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Multiple myeloma (MM) is an incurable plasma cell malignancy with a heterogeneous
genetic background. Each MM subtype may have its own therapeutic vulnerabilities, and
tailored therapy could improve outcomes. However, the cumulative frequency of
druggable targets across patients is very low, which has precluded the widespread
adoption of precision therapy for patients with MM. Amplification of the long arm of
chromosome 1 (Amp1q) is one of the most frequent genetic alterations observed in
patients with MM, and its presence predicts inferior outcomes in the era of proteasome
inhibitors and immunomodulatory agents. Therefore, establishing precision medicine for
MM patients with Amp1q stands to benefit a large portion of patients who are otherwise at
higher risk of relapse. In this article, we review the prevalence and clinical significance of
Amp1q in patients with MM, its pathogenesis and therapeutic vulnerabilities, and discuss
the opportunities and challenges for Amp1q-targeted therapy.
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BACKGROUND

Multiple myeloma (MM) is an incurable plasma cell malignancy that is usually confined to the bone
marrow (1). It is preceded by two asymptomatic conditions, monoclonal gammopathy of
undetermined significance (MGUS) and smoldering multiple myeloma (SMM) (2). These are
delineated by the amount of tumor detected in the bone marrow or monoclonal protein detected
in the blood, and thus have a different risk of progression to overt disease (2). Approximately 5% of
people over the age of 40, and 17% of Black people over the age of 50 have MGUS (3, 4), but on
average only 1% of those will develop MM every year (5). As such, despite the high prevalence of
gammopathy in the general population, MM accounts for 1% of all cancers (1). Approximately 0.5% of
people over the age of 40 years have SMM (6); their progression risk follows a logistic growth model
with a yearly risk of 10% for the first 5 years and a gradual decrease in risk after that until an MGUS-
like slope is reached (7). The mixed nature of this risk pattern indicates that, while useful, the clinical
definitions of MGUS and SMM are broad and encompass multiple biological entities (8–13). Likewise,
the clinical entity of MM is, in biological terms, a collection of different entities with similar cell
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morphology and clinical presentation (14). Cytogenetics-based
and gene expression-based classifications of MM have been
validated and delineate several subtypes of disease with variable
outcomes (15–19). Since their underlying biology is different, it is
reasonable to assume that each subtype may have its own
therapeutic vulnerabilities and that tailored therapy or precision
medicine may improve patient outcomes (20, 21). In practice,
though, today the only subtype with an actionable, class-wide
vulnerability is MM with translocation t(11;14), which is sensitive
to BCL2 inhibition (20, 22, 23). Arguably, MMwith t(11;14) is also
the subtype with the most distinctive biological characteristics,
including lymphoplasmacytic morphology, frequent expression of
B-cell surface antigens, and a possible origin in bone marrow pro-
B cells, as opposed to most other myelomas, which arise from
post-germinal center B cells (24–26). Although the survival of
patients withMMhas improved significantly over the past decades
(27), that has been thanks to effective one-size-fits-all regimens
that are tailored to the cell type rather than the genetic alterations
of the tumor (28). The limited success of precision medicine in
MM is partly because class-defining alterations are either
translocations that dysregulate undruggable targets, such as
WHSC1 or MAF, or somatic copy number alterations (SCNAs),
whose vulnerabilities are challenging to study and target. It is also
due to the low cumulative frequency of actionable mutations,
which precludes a broader adoption of precision therapy for
patients with MM (20, 29, 30).

The amplification of the long arm of chromosome 1 (chr1q) is
one of the most common SCNAs in patients with MM (31). Its
presence is associated with poor outcomes (32). It follows that a
large fraction of patients with MM stand to benefit from
precision therapy approaches for MM with amplification of
chr1q (Amp1q). In this review article, we summarize the
evidence surrounding the prevalence and clinical significance
of Amp1q in MM and its precursors, pathogenesis, and
therapeutic vulnerabilities and discuss the opportunities and
challenges in establishing precision medicine for MM patients
with Amp1q.
PREVALENCE OF AMP1Q IN PATIENTS
WITH MM AND ITS PRECURSORS

Increases in the copy number of chr1q are sometimes categorized
as “gains” when the total number of copies is 3 (i.e., 1 extra copy),
and “amplifications”when the total number of copies is larger (i.e.,
2 or more extra copies) (33). In this review, the term
“amplification” will be used to denote all increases in copy
number, irrespective of the number of copies gained, as not all
publications summarized here present data separately for gains
and amplifications; it should be noted, however, that
amplifications may confer more aggressive disease compared to
gains (32, 33). The amplification of chr1q is the second most
common arm-level SCNA in patients with MM, following Del13q
(31). Patients with newly diagnosed MM have a high frequency of
Amp1q by fluorescence in situ hybridization (FISH) [43%, n =
479, 43% of whom had 4 copies or more (34); 40.5%, n = 205, 22%
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of whom had 4 copies or more (35); 39%, n = 767 (36); 37%, n =
880, 25% of whom had 4 copies or more (37); 33%, n = 520 (38)],
comparative genomic hybridization (CGH) [45%, n = 51 (39)], or
Multiplex Ligation-dependent Probe Amplification (MLPA) [34%,
n = 1,716 (37)]. In a whole-exome sequencing (WES) study of
1,074 patients with newly diagnosed MM, 29% had Amp1q, and
21% of those had 4 copies or more (29); whereas, in a whole-
genome sequencing (WGS) study of 871 patients, 35% had
Amp1q (40). Similar prevalence estimates have been reported in
patients with SMM either by FISH [45%, n = 31 (34); 41%, n = 114
(41); 30%, n = 245 (42)] or next-generation sequencing (NGS)
[25%, n = 77 (11); 28.5%, n = 214 (8); 24.4%, n = 90 (10)]. This is
consistent with exome- or genome-wide analyses showing similar
genomic profiles in patients with SMM and newly diagnosed MM
(8, 10–13). However, in patients with MGUS, the prevalence of
Amp1q has been reported to be lower by FISH [0%, n = 14 (34);
20%, n = 88 (37); 29%, n = 79 (43); 16.8%, n = 155 (44)] and NGS
[4.3%, n = 23 (10)]; this is consistent with reports of lower
prevalence for other secondary genomic alterations in MGUS,
such as Del13q and Del17p (13, 43, 44). Lastly, the prevalence of
Amp1q in patients with relapsed/refractory MM has been
reported to be higher by FISH [72%, n = 45, 60% of whom had
4 copies or more (34); 44%, n = 81 (45); ~56%, n = 178 (46)].
Across all studies discussed here, Amp1q is present on average in
approximately 14% (SE: 5.3%) of patients with MGUS, 32.3% of
patients with SMM (SE: 3.5%), 37.3% of patients with MM (SE:
1.7%), and 57.3% (SE: 8.1%) of patients with RRMM (Figure 1A).
Its increasing frequency along the stages of disease progression
suggests a potential role for Amp1q in disease aggressiveness.

It is important to note that the true prevalence of Amp1q may
be underestimated in early-stage disease where the tumor purity of
the samples (i.e., the fraction of malignant cells in the sample) can
be low, and secondary alterations like Amp1q are often subclonal
with low/intermediate cancer cell fraction (CCF) (i.e., the fraction
of malignant cells with the abnormality). In Bustoros et al. (8), a
study ofWES in patients with SMM, the average tumor purity was
47%, and Amp1q was detected in 28% (n = 214) of patients;
indeed, the detection of Amp1q was significantly associated with
higher tumor purity (Wilcoxon, p = 0.004), suggesting that the
true frequency of this abnormality may be higher in this cohort
(Figure 1B). To estimate our power to detect Amp1q in a
sequencing experiment of good quality, we can assume that
chr1q copy ratios are normally distributed with relatively small
standard deviations (SD) and that they are a function of purity and
ploidy as outlined in Carter et al. (47). By requiring a copy ratio of
at least 1.1 to detect the abnormality, then in a sample with 45%
tumor purity and SD of 0.01 we would be well powered (power
>0.8) to detect Amp1q provided its CCF is at least 65%
(Figure 1C), which we argue may not be the case in patients
with early-stage disease. Indeed, in Bustoros et al. (8), the majority
of samples in which Amp1q was detected had a tumor purity of at
least 50%, and if we calculated the prevalence of Amp1q based on
samples with at least 50% tumor purity, it would be closer to that
reported by FISH (41%) (Figure 1D). Furthermore, different
studies may have different amounts of noise in the data,
necessitating different thresholds for calling the abnormality in a
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sample. This problem is not unique to NGS studies. For example,
when FISH is used to detect Amp1q, a CCF threshold is used to
report the detection of the abnormality, which is usually around
10–30% (i.e., the abnormality needs to be present in at least this
fraction of cancer cells studied for it to be called), and which can
differ from study to study. Other sources of this bias in FISH
studies include the type of cells tested (e.g., mononuclear cells or
magnetically sorted CD138+ plasma cells), the number of nuclei
tested (typically 100–200 nuclei), and whether cytoplasmic kappa/
lambda staining is performed to enrich for cells expressing the
light chain of the clone, all of which can affect the probability of
detecting a subclonal Amp1q (48). This is important to keep in
mind as we consider estimates of the clinical significance of
Amp1q since different studies may have different proportions of
patients with low-CCF Amp1q subclones, which may impact
survival as much as clonal abnormalities (49).
CLINICAL SIGNIFICANCE OF AMP1Q
IN PATIENTS WITH MM AND
ITS PRECURSORS

In patients with SMM, the detection of Amp1q by FISH
conferred a ~60% higher risk of progression to overt MM in
two different studies (42, 50). However, Amp1q was not a
Frontiers in Oncology | www.frontiersin.org 3
significant predictor of progression in two other studies that
used WES and custom panels to detect it (Figure 1E) (8, 10).
While multiple studies have shown an excellent correlation
between FISH and NGS in patients with MM (51–53), it is
possible that FISH (which studies single nuclei) can detect
subclonal Amp1q in more patients than NGS (which studies
DNA fragments in bulk). This could explain the dampening of
the survival impact of Amp1q in NGS studies of patients with
SMM. In Bustoros et al. (8), FISH detected Amp1q in four more
patients than WES, and for two of those, the tumor purity was
above 65%, suggesting that the abnormalities missed were
subclonal (Figure 1D). Nevertheless, including these 4 patients
in the Amp1q group did not change its effect on the risk of
progression, suggesting that while detection sensitivity is an
issue, it does not fully explain the differences observed in
hazard ratios.

As patients with newly diagnosed MM receive treatment, the
effect of Amp1q detection on their overall survival (OS) is also a
function of the type of treatment administered, and therefore
can change as the standard of care improves. In patients with
newly diagnosed MM who were treated with vincristine,
adriamycin, and dexamethasone (VAD) followed by
melphalan and autologous stem cell transplantation (ASCT)
in the IFM 99-02, IFM 99-04, and CMG2002 trials, the
detection of Amp1q by FISH or SNP array was associated
with significantly shorter OS in multivariate analyses (38, 54,
B C
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FIGURE 1 | Prevalence and clinical significance of Amp1q in patients with MM and its precursors. (A) Barplots visualizing the mean ± standard error of the
prevalence of Amp1q per disease stage. The number of studies (n) considered in those estimates is also visualized. (B) Boxplots comparing the tumor purity of
samples in which Amp1q was detected to those in which it was not detected in Bustoros et al. (8). (C) Power analysis for the detection of arm-level copy number
variants in sequencing experiments as a function of tumor purity (x-axis) and the abnormality’s cancer cell fraction (CCF). Each panel corresponds to a different
standard deviation (SD). (D) Scatterplot of tumor purity (x-axis) and CCF (y-axis) in patients from Bustoros et al. (8). Samples in which Amp1q was not detected by
whole-exome sequencing are shown with a CCF of 0. Samples in which Amp1q was not detected by whole-exome sequencing but was detected by fluorescence in
situ hybridization (FISH) are shown with an orange triangle. (E) Forest plot summarizing the impact of Amp1q on the risk of progression from smoldering multiple
myeloma to overt disease in four studies. Its effect is visualized as a hazard ratio with a 95% confidence interval.
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55). Furthermore, the detection of Amp1q was associated with
significantly shorter OS in patients with newly diagnosed
MM who were treated on the Total Therapy 2 (TT2),
Myeloma IX, and the GMMG-HD-3/HD-4 trials, which
started incorporating thalidomide and bortezomib into
chemotherapy induction regimens (34, 56, 57). However,
except in the TT2 study, Amp1q was not a significant predictor
in the multivariate setting, raising questions about its usefulness in
risk models, given that it frequently co-occurs with other high-risk
abnormalities (33, 34, 56, 57). This was also the case in an analysis
that looked at patients from the Mayo Clinic who were treated with
high-dose therapy and transplantation, as well as an analysis of a
subset of patients from the TT2 trial (58). Nevertheless, recent data
from patients who were treated with proteasome inhibitors and
immunomodulatory agents indicate that Amp1q is a significant
independent risk factor for patients with newly diagnosed MM in
this era (31, 59–64).

In summary, in the era of proteasome inhibition and
immunomodulatory agents, Amp1q is a significant predictor of
poor outcomes in patients with newly diagnosed MM. In patients
with SMM, Amp1q may be a risk factor for progression, although
more and larger studies are needed to confirm this and prove that
its effect is independent of other high-risk abnormalities, such as
Myc translocations. Therefore, establishing precision therapy for
patients with MM and Amp1q stands to benefit a large fraction
of patients who are still at higher risk of poor outcomes, despite
improvements in plasma cell-targeting therapies.
PATHOGENESIS OF MM WITH AMP1Q

Chromosome 1q can be amplified as part of a trisomy (where an
extra copy of the entire chr1 is generated, perhaps due to
missegregation during mitosis), or whole-genome doubling,
but arm-level events (Amp1q) are observed in more than 75%
of patients (65). Patients with MM and Amp1q show a
preponderance of breakpoints in the pericentromeric
heterochromatin region of cytoband 1q12 (66). Chromosome 1
has the longest pericentromeric heterochromatin region, which
is rich in satellite 2 and 3 DNA repeats and is one of the most
frequent breakpoint locations in cancer (67, 68). The
pericentromeric chromatin of Chromosome 1 is maintained in
a repressed state (heterochromatin) through epigenetic
regulation, involving the tri-methylation of the 9th lysine
residue (H3K9m3) of histone 3 by Suv39h methyltransferases
and the subsequent binding of these methylated residues by
heterochromatin protein 1 (HP1) (67, 69, 70). Suv39h
methyltransferases accumulate around centromeres during
mitosis, and together with HP1, orchestrate the methylation of
pericentromeric satellite repeats by DNA methyltransferases 3A
and 3B (DNMT3A, DNMT3B) (71, 72). These interactions play a
key role in chromosome segregation and stability by preserving
pericentromeric chromatin in its more condensed form. Loss of
Suv39h leads to hypomethylation of the pericentromeric
heterochromatin, chromosomal instability, and malignant
transformation in vivo (70). Germline mutations in DNMT3B
in patients with immunodeficiency, centromeric instability, and
Frontiers in Oncology | www.frontiersin.org 4
facial anomalies (ICF) syndrome lead to hypomethylation and
decondensation of pericentromeric heterochromatin in chr1; this
results in elongated, thread-like pericentromeric chromatin and
multiradial chromosomal formations comprising multiple copies
of whole arms, which lead to missegregation, chromosomal
translocations, and copy number gains in chr1 (73, 74). Similar
chromosomal anomalies can be induced in human lymphocytes
with drug-induced pericentromeric hypomethylation, using, for
example, the methyltransferase inhibitor 5-azacytidine (75–77).

Multiple myeloma is characterized by global hypomethylation
with significant interpatient variability, although MM with
Amp1q does not appear to have a characteristic methylation
trace compared with other cytogenetic abnormalities (78, 79). In
patients with MM, metaphase cytogenetics shows active
decondensation of pericentromeric heterochromatin with
multiradial chr1 formations, which leads to jumping chr1q
translocations (whereby the same donor fragment is
translocated onto two or more chromosomes, in different
cells), isochromosome 1q (whereby chr1p is deleted, and chr1q
is duplicated), segmental duplications (whereby certain segments
of chr1q are duplicated, sometimes repeatedly so), and breakage–
fusion–bridge cycles (Figure 2) (80–83). Importantly, these
alterations can continue to evolve, producing subclones with
more copies of chr1q and more complex karyotypes. While such
abnormalities can be reproduced in vitro by treating peripheral
blood mononuclear cells from patients with MM with the
hypomethylating agent 5-azacytidine (77), no drug has, thus
far, been able to reverse or halt this state of hypomethylation and
chromosomal instability in MM cells. More studies on the
pathogenesis of Amp1q in patients with MM may reveal novel
class-wide vulnerabilities and improve patient outcomes.
THERAPEUTIC VULNERABILITIES OF MM
WITH AMP1Q

The identification of therapeutic vulnerabilities for MM with
Amp1q has focused on genes located in cytoband 1q21
(Figure 3). Despite Amp1q typically being an arm-level
abnormality, minimal common regions have been identified in
cytobands 1q21–1q22 and 1q43–1q44 (84). Such regions are
presumed to contain genes critical for tumor cell proliferation
and survival; in this case, genes such asMCL1, BCL9, CKS1B, and
ILF2, and members of the ubiquitin-proteasome pathway are
found in the affected regions (84). CDC28 Protein Kinase
Regulatory Subunit 1B (CKS1B) promotes the ubiquitination
and degradation of p27, a cell cycle inhibitor encoded by
CDKN1B (85, 86), and activates STAT3 and the MEK/ERK
pathway (87). Inhibition of STAT3 and MEK1, or inhibition of
p27 degradation via a NEDD8 inhibitor, may be particularly
effective in tumors with high levels of CKS1B, such as MM with
Amp1q (86, 88). Myeloid Cell Factor 1 (MCL1) encodes an
antiapoptotic protein that most MM tumors depend on for
survival through both tumor-intrinsic and extrinsic mechanisms
(89–94). Multiple myeloma with Amp1q is particularly dependent
on MCL1, which results in pronounced sensitivity to MCL1
inhibitors (95–97). B-cell lymphoma 9 (BCL9) acts as a co-
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activator of b-catenin, and promotes cell proliferation, metastasis,
and angiogenesis in MM (98). Disruption of its protein–protein
interaction with b-catenin, which may be particularly relevant for
MM with Amp1q, can suppress tumor growth in vivo. However,
therapeutically targeting this signaling pathway has proved
challenging (99, 100). Interleukin Enhancer Binding Factor 2
(ILF2) encodes NF45, a subunit of the transcription factor
NFAT, and regulates genomic stability in MM with Amp1q;
knockdown of ILF2 in vivo leads to significantly prolonged OS,
although currently no drug has been shown to degrade this
transcription factor in patients with MM and Amp1q (101). In
Frontiers in Oncology | www.frontiersin.org 5
recent years, technological advances have enabled the systematic
interrogation of all of chr1q using large-scale screens and multi-
omics approaches, which have nominated new actionable targets,
including the PI3K pathway (96), the kinase CLK2 (102), and the
transcription factor PBX1 (103).

In summary, the presence of Amp1q in a MM tumor confers
specific therapeutic vulnerabilities, some of which may already be
actionable today. However, these discoveries have not been
translated into clinical practice, as candidate drugs have not
been tested in patients with Amp1q yet and have been hampered
by suboptimal efficacy and toxicity profiles. Furthermore, it is
FIGURE 2 | Overview of the pathogenesis of Amp1q in patients with MM.
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unclear how these vulnerabilities may be modified by the
presence of other genomic abnormalities and whether further
patient stratification will be necessary to achieve optimal
responses to targeted therapy.
OPPORTUNITY AND CHALLENGES IN
TARGETING MM WITH AMP1Q

Because of its frequency and its impact on patient outcomes,
multiple myeloma with Amp1q represents an opportunity for
precision medicine to improve the lives of many patients who
have not benefitted as much from the therapeutic developments
of recent years. Furthermore, the discovery of vulnerabilities that
are either specific to Amp1q or enhanced by the presence of
Amp1q indicates that precision approaches can indeed be
developed for patients with this abnormality. A major
limitation in developing precision medicine for MM with
Amp1q is the lack of genome engineering methods that enable
the generation of arm-level amplifications in human cell line
models. Methods exist for the generation of single-chromosome
trisomies in human cells. However, those are not frequently seen
in patients with MM and Amp1q, possibly due to the existence of
Frontiers in Oncology | www.frontiersin.org 6
potent tumor suppressors on chr1p, which is frequently deleted
in patients with MM (104–106). In the absence of syngeneic
models of MM with Amp1q, we are forced to draw conclusions
from suboptimal comparisons of cell lines that have Amp1q to
cell lines that do not, which differ by more than just the presence
or absence of Amp1q. Moreover, approximately 91% of MM cell
lines have Amp1q, which restricts the pool of negative control
cell lines available (34). It is also unclear whether all
amplifications of chr1q generate similar vulnerabilities; perhaps
certain targets are dose-dependent (i.e., a certain number of
chr1q copies is required), or depend upon the type of the
amplification (e.g., segmental duplication, translocation,
isochromosome), the borders of the amplification (i.e., is the
target contained within the borders or not), the size of the
amplification (e.g., focal or arm-level), or the co-occurrence of
Amp1q with another genomic abnormality, which may modify
its effect on cell fitness. Furthermore, many of the dependencies
discovered may not be directly actionable (84, 96). Considering
the vulnerabilities that are actionable today, none have been
tested in patients with Amp1q yet. MEK inhibitors may be
effective in combination with BCL2 and/or PD-L1 inhibitors in
patients with MM (20), but PI3K inhibitors can be quite toxic
and often lead to lackluster responses (20, 107), and MCL1
FIGURE 3 | Overview of the therapeutic vulnerabilities of MM with Amp1q.
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inhibitors may be effective but may not be tolerated well,
generating concerns of cardiotoxicity, for example (20, 108).
Furthermore, resistance mechanisms have been described,
including MEK/ERK activation following PI3K inhibition and
vice versa (109), and BCL2 or BCLXL activation following MCL1
inhibition (95, 110), suggesting that combinatorial regimens may
be necessary for successful treatment of these tumors.
CONCLUSION

The survival of patients with MM has improved drastically over
the last couple of decades. However, patients with high-risk
genomic features, such as Amp1q, have not benefited as much.
The variety of methods used to detect Amp1q complicates the
interpretation of changes in its prevalence over stages of disease
progression and its clinical significance in newly diagnosed
patients. However, multiple studies confirm that its prevalence
is high and that it is an independent predictor of poor outcomes
in multivariate analyses even in the era of proteasome inhibitors
and immunomodulatory agents. In patients with SMM, larger
studies are needed to assess the clinical significance of Amp1q in
analyses that account for other genomic and/or clinical variables.
Tailoring treatment to the underlying abnormality could
improve outcomes for patients with MM and Amp1q.
However, developing precision approaches has proved
challenging. Despite the role of hypomethylation in the
generation and continuous evolution of Amp1q, no epigenetic
therapeutic approaches have been developed to target it. Instead,
precision approaches for MM with Amp1q typically target genes
that are located on 1q21, the most commonly amplified region of
chr1q, such asMCL1. When actionable, these approaches may be
effective. However, they are often toxic and may require a
combination with other inhibitors to preempt escape
mechanisms and drug resistance. Until now, none of these
approaches has been specifically tested in patients with
Amp1q, where the therapeutic window may be different, and it
is unclear how the presence of other abnormalities may modify
the effect of these treatments. Establishing precision therapy for
Frontiers in Oncology | www.frontiersin.org 7
patients with MM and Amp1q will require clinical trials to
systematically enroll patients with Amp1q and report results
for this subgroup of patients.
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39. Gutieıŕrez N, Garciıá J, Hernaıńdez J, Lumbreras E, Castellanos M, Rasillo A,
et al. Prognostic and Biologic Significance of Chromosomal Imbalances
Assessed by Comparative Genomic Hybridization in Multiple Myeloma.
Blood (2004) 104(9):2661–6. doi: 10.1182/blood-2004-04-1319

40. Skerget S, Penaherrera D, Chari A, Jagannath S, Siegel D, Vij R, et al.
Genomic Basis of Multiple Myeloma Subtypes From the MMRF CoMMpass
Study. (2021). doi: 10.1101/2021.08.02.21261211

41. Lopez-Corral L,MateosM, Corchete L, SarasqueteM, de la Rubia J, deArriba F,
et al. Genomic Analysis of High-Risk Smoldering Multiple Myeloma.
Haematologica (2012) 97(9):1439–43. doi: 10.3324/haematol.2011.060780

42. Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, et al.
Progression in Smoldering Myeloma Is Independently Determined by the
Chromosomal Abnormalities Del(17p), T(4;14), Gain 1q, Hyperdiploidy, and
Tumor Load. J Clin Oncol (2013) 31(34):4325–32. doi: 10.1200/JCO.2012.48.4923
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