 

Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. 

Mol Cell Biol (2010) 30:508–23. doi:10.1128/MCB.00916-08 

 165. Zeng WF, Navaratne K, Prayson RA, Weil RJ. Aurora B expression correlates 

with aggressive behaviour in glioblastoma multiforme. J Clin Pathol (2007) 

60:218–21. doi:10.1136/jcp.2006.036806 

 166. Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, et  al. 

Phosphorylation by aurora kinase A induces Mdm2-mediated destabi-

lization and inhibition of p53. Nat Genet (2004) 36:55–62. doi:10.1038/

ng1279 

 167. Caputo E, Miceli R, Motti ML, Taté R, Fratangelo F, Botti G, et al. AurkA 

inhibitors enhance the e�ects of B-RAF and MEK inhibitors in melanoma 

treatment. J Transl Med (2014) 12:216. doi:10.1186/s12967-014-0216-z 

 168. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J, et al. Beyond 

BRAF(V600): clinical mutation panel testing by next-generation sequencing 

in advanced melanoma. J Invest Dermatol (2015) 135:508–15. doi:10.1038/

jid.2014.366 

 169. Palmieri G, Colombino M, Sini MC, Manca A, Ascierto PA, Cossu M. 

Resistance to targeted therapies in melanoma: new insights. EMJ Dermatol 

(2013) 1:24–37. 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1073/pnas.0308061100
http://dx.doi.org/10.2217/fon.09.174
http://dx.doi.org/10.2217/fon.09.174
http://dx.doi.org/10.1158/0008-5472.CAN-06-4447
http://dx.doi.org/10.1158/0008-5472.CAN-09-2782
http://dx.doi.org/10.1038/cddis.2011.86
http://dx.doi.org/10.1038/cddis.2011.86
http://dx.doi.org/10.1097/CMR.0b013e3283544929
http://dx.doi.org/10.1097/CMR.0b013e3283544929
http://dx.doi.org/10.1073/pnas.1317577110
http://dx.doi.org/10.1073/pnas.1317577110
http://dx.doi.org/10.1186/1479-5876-9-76
http://dx.doi.org/10.1016/j.ccr.2013.05.003
http://dx.doi.org/10.1111/j.1755-148X.2010.00757.x
http://dx.doi.org/10.1111/pcmr.12267
http://dx.doi.org/10.2174/187152012802650228
http://dx.doi.org/10.1038/ng.3101
http://dx.doi.org/10.1126/science.1230062
http://dx.doi.org/10.1126/science.1229259
http://dx.doi.org/10.1186/1479-5876-10-179
http://dx.doi.org/10.1038/ng.2941
http://dx.doi.org/10.1038/nature01688
http://dx.doi.org/10.1146/annurev.genet.41.110306.130350
http://dx.doi.org/10.1038/ng.2947
http://dx.doi.org/10.1038/onc.2013.87
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2014007882
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2014007882
http://dx.doi.org/10.1097/CMR.0b013e32835d5d6f
http://dx.doi.org/10.1016/j.bbrc.2014.11.087
http://dx.doi.org/10.1016/j.bbrc.2014.11.087
http://dx.doi.org/10.1111/pcmr.12280
http://dx.doi.org/10.1016/j.bbcan.2012.03.011
http://dx.doi.org/10.1016/j.canlet.2012.01.020
http://dx.doi.org/10.1016/j.canlet.2012.01.020
http://dx.doi.org/10.1007/s00280-014-2501-1
http://dx.doi.org/10.1097/CCO.0b013e32835dafdf
http://dx.doi.org/10.1097/CCO.0b013e32835dafdf
http://dx.doi.org/10.2174/187152012800228760
http://dx.doi.org/10.1038/onc.2011.552
http://dx.doi.org/10.1016/j.bbcan.2008.07.003
http://dx.doi.org/10.1016/j.ceb.2011.12.012
http://dx.doi.org/10.1038/nrc2964
http://dx.doi.org/10.1007/s00018-012-1073-7
http://dx.doi.org/10.1128/MCB.00916-08
http://dx.doi.org/10.1136/jcp.2006.036806
http://dx.doi.org/10.1038/ng1279
http://dx.doi.org/10.1038/ng1279
http://dx.doi.org/10.1186/s12967-014-0216-z
http://dx.doi.org/10.1038/jid.2014.366
http://dx.doi.org/10.1038/jid.2014.366


August 2015 | Volume 5 | Article 18316

Palmieri et al. Complex molecular features in melanoma pathogenesis

Frontiers in Oncology | www.frontiersin.org

 170. Hu-Lieskovan S, Robert L, Homet Moreno B, Ribas A. Combining 

targeted therapy with immunotherapy in BRAF-mutant melanoma: 

promise and challenges. J Clin Oncol (2014) 32:2248–54. doi:10.1200/

JCO.2013.52.1377 

 171. Mahoney KM, Freeman GJ, McDermott DF. �e next immune-checkpoint 

inhibitors: PD-1/PD-L1 blockade in melanoma. Clin �er (2015) 37(4):764–82.  

doi:10.1016/j.clinthera.2015.02.018 

 172. Kunz M. Oncogenes in melanoma: an update. Eur J Cell Biol (2014) 93:1–10. 

doi:10.1016/j.ejcb.2013.12.002 

Con�ict of Interest Statement: Paolo Antonio Ascierto is consultant of Bristol 

Myers Squibb, MSD, and Roche-Genentech. He participated in the Advisory 

Board for Bristol Myers  Squibb, MSD, Roche-Genentech, GSK, Amgen, Celgene, 

Medimmune, and Novartis. He received honoraria from Brystol Myers Squibb, 

MSD, and Roche-Genentech. All remaining authors declare the absence of any 

Con�ict of Interest.

Copyright © 2015 Palmieri, Ombra, Colombino, Casula, Sini, Manca, Paliogiannis, 

Ascierto and Cossu. �is is an open-access article distributed under the terms of the 

Creative Commons Attribution License (CC BY). �e use, distribution or reproduc-

tion in other forums is permitted, provided the original author(s) or licensor are 

credited and that the original publication in this journal is cited, in accordance with 

accepted academic practice. No use, distribution or reproduction is permitted which 

does not comply with these terms.

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://dx.doi.org/10.1200/JCO.2013.52.1377
http://dx.doi.org/10.1200/JCO.2013.52.1377
http://dx.doi.org/10.1016/j.clinthera.2015.02.018
http://dx.doi.org/10.1016/j.ejcb.2013.12.002
http://creativecommons.org/licenses/by/4.0/

	Multiple molecular pathways in melanomagenesis: characterization of therapeutic targets
	Introduction
	Mechanisms of Melanomagenesis
	CDKN2A-Dependent Pathway
	MAPK-Dependent Pathway
	PI3K-Dependent Pathway
	Other Proliferation-Controlling Effectors

	Molecular Subtypes of Melanoma
	Resistance to Targeted Therapies in MAPK and NRAS Subtypes
	Intrinsic Resistance
	Acquired Resistance
	RAS Activation
	Changes in BRAF
	ERK Activation via Alternative Kinases
	Reactivation of MEK-ERK Pathway
	Resistance Through Phenotype Switching

	Alternative Pathways in Melanoma Growth
	Autophagy
	Metformin and Autophagy in Melanoma

	Additional Mutated Genes
	Epigenetic Targets
	Aurora Kinases
	Future Perspectives
	Author Contributions
	Acknowledgments
	References


