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Multiple Particle Swarm Optimizers with Inertia
Weight for Multi-objective Optimization

Hong ZhangMember, IAENG

Abstract—An improved particle swarm optimizer with inertia ~ PSO, multi-layer PSO, multiple PSO with decision-making
weight (PSOIWa) was applied to multi-objective optimization  strategy etc. were published [2], [10], [17], [27].
(MOO). In this paper we present a method of multiple particle In contrast to those methods running a single particle

swarm optimizers with inertia weight (MPSOIW «), which tt t d strateqi b fected with
belongs to a kind of the methods of cooperative particle swarm swarm, many altempts and strategies can be perfected wi

optimization. The crucial idea of the MPSOIWa, here, is to OPerating multiple particle swarms for more efficiently find-
reinforce the search ability of the PSOIWa by the union’s ing an optimal solution or near-optimal solutions [3], [14],
power of plural swarms. To demonstrgte its effectiven.ess and [17], [28]. Owing to the plain advantage, utilizing the tech-
search performance, computer experiments on a suite of 2- iqyes of group searching, parallel and intelligent processing
objective optimization problems are carried out by a weighted has b f ext v i tant hes t ti-
sum method. The resulting Pareto-optimal solution distribu- e}s _ecome one of ex remgy |_mpor ant approaches to opt
tions corresponding to each given problem indicate that the Mization, and a lot of publications and reports have been
linear weighted aggregation among the adopted three kinds of shown that the methods of cooperative PSO have better
dynamically weighted aggregations is the most suitable for ac- adaptability and higher search performance than ones of

quiring better search results. Throughout quantitative analysis —ncopperative PSO in dealing with various optimization and
to experimental data, we clarify the search characteristics and .
practical problems [18].

performance effect of the MPSOIW« contrast with that of the ) ; . . . .
PSOIWea and MPSOIW. An improved particle swarm optimizer with inertia weight

Index Terms—particle swarm optimization, swarm intelli- (PSOMk) was published [30]. For further upgrading its

gence, hybrid search, multi-objective optimization, weighted search performance to MQO' in this paper We_ proposg to
sum method. use a method of cooperative PSO, called multiple particle

swarm optimizers with inertia weight (MPSOWY. The
crucial idea of the MPSOIW, here, is to reinforce the
|. INTRODUCTION search ability of the PSOIW by the union’s power of
ULTI-objective optimization (MOO) is the processingpPlural swarms. Although the search feature and performance
of optimizing simultaneously two and more conflictof some PSO methods in MOO with fitness assignment
ing objectives subject to certain constraints [4], [6]. Sinc@anners such as criterion-based manner or dominance-based
many practical problems are involved in MOO, which can b@&anner were studied and investigated [24], [25], there are
mainly found in different domains of science, technology, irnsufficient results for systematically solving MOO problems
dustry, finance, automobile design, aeronautical engineerigan aggregation-based manner, and analyzing the potential
and so on [8], [11], [23], how to efficiently deal with MOO characteristics in details from the obtained experimental
becomes a live issue, and is centered on the developmentasiults [6], [16].
the treatment technique. To demonstrate the effectiveness and performance ef-
Particle swarm optimization (PSO), which was created HB§ct of the MPSOIW,, computer experiments on a suite
Kennedy and Eberhart in 1995, is an adaptive, stochastic, &{d2-objective optimization problems are carried out by a
population-based optimization technique [15]. Based on tMmeeighted sum method. For interpreting the information treat-
special features, i.e. information exchange, intrinsic merfitent and search effect of the method, we show the distribu-
ory, and directional search, the technique has higher latdigns of the obtaine®Paretooptimal solutions corresponding
search ability in optimization compared to some methods & €ach given problem by respectively using three kinds
evolutionary computation (EC) such as genetic algorithn®§ dynamically weighted aggregations (i.e. linear weighted
and genetic programming [19], [20], [26], [27]. Especiallygggregation, bang-bang weighted aggregation, and sinusoidal
in recent years, a large number of studies, and investigatioM&ighted aggregatié), point out that which one of them is
on cooperative PSn relation to symbiosis, group behaviorthe most suitable for acquiring good search results to the
and synergy are in the researcher’s spotlight. Various kinéyen MOO problems, and clarify the search characteristics

Of the methods Of Cooperative PSO, for examp|e’ hybr%ﬂd performance of the MPSOW\contrast with that of the
PSOIWn and MPSOIW.
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A. MOO Problem

I
In general, the formulation of a MOO problem can be Fy(t,7) = Zci(t)fi(f) (4)
defined as follows. i—1

Minimize (f1(f)af2(f)7'“7fz(f))T Wheret i§ time-step to search, ang(t) > 0 is the d.y- '
£ ) namic weight. In order to present the method, a 2-objective
8.t gj(sz 0,5=12--,J (1) optimization problem is considered as an example. Hence,
he(Z) =0, m=1,2,---, M the definitions of three kinds of the adopted dynamically
T, € [xnhxnu}? n e (1327 e vN)

weighted aggregations are expressed below.

where f,(Z) is the i-th objective, g,(Z) is the j-th in-  « Linear weighted aggregation (LWA):

equality constrainth,, (%) is the mth equality constraint, Lo t Lo .

T = (x),29,--,2y5) € RN = Q (search space) is the a(t) _mOd(T’l)’ at)=1-al()

vector of decision variablqnl .and z,, are the superior ., Bang-bang weighted aggregation (BWA):

boundary value and the inferior boundary value of each ) )

componentz,, of the vectorZ, respectively. ch(t) = 5@9”(5@"(2“/71))‘*‘1’ ) =1 — cb(t)
Due to the given condition of > 2, the I-objectives may _ _ _ 2 _

be conflicting with each other. Under this circumstance, it is « Sinusoidal weighted aggregation (SWA):

difficult to obtain the global optimum corresponding to each R . mt S 1 e

objective by traditional optimization methods at the same ¢i(t) Sm(T) , e(t) =1-ci(t)

time. Consequently, the goal of handling the MOO problefyhere T is a period of the variable weights in the above

is effectively to achieve a set of solutions that satiBfyeto  equations.

optimality for improvement of mental capacity.

D. Front Distance

B. Pareto-optimal Solution Front distance is expressed as a metric of checking how
far the elements are in the set of non-dominated solutions
found from those in the tru€aretcoptimal solution set.

It directly reflects the estimation accuracy of the optimizer
used. Concretely, the definition of front distancBIf) is
expressed as

A solution ©* € Q is said to beParetcoptimal solution
if and only if there does not exist another solutiére 2 so
that f, (%) is dominated byf,(Z*). The formula of the above
relationship is expressed as

fi@) £ fi(@7) Yiel aif  fi(Z) £ fi(Z7) Fiel (2)

Q
1 o . .

In other words, this definition says that is a Pareto FD= Q Zd37 d, = [i(Zg) = fi(Zg), Yiel (5)
optimal solution if there exists no feasible solution (vector) 7=1
Z which would decrease some criteria without causing where @ is the number of the elements in the set of non-
simultaneous increase in at least one other criterion. dominated solutions found, ant} is the Euclidean distance

Furthermore, all théParetocoptimal solutions for a given (measured in objective space) between each of these obtained
MOO problem are composed of tiRaretooptimal solution optimal solutionsiz, and the nearest membef;, of the true
set (P*), or theParetofront (PF). Paretcoptimal solution set.

E. Cover Rate

C. Weighted Sum Method . . .
_ ) Cover rate CR) is an other metric for checking the
There are some fitness assignment manners such cggerage of the elements being in the set of non-dominated
aggregation-based one, criterion-based one, and dominanggiutions found to thePareto front. This is because the
based one, which are used for MOO [7], [12]. As to be geRsstimation accuracy is insufficiency to reveal the distribution
erally known, a conventional weighted sum (CWS) methogatys of the obtainedPeratooptimal solutions and their
is a straightforward approach applied to deal with MOQossipility for dealing with the given problem.

problems. In this case, the different objectives are summedyere, the formulation of CR is mathematically expressed
up to a single scala#, (criterion) with some prescribed by

weights as follows. 1J

, CR= Z} CR, (6)

F (%) = (& 3 -
+(@) ; /(@) @) whereCR, is the partial cover rate corresponding to ki

] ] ) . Objective, which is defined as
wherec,(i = 1,2, ---,I) is the non-negative weight. During

the optimization, usually, these weights are fixed by the CR. — erzl g @)

constraint onleci = 1, and prior knowledge is also ¢ r

needed to specify these weights for obtaining good solutionghereT" is the number of dividing thé-th objective space
To thoroughly conquer the weakness of the CWS methedhich is from the minimum to the maximum of the fitness

run, the following dynamically weighted sum (DWS) methodalue, i.e.[f;(Z)™", f,(Z)™**], andy, € (0,1) indicates the

is often used to MOO in practice. The criteridn, of the existence status of the obtained optimal solutions inltie

method can be expressed as follows. subdivision for thei-th objective.
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step-1: Give the terminating conditior/ (the number

Ill. ALGORITHMS of random data) of the PSOIWrun, and set the

For the convenience of the following description to the counteru = 1.
used every optimizer, let the search spacébdimensional,  step-2: Implement PSOIW and determine the best solu-
the number of particles of a swarm B the position of the tion ¢, at time-stepk, and setg,,,,,, = gj,.
i-th particle ber® = (z%,z5,---,2%)T € Q, and its velocity ~ step-3: Generate a random datg, € R ~ N(0,0?)
be v = (vi,vs, -, vi)T € Q, respectively. (whereo is a small positive value given by user,

which determines the small limited space). Check
whetherg, +Z, € Q is satisfied or not. I, +Z,, ¢

A. The PSOIW Q then adjust,, for moving g, + Z, to the nearest
To overcome the weak convergence of the original PSO valid point within . Setgpe,, = g; + 2.
[1], [5], Shi et al. modified the update rule of thgh parti-  step-4: If 9(Gew) > 9(Trow) then SeF, o, =y, -

cle’s velocity by constant reduction of the inertia coefficient step-5: Sétu =wu +1.1f u < U then go to thestep-2.
over time-step [9], [21]. Concretely, the formulation of the step-6: Setg, = g,,,, to correct the solution found by
particle swarm optimizer with inertia weight (PSOIW) is the particle swarm at time-stdp Stop the search.
defined as

Fipy =L+ 7 . N _
{ f’l . _ ! L L For improving the search ability of the existent PSQIW
Uy =w(k) T + w7y @ (P —Tf,) + wyTy @(q), — ) to MOO, we propose to use multiple particle swarm opti-

. o ) mizers with inertial weight, MPSOIW. Figure 1 illustrates
wherew, andw, are coefficients for individual confidencey fowchart of the MPSOIW.

and swarm confidence, respectively, 7, € R are two ran-

C. The MPSOIW

dom vectors, each element of which is uniformly distribute -
on the intervall0, 1], and the symbok is an element-wise Setthe maximurm number, K; Setk=0;
[ - ; . . Set asolution set to empty;
operator for vector multiplicatiorg} (=arg kmlchm{g(f,@)}, Initialize each swarm
whereg(Z}) is the criterion value of the-th particle at time- ¢
stepk) is the local best position of thieth particle up to now, ¥
Gi(=arg magz {g(5})}) is the global best position among}
the whole bairticles at time-step. w(k) is the following True
variable inertia weight which is linearly reduced from ¢ Determine the best solution;
starting valuew, to a terminal valuav, with the increment Put it into the solution set
of time-stepk. 7

wlh) = ot S X @ [rmrsomr] v [ rsome

where K is the number of iteration for the PSOIW run. In

the original PSOIW, two terminal values,, andw,, are set | RunLRS | e
to 0.9 and 0.4, respectively, and = w, = 2.0 are used as
same as the original PSO. |

Owing to the bigger difference between the two boundagyy 1 A flowchart of the MPSOMW.
values of the variable inertia weight, it is obvious that the
search behavior of the PSOIW achieves a search shift which

smoothly changes from exploratory mode to exploitative one _
in the whole optimization process. Hence, this way is very The most difference between the PSGiahd MPSOIW:

simple and useful for conquering the weakness of the Pgcomposition is just to implement the plural PSQIWS >
in convergence and enhancing the solution accuracy. On #dn parallel for finding the most suitable solution or near-
other hand, the shortcoming of the PSOIW is easily to faiPtimal solution_s. Concretely, the best squFion of thg multi-
into a local minimum and hardly to escape from that placgvarm search, i.ex} =arg _max S{g(ffﬁ)}: is determined
in dealing with multimodal problems because the terminglom the solutions obtained by each PSQiWun at time-
valuew, is set to small. stepk, and then put it into a solution set which is the storage
memory of the multi-swarm.
It is obvious that the MPSOIW is the use of swarm

B. The PSOIW intelligence to search by the union’s power of plural swarms

For alleviating the weakness of the PSOIW search, Wer enforcing the search ability of the PSOiWIt is to be
introduce the LRS [22], [29] into the PSOIW to form ahoted that if the LRS is not implemented after each PSOIW
hybrid search optimizer (called PSOW) Implementing run, the method will be called as MPSOIW.
the PSOIW, here, is to enable a particle swarm search
escapes from local minimum sooner for efficiently obtaining IV. COMPUTEREXPERIMENTS
an optimal solution or near-optimal solutions.

o To facilitate comparison and analysis of the search perfor-
The PSOIWY's procedure is implemented as follows.

mance of the proposed MPOSHWthe suite of 2-objective
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TABLE |
A SUITE OF2-OBJECTIVE OPTIMIZATION PROBLEMS

problem objective search range
N
. . 9 . . f11(@)
ZDT1  f,,(@) ==, g(@) =1+ Nflzm"’ F10(@) = g() <1_ ;tf)) Qelo, 1N
n=2
N 2
f21(z)> ) Qe o, 1V

9()

f31(@)
9(Z)

I31(%)
9(%)

ZDT3  f4 (&) =y, f4o(E) = (&) (1 - - ( >sm(1o7rf31(f)) ) Qelo, 1)V

The results of the MPSONa run

The results of the MPSOIW run
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Fig. 2. Solution distributions of the MPSOlWand MPSOIW by using the LWA (red-point), BWA (blue-point) and SWA (green-point), respectively.
Notice: the distance between the experimental data sets for each subgraph is 0.05 (shift only in horizontal direction).

optimization problems [31] in Table | is used in the next contheir values is referred to the results of some preliminary
puter experiments. The characteristics of tereto fronts experiments.
of the given problems include the convexQT1), concave

(ZDT2), and discontinuous multimodaZDT3), respectively. )
A. Performance Comparison

TABLE Il

MAJOR PARAMETERS OF THEMPSOIWa RUN For the sake of observation, Figure 2 shows the resulting

solution distributions of the MPSOIW and MPSOIW by

parameter value . ] .
the number of particles? 10 using the LWA, BWA, and SWA, respectively. According to
thti numbif of 'ftefat_'ogrﬂ 25%% the distinction of each solution distribution corresponding

€ numper or perio . . .
the number of random point&] 10 to the_se given problems, the analytical judgment can be
the search range of the LRS, 0.1 described as follows.
the number of multiple particle swarms, 3

1) Regardless of the used methods either the MPS®IW
or MPSOIW, and the characteristic of each given prob-
lems, the resulting features and solution distributions
are nearly same.

Table Il gives the major parameters of the MPSQIW
for solving the given problems in Table I. The choice of
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TABLE Il
PERFORMANCE COMPARISON OF BOTH THIMPSOIWa AND MPSOIWBY USING THE LWA, BWA, AND SWA, RESPECTIVELY(I" IS SET T0100).
MPSOIWa MPSOIW
problem  aggregation” s, ion FD CR (%) solution FD CR (%)
LWA 1254 2.2341078 99.5 1191 3.948&10°8 99.5
ZDT1 BWA 187 9.809<10~° 52.0 227 1.10%10~* 53.0
SWA 988 451%10~8 99.5 1016 7.3551078 99.0
LWA 272 1.198<10~% 94.0 283  1.992x10~ " 94.0
ZDT2 BWA 259 3.692<10~7 92.0 228 8.85210~7 91.5
SWA 229 7.60410~8 93.5 219 3.38%10~7 93.0
LWA 1231 8.96X 10" 46.0 1107 9.24%10~7 45.5
ZDT3 BWA 396 1.655¢10~4 40.5 421 6.55%107° 40.0
SWA 949 9.43%10~ 7 42.5 1018 1.092 106 42.0

# The values in bold signify the best result for each given problem.

2) Regardless of the used methods and the characteBs-Effect of Multi-swarm Search

tics of the given problems, the conditions of solution gqr aqual treatment in search, the number of particles used
distributions by using the BWA are worse than thaf, 5 qyarm is the same to the total number of particles used
by using the LWA or SWA special for thEDT1and , the 3-swarms. As an example, Figure 3 shows the resulting
ZDT3 problems. solution distributions of both the MPSOIWand PSOIW

3) In comparison with the solution distributions of usinqi_e_ P=30) by using the LWA. We can see that the density
the LWA for both theZDT1 (convex) andZDT2 (con- o soytion distributions of the MPSOIW are higher than

cave) problems, the former is relatively in the highef,o: of the PSOIE for each given problem
density. '

For quantitative analysis to the experimental results of 10

the MPSOIWx and MPSOIW in Figure 2, Table Il gives * MPS Ol
= PSOIWa

08

the statistical data, i.e. the number of the obtained optimal
solutions #°, and the correspondingD and CR for each
given problem.

The following features can be observed from Table Il
Firstly, there is the most number of solutions obtained by 02p
using the LWA for the given problems even for tE®T2 ook
one in where a large number Baretcoptimal solutions are a) 0.0
in unstable position [13]. Secondly, the solution accuracy 10 T
of the MPSOIW. is superior to that of the MPSOIW for g R
each given problem. Thirdly, the obtained results of using
the LWA in CR index are the best than that of using BWA
and SWA, respectively. Fourthly, the search performance of

06}

SN2

04

ZDT1 problem

ZDT2 problem
a2

using the LWA is not only much better than that of using « MPSOla % ]

the BWA, but also is relatively better than that of using the P20 . PSOWG R

SWA as a whole. 00k , , \\
Therefore, the effectiveness and search ability of the & 0.0 0.2 04 06 038 10 fa1

MPSOIWx are roughly confirmed by the above analytical 10

results. Furthermore, better solution distribution and higher \\ « MPSOIWo

solution accuracy can be observed as well by using eitherthe £ s} 3 « PSOla

LWA or SWA. Our experimental results indicate that smooth e \*. .

change of their criteria with the growth of time-stépan 54, 13

make that the probability finding good solutions greatly goes % .5 . ]

up in the same period;=2500, as evidence. _osh \\ ]
Based on the above mentioned comparison and observa- \\

tion, the relationship of domination reflecting the search per- ©  os 02 o4 Y; 08 A

formance (SP) of the MPSOIM/by using each dynamically Fig. 3.  The solution distributions of the MPSOWW(red-point) and

weighted aggregation can be expressed as follows. PSOIW& (blue-point) by using the LWA.

P, P P, ) . .
SPrwa = SFswa = SPpwa Table IV gives the performance indexes, i.e. the number

The relationship of the above domination indicates thaf the optimal solutionsz® obtained by using the LWA,
the uniform change of the weights can make the movirand the correspondingD and CR for the given problems.
process of variable criterion to be equalization which rais&y directly comparing the performance indexes with the
the probability finding thePeratcoptimal solution to the MPSOIW« and PSOIW, the big difference between the
maximum under the condition of implementing the samigoth experimental results clearly indicate the strong points
optimizer. Due to this reason, more good solutions can bé the multi-swarm search in dealing with the given MOO
easily obtained during the short search cydte= 25. problems under the condition of the same number of particles
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TABLE IV
SEARCH PERFORMANCE OF BOTH THEMPSOIWa AND PSO IV [9] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
(P = 30) BY USING THE LWA (T' IS SET T0100). factors in particleswarm optimizationProceedings of the 2000 IEEE
Congress on Evolutionary Computatiorol.1, pp.84-88, La Jolla, CA,
problem method solution FD CR (%) USA, 2000.
MPSOIWo 1254 2.234x 108 995 [10] M. El-Abd and M. S. Kamel, “A Taxonomy of Cooperative Particle
ZDT1 . _8 Swarm Optimizers,’International Journal of Computational Intelli-
MPPSSOOI\II\\?/a g% ??géi }8, gig gence ResearchSSN 0973-1873, vol.4, no.2, pp.137-144, 2008.
7DT2 ' s ' [11] C. R. Hema, M. P. Paulraj, R. Nagarajan, S. Yaacob, and A. H. Adom,
PSOIWW 231 9.938x10 615 “Application of Particle Swarm Optimization for EEG Signal Classifi-
MPSOIWe 1231 8.961x10~ " 46.0 cation,” Biomedical Soft Computing and Human Scienees13, no.1,
ZDT3  psomn 432 4.496x10° 410 pp.79-84, 2008.
[12] E. J. Hughes, “Multiobjective Problem Solving from NaturiAtural
Computing SeriesPart 1V, pp.307-329, 2008.
[13] Y. Jin, M. Olhofer and B. Sendhoff, “Dynamic Weighted Aggregation
. for Evolutionary Multi-Objective Optimization: Why Does It Work
used. It is demonstrated that the MPSQIVi§ a powerful and How?"Proceedings of the Genetic and Evolutionary Computation
method of cooperative PSO to MOO. Conference(GECCO02001), pp.1042-1049, San Francisco, CA, USA,
2001.
[14] C.-F. Juang, “A Hybrid of Genetic Algorithm and Particle Swarm
V. CONCLUSIONS Optimization for Recurrent Network DesignlEEE Transactions on

) . ) o . Systems, Man and Cyberneti€art B, vol.34, no.2, pp.997-1006, 2004.
In this paper, multiple particle swarm optimizers with15] J. Kennedy and R. C. Eberhart, “Particle swarm optimizatiéig-
inertia weight, MPSOIW, has been presented to MOO. ceedings of the 1995 IEEE International Conference on Neural Net-

" . works pp.1942-1948, Piscataway, NJ, USA, 1995.
Based on the composition of the MPSQdit is the most [16] X. Li, J. Branke and M. Kirley. “On Performance Metrics and Particle

simple expansion of the existent PSQIWwhich has the Swarm Methods for Dynamic Multiobjective Optimization Problems,”

advantages of a hybrid search with easy-to-operation as aProceedings of IEEE Congress of Evolutionary ComputatGC),
method of cooperative PSO Pp.1635-1643, Singapore, 2007. . . .
. . ' . . [17] B. Niu, Y. Zhu and X. He, “Multi-population Cooperation Particle
Applications of the MPSOIW to the given suite of 2- Swarm Optimization,” in M. Capcarrere et al. (Edsfdvances in
objective optimization problems well demonstrated its ef- Artificial Life, LNCS 3630, Springer Heidelberg, pp.874-883, 2005.

fecti by th . b d Owi ILIBQ H. Piao, Z. Wang and H. Zhang, “Cooperative-PSO-based PID neural
ectiveness by the aggregation-based manner. Owing to network integral control strategy and simulation research with asyn-

resulting experimental data by respectively using three kinds chronous motor controller designjournal of WSEAS Transactions on
of dynamically weighted aggregations, it is observed that Circuits and Systemvol.8, Issue 8, pp.696-708, 2009. o

. . 19] R. Poli, J. Kennedy and T. Blackwell, “Particle swarm optimization
the search performance of the MPSQIWSs superior to — An overview;” Swarm Intell vol.1, pp.33-57, 2007.
that of the PSOIW and MPSOIW, and the comparative]20] M. Reyes-Sierra and C. A. Coello Coello, “Multi-Objective Particle
analysis of the MPSOIW shows that the search performance  Swarm Opfimizers: A Survey of the State-of-the-Artlternational
of using the LWA is better than that of using the BWA 355 5006. P g ArebL2, 0=, PP
or SWA for the given MOO problems. Therefore, it ig21] Y. Shi and R. C. Eberhart, “A modified particle swarm optimiser,”
no exaggeration to say that our experimental results could Proceedln_gs of the IEEE International Conference on Evolutionary

ff - tant evidence. i.e. choosing the dvnamical Computation pp.69-73, Anchorage, Alaska, USA, 1998.

ofrer an important evi y 1S g y [¥2] F. J. Solis and R. J.-B. Wets, “Minimization by Random Search
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