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a b s t r a c t 

The study of epidemic spreading on populations of networked individuals has seen recently a great deal 

of significant progresses. A common point in many of past studies is, however, that there is only one 

peak of infected density in each single epidemic spreading episode. At variance, real data from different 

cities over the world suggest that, besides a major single peak trait of infected density, a finite probability 

exists for a pattern made of two (or multiple) peaks. We show that such a latter feature is distinctive of 

a multilayered network of interactions, and reveal that a two peaks pattern may emerge from different 

time delays at which the epidemic spreads in between the two layers. Further, we show that the essential 

ingredient is a weak coupling condition between the layers themselves, while different degree distribu- 

tions in the two layers are also helpful. Moreover, an edge-based theory is developed which fully explains 

all numerical results. Our findings may therefore be of significance for protecting secondary disasters of 

epidemics, which are definitely undesired in real life. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Epidemic spreading in networked populations has been stud- 
ied intensely in the last decade, and a lot of great progresses has 
been achieved [1–4] which significantly increased our understand- 
ing. This is actually useful for public health authorities to assess 
situations quickly, to take and enforce informed decisions, and to 
optimize vaccination and drug delivery policies. Initially, the main 
attention focused on static networks, where each node represents 
an immobile agent and the contagion occurs only between neigh- 
boring nodes: it was revealed that scale-free networks display a 
vanishingly small epidemic threshold in the thermodynamic limit 
[5,6] . After that, the focus shifted to reaction-diffusion models [7–
10] , flow-driven epidemics [11–15] , objective spreading [16,17] and 
adaptive behaviors [18–22] . Finally, in a third stage, multilayered 
[23–32] and temporal [33,34] networks were assumed to play a 
critical role on such processes. 

A common feature in past studies is the use of phenomeno- 
logical models which typically produce a single peak of infected 
density in each individual epidemic spreading. An interesting ques- 
tion is therefore whether or not all real evolutionary processes are 
conveniently represented by such a framework. A scrupulous anal- 
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ysis of a large number of real data from different cities over the 
world surprisingly shows that, besides a major pattern made of 
a single peak, there is a finite and non negligible probability for 
a new pattern of epidemic outbreak featuring two (or multiple) 
peaks. Notice that a two peaks pattern implies two outbreaks in 
a single spreading period, i.e. a secondary occurrence of the same 
epidemics, which may in turn produce severe calamities and dis- 
asters within unprepared populations. Understanding the underly- 
ing mechanism at the basis of this new pattern (with the help of a 
novel model extracted from real data) is therefore quintessential to 
properly cope with such life-threatening hazards. Previous studies 
showed that the phenomenon of multiple peaks in epidemics may 
occur in weak coupled different communities, where a full homo- 
geneous mixing cannot be assumed [35–38] . Considering that hu- 
man behaviors occur in social networks, a key problem for further 
studies is how the network structures influence the formation of 
two-peaks patterns and the transition between the case of single 
peak and that of two peaks. 

We here study this problem by presenting a network based 
model to reproduce the phenomenon of two peaks from epidemic 
data. As social activities and interactions occur in network struc- 
tures, we here consider the epidemics in different geographic re- 
gions (or cities) as that occurring in multilayered graphs. Namely, 
we will take two coupled neighboring regions as an example, and 
construct a two-layered network model which fully reproduces the 
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observed patterns of epidemics. In particular, we demonstrate that 
the pattern of two peaks originates from large time delays of epi- 
demic outbreaks between the two layers, which depends in turn 
on both the difference in the degree distributions of the two lay- 
ers and a weak coupling condition between them. To better under- 
stand the findings, an edge-based theory is developed which per- 
fectly agree with the numerical simulations. 

2. Patterns of epidemic outbreak with two or multiple peaks 

in real data 

Monitoring the potential outbreaks of an epidemic spreading 
is of extreme importance for protection of our society. Based on 
the detected trend of spreading of infections such as SARS (Se- 
vere Acute Respiratory Syndrome), H1N1 (Swine Influenza), H5H1 
(Avian Influenza), and Ebola, one can indeed attempt to enforce 
suitable measures able to reduce the epidemic at its maximum ex- 
tent. For this purpose, many countries have established their sen- 
tinel surveillance systems to collect epidemic data. For instance, 
Hong Kong Department of Health has organized a surveillance sys- 
tem, with the aim of collecting empirical data of infectious dis- 
eases, and of analyzing and predicting the trend of the infection. 
In such a system, there are about 64 General Out-Patient Clinics 
(GOPC) and 50 General Practitioners (GP), which form two distinct 
sentinel surveillance networks of the city [39,40] . In these two net- 
works, one obtains for instance the weekly consultation rates of 
influenza-like illness (per 1,0 0 0 consultations), which reflect the 
overall influenza-like illness activity in Hong Kong. 

Fig. 1 (a) shows the collected data from 1998/1/3 to 2014/8/2 in 
GP, while the corresponding data of GOPC is not shown here. From 

Fig. 1 (a) one sees that there are many events of epidemic spread- 
ing, and the intervals between two consecutive events are not reg- 
ular, indicating non-periodic outbreaks of recurrent epidemics [40] . 
On the other hand, one notices from Fig. 1 (a) that most of the 
outbreaks correspond to a single peak of infected density, which 
is the pattern well described by the classical susceptible-infected- 
refractory (SIR) models. However, one notices also that there is a 
finite probability for a novel pattern of epidemic outbreak which 
features, instead, two or multiple peaks. Fig. 1 (b) shows one of 
such patterns (with two peaks) occurring at around 2005/6, which 
indicates that an infectious disease raised two times during that 
epidemic period in Hong Kong. Such unexpected phenomenon also 
exists in the data from GOPC (not shown here). 

These multiple peaks patterns are actually occurring generically, 
and are not limited to a specific geographical region. Epidemic data 
from other sources and cities display, indeed, ubiquitously patterns 
similar to that reported in Fig. 1 (b). For instance, Fig. 1 (c) shows 
the data of the weekly measles infective cases (WMICs) from 1908 
to 1937 in Boston [41,42] , and a two peaks pattern is shown in 
Fig. 1 (d) at around 1915/4. In addition, two or multiple peaks of in- 
fected density may characterize the outbreaks in the total number 
of WMICs of two neighboring cities, also when uni-modal patterns 
are actually observed in each individual city. For example, Fig. 1 (e) 
and (f) report the data of WMICs in Bristol and Newcastle [43] : 
the yellow line denotes the total number of WMICs, whereas the 
blue and green lines represent the data in Bristol and Newcastle, 
respectively. In Fig. 1 (f) one can well appreciate that the pattern 
of two peaks occurs only in the total number of WMICs. Similarly, 
Fig. 1 (g) and (h) show the case of Bristol and Sheffield [43] , and 
once again a typical two peaks pattern [ Fig. 1 (h)] occurs. 

3. The two-layered network model 

To capture the underlying mechanism, we introduce a model 
of a two-layered network, where the two layers represent actu- 
ally two interconnected regions or cities. Fig. 2 is a sketch of the 

Fig. 1. Time series of recurrent epidemics in different cities over the world. (a) 

The weekly consultation rates of influenza-like illness (per 10 0 0 consultations) from 

1998/1/3 to 2014/8/2 in Hong Kong for the General Practitioners (GP) sentinel sys- 

tem. (b) Zoom of one of the patterns with two peaks, occurring at around 2005/6 

in (a). (c) The time series of reported weekly measles infective cases I in Boston. (d) 

Zoom of one of the patterns with two peaks, occurring at around 1915/4 in (c). (e)–

(h): Time series of infectious disease in two coupled cities. (e) and (f): The yellow 

line represents the total number of weekly measles infective cases in coupled Bris- 

tol and Newcastle, while the blue and green lines represent the number in Bristol 

and Newcastle, respectively. (f) is one of the patterns, occurring at around 1957/3 

in (e). (g) and (h): The yellow line represents the total number of weekly measles 

infective cases in coupled Bristol and Sheffield, while the blue and green lines rep- 

resent the number in Bristol and Sheffield, respectively. (h) is one of the patterns, 

occurring at around 1955/5 in (g). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Sketch of the two-layered network model, which reproduces the pattern of 

two peaks. “Black”, “green” and “red” lines represent the links of the networks A , B

and the inter-network AB , respectively. βa , βb and βab denote the infectious rates 

of networks A , B and AB . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

model: A and B are the two layers, which are coupled through the 
inter-network AB . For the sake of simplicity, we let the two net- 
works A and B have the same size N a = N b . Furthermore, 〈 k a 〉 , 〈 k b 〉 , 
and 〈 k ab 〉 represent the average degrees of networks A , B and AB , 

respectively. In details, we first generate two separated networks A 

and B with the same size N and different degree distributions P A ( k ) 
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and P B ( k ), respectively. Then, we add links between A and B. That 
is, we randomly choose two nodes from A and B and then connect 
them if they are not connected yet. The process is repeated until 
all the needed specifications are attained. In the above way, one 
obtains a uncorrelated two-layered network. 

Under such a framework, we adopt the Susceptible-Infected- 
Refractory (SIR) model to study the epidemic spreading dynamics. 
Particularly, each node is a unit of the SIR model, where S, I and 
R represent the susceptible, infected and refractory phases of indi- 
viduals, respectively. At each time step, a susceptible node will be 
infected by an infected neighbor with rate β , and an infected node 
will become refractory with probability μ. The infectious process 
will be considered terminated when no more infected nodes exist. 
While μ is taken to be the same for all networks, we let βa , βb 

and βab be the infectious rates of networks A , B and AB , respec- 
tively. Thus, a susceptible node will be infected with a probability 

1 − (1 − βa ) 
k in f (1 − βab ) 

k in f 
ab , where k inf is the infected neighbors in 

the same network and k in f 
ab 

is the infected neighbors in the coupled 
network. 

In our numerical simulations, we choose A to be a scale-free 
(SF) network with degree distribution P A (k ) ∼ k −γ [44] , and B a 
random regular (RR) network with a constant degree k b [45] . The 
network size is N a = N b = 10 0 0 0 , the average degree 〈 k a 〉 = 〈 k b 〉 = 

6 , and initially 0.1% of individuals of network A are chosen to be 
infected. 

4. Results 

4.1. The two peaks outbreak pattern in simulations 

A pattern of two peaks appears in the numerical simulations of 
our model. The yellow circles in Fig. 3 (a) report the evolution of 
the infected density ρ I in the whole network with the parameters 
γ = 2 . 1 , 〈 k a 〉 = 〈 k b 〉 = 6 , 〈 k ab 〉 = 1 . 0 , βa = βb = 0 . 05 , βab = 0 . 005 
and μ = 0 . 1 . One can easily differentiate two peaks of ρ I , indicat- 
ing that the empirical observations in Fig. 1 can be fully repro- 
duced. 

To gather a deeper understanding, we also measure the evolu- 
tions of ρA 

I and ρB 
I in both layers A and B, and report them as 

green triangles and blue squares in Fig. 3 (a), respectively. It is easy 
to see that the times at which the maximum infected density is 
obtained in layers A and B are different, im plying that the pattern 
of two peaks is likely triggered by the time difference of epidemic 
outbreaks in the two layers. 

4.2. The factors determining the occurrence of two peaks pattern 

The next step is to focus on the factors that determines the 
occurrence of such two peaks pattern. For this purpose, we first 
concentrate on the role of the average degree 〈 k ab 〉 of the inter- 
network AB . Fig. 3 (b) shows the evolution of the infected density 
ρ I with different 〈 k ab 〉 (with triangles, squares and circles denot- 
ing the cases of 〈 k ab 〉 = 3 . 0 , 1 . 0 and 0.5, respectively). One notices 
that the pattern of ρ I is uni-modal when 〈 k ab 〉 is large, but bi- 
modal when 〈 k ab 〉 is sufficiently small, indicating that 〈 k ab 〉 is a 
key factor for the appearance of a bimodal pattern: a smaller 〈 k ab 〉 
favours the appearance of the two peaks pattern, indicating that 
the two main networks A and B should be only weakly coupled 
among them. 

Further, we study the influence of the infectious rate βab on 
the pattern. Fig. 3 (c) reports the results obtained for different 
βab (with triangles, squares and circles representing the cases of 
βab = 0 . 05 , 0 . 005 and 0.001, respectively). Once again one may no- 
tice that the condition of a weak coupling is essential for a bi- 
modal pattern: ρ I is indeed uni-modal when βab is large, while 

Fig. 3. The two peaks pattern occurring in different conditions, with μ = 0 . 1 , 

βa = βb = 0 . 05 , 〈 k a 〉 = 〈 k b 〉 = 6 , and N a = N b = 10 , 0 0 0 , where the symbols repre- 

sent the simulated results and the lines denote the corresponding theoretical pre- 

dictions (calculated via the edge-based compartmental theory described in the 

Method section). (a) ρ I ( t ) vs. t , where ρ I , ρ
A 
I and ρB 

I represent the infected den- 

sities in the entire network, and the networks A and B, respectively. Other param- 

eters are γ = 2 . 1 , 〈 k ab 〉 = 1 . 0 , and βab = 0 . 005 . (b) The influence of 〈 k ab 〉 on ρ I ( t ) 

with γ = 2 . 1 and βab = 0 . 005 , where the “triangles”, “squares” and “circles” rep- 

resent the cases of 〈 k ab 〉 = 3 . 0 , 1 . 0 and 0.5, respectively. (c) The influence of βab 
on ρ I ( t ) with γ = 2 . 1 and 〈 k ab 〉 = 1 . 0 , where the “triangles”, “squares” and “circles”

represent the cases of βab = 0 . 05 , 0 . 005 and 0.001, respectively. (d) The influence of 

γ on ρ I ( t ) with βab = 0 . 005 and 〈 k ab 〉 = 1 . 0 , where the “triangles”, “squares” and 

“circles” represent the cases of γ = 3 . 0 , 2 . 1 and 1.5, respectively. 

the two peaks appear when βab is small. Finally, we study the in- 
fluence of the exponent γ of the SF network. Fig. 3 (d) shows that 
the bimodal feature is reduced with the increase of γ . As a larger 
γ means a smaller difference between the structures of the SF and 
RR networks, one can infer that the heterogeneity between the two 
layers is very helpful for the appearance of two peaks patterns. 

All the numerical results are fully confirmed by an edge-based 
compartmental theory, see our theoretical Eqs. (18) and (19) in the 
Theoretical analysis section. The solid curves in Fig. 3 (a)–(d) show 

the corresponding theoretical results. 
These numerics point that a weak coupling is the necessary 

condition for the emergence of the new pattern, while a difference 
in heterogeneity between the two layers is a very helpful factor. 
An interesting question is whether the observed behavior corre- 
sponds to a critical phenomenon. To figure out the answer, we let 
τ be the time interval between the two peaks of ρ I . In particu- 
lar, the two peaks will merge into a single one when τ = 0 . Simi- 
larly, we let δt = | t B max − t A max | be the time delay between the two 
peaks in layers A and B, where t A max and t 

B 
max are the times of oc- 

currence of the peak in ρA 
I and ρB 

I , respectively. The trivial situa- 
tion would be that for which τ = δt , but our numerical simulations 
show that this condition is attained only when τ is large, whereas 
one has τ < δt when τ is sufficiently small. And, in particular, one 
has δt > 0 when τ = 0 . 

Fig. 4 (a) and (b) show the dependence of τ and δt on βab for 
fixed γ = 2 . 1 and different 〈 k ab 〉 , respectively. From Fig. 4 (a), one 
sees that when 〈 k ab 〉 is small, τ will decrease monotonically and be 
non-vanishing with the increasing of βab , indicating that the event 
of two peaks always exists in the pattern. However, when 〈 k ab 〉 
is increased, τ will decrease rapidly to zero, implying that there 
is a critical βc 

ab 
for different 〈 k ab 〉 . When βab < βc 

ab 
, the epidemic 
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Fig. 4. (a) and (b) report the dependence of τ and δt on βab (see main text for 

definitions) with different 〈 k ab 〉 in SF-RR networks. (c) and (b) report the depen- 

dence of τ and δt on βab with different γ in SF-RR networks. Symbols represent 

the simulated results and the lines are the corresponding theoretical results (calcu- 

lated via the edge-based compartmental theory described in the Method section). 

Other parameters as in the caption of Fig. 3 . All the results are averaged over 100 

independent realizations. 

spreading event occurs through a pattern of two peaks in the in- 
fected density, while for βab > βc 

ab 
it occurs via the traditional pat- 

tern with a single peak. On its turn, Fig. 4 (b) shows that δt de- 
creases monotonically with the increase of βab for all the three 
cases of 〈 k ab 〉 , and it never vanishes. This is because the spreading 
speed is different in homogeneous and heterogeneous networks. 
Generally speaking, epidemic spreading is faster in heterogeneous 
network than in homogeneous network [46] . 

We then turn to investigate the influence of the heterogeneity 
in degree distribution on the occurrence of the two peaks pattern. 
Fig. 4 (c) and (d) show the dependence of τ and δt on βab for dif- 
ferent γ and fixed 〈 k ab 〉 = 1 . 0 . While the network heterogeneity 
decreases with the increasing of γ , it is easy to see that when γ is 
large, τ and δt decrease more prominently with βab . Specifically, 
the difference of spreading speeds between the two layers is not 
distinctive for large γ , resulting in the disappearance of the two 
peaks. Therefore, increasing the coupling strength (i.e. 〈 k ab 〉 and 
βab ) or decreasing the heterogeneity of network topology between 
the networks A and B will decrease the time delay of epidemic 
outbreak and then suppress the pattern of two peaks. 

We have also confirmed all these numerical results in Fig. 4 (a)–
(d) by the theoretical Eqs. (18) and (19) in the Theoretical analysis 
section. For each set of parameters in Fig. 4 (a)–(d), we first produce 
the infected densities ρI , ρ

A 
I , and ρ

B 
I from Eqs. (18) and (19) , as 

done in Fig. 3 (a)–(d), and then measure the corresponding τ and 
δt . The solid curves in Fig. 4 (a)–(d) show the theoretical τ and δt . 
One can easily see that the theoretical results are fully consistent 
with the numerical results. 

4.3. The effect of the coupling strength on the final epidemic size 

In the above text, we have discussed that the value of the 
coupling strength is crucial for determining the kind of pattern 
of the epidemic spreading. Then, a natural question is how the 
coupling strength influences the final size of epidemic spreading. 
Fig. 5 shows the dependence of the final value of ρR on βa and 

Fig. 5. Dependence of the final epidemic size ρR on βa and βb in SF-RR networks 

with 〈 k ab 〉 = 1 . 0 and βab = 0 . 005 in (a)-(b), 〈 k ab 〉 = 1 . 0 and βab = 0 . 05 in (c)-(d), and 

〈 k ab 〉 = 2 . 0 and βab = 0 . 005 in (e)-(f). Left and right panels correspond to numerical 

simulations and theoretical results, respectively. All the numerical results are aver- 

aged over 100 independent realizations. Other parameters are set as P A (k ) ∼ k −γ , 

γ = 2 . 1 , 〈 k a 〉 = 6 , 〈 k b 〉 = 6 , μ = 0 . 1 and N a = N b = 10 , 0 0 0 . 

βb for a scale-free (SF)-random regular (RR) network configuration, 
with different 〈 k ab 〉 and βab . All the results are averaged over 100 
independent realizations with 〈 k ab 〉 = 1 . 0 and βab = 0 . 005 in (a), 
〈 k ab 〉 = 1 . 0 and βab = 0 . 05 in (c), and 〈 k ab 〉 = 2 . 0 and βab = 0 . 005 
in (e), respectively. Comparing Fig. 5 (a) with (c), one sees that the 
blue area in (c) is much smaller than that in (a), indicating that 
increasing βab has the effect of enhancing the final epidemic size. 
Comparing Fig. 5 (a) with (e), one sees that the blue area in (e) is 
slightly smaller than that in (a), indicating that increasing 〈 k ab 〉 can 
also slightly enhance ρR . 

On the other hand, one can also obtain ρR by the theoretical 
formulae in the theoretical analysis Section. The right panels in 
Fig. 5 (i.e. Fig. 5 (b), (d) and (f)) show the results corresponding to 
the left panels, respectively, and indicate that all theoretical pre- 
dictions are highly consistent. 

5. Theoretical analysis 

5.1. Edge-based compartmental theory for a single network 

Let us first illustrate the edge-based compartmental theory for 
a single network, by following the methods and tools introduced 
in Refs. [47–56] . 

For an uncorrelated, large and sparse network, the SIR model 
can be described in terms of the quantities S ( t ), I ( t ), and R ( t ), which 
represent the densities of the susceptible, infected, and recovered 
nodes at time t , respectively. Let θ ( t ) be the probability that a 
neighbor v of u has not transmitted the disease to u along the edge 
connecting them up to time t . Then, the node u with degree k is 
susceptible at time t as s (k, t) = θ (t) k . Averaging over all k , the 
density of susceptible nodes at time t is given by 

S(t) = 

∞ 
∑ 

k =0 

P (k ) θ (t) k (1) 
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where P ( k ) is the degree distribution of the network. In order to 
solve for S ( t ), one needs to know θ ( t ). Since a neighbor v of node 
u may be susceptible, infected, or recovered, θ ( t ) can be expressed 
as 

θ (t) = �S (t) + �I (t) + �R (t) (2) 

where �S ( t ), �I ( t ), �R ( t ) is the probability that the neighbor v is in 
the susceptible, infected, recovery state, respectively, and has not 
transmitted the disease to node u through their connection. Once 
these three parameters can be derived, we will get the density of 
susceptible nodes at time t by substituting them into Eq. (2) and 
then into Eq. (1) . To this purpose, in the following, we will focus 
on how to solve them. 

To find �S ( t ), we now consider a randomly chosen node u , and 
assume this node is in the cavity state, which means that it can- 
not transmit any disease to its neighbors v but can be infected by 
its neighbors. In this case, the neighbor v can only get the disease 
from its other neighbors except the node u . Thus, node v with de- 
gree k ′ is susceptible with probability θ (t) k 

′ −1 at time t . For uncor- 
related networks, the probability that one edge from node u con- 
nects with a node v with degree k ′ is k ′ P ( k ′ )/ 〈 k 〉 . Summing over all 
possible k ′ , one obtains 

�S (t) = 

∑ 

k ′ k 
′ P (k ′ ) θ (t) k 

′ −1 

〈 k 〉 
(3) 

According to the SIR spreading process, the growth of �R ( t ) in- 
cludes two consecutive events: first, an infected neighbor has not 
transmitted the infection to node u via with probability 1 − β; 
second, the infected neighbor has been recovered with probabil- 
ity μ. Combining these two events, the �I ( t ) to �R ( t ) flux is 
μ(1 − β)�I (t) . Thus, one gets 

d�R (t) 

dt 
= μ(1 − β)�I (t) (4) 

Once the infected neighbor v transmits the disease to u success- 
fully (with probability β), the �I ( t ) to 1 − θ (t) flux will be β�I ( t ), 
which means 

d(1 − θ (t)) 

dt 
= β�I (t) 

That is 

dθ (t) 

dt 
= −β�I (t) (5) 

Combining Eqs. (4) and (5) , and considering (as initial conditions) 
θ (0) = 1 and �R (0) = 0 , one obtains 

�R (t) = 
μ(1 − θ (t))(1 − β) 

β
(6) 

Substituting Eqs. (3) and (6) into Eq. (2) , one gets an expression for 
�I ( t ) in terms of θ ( t ), and then one can rewrite Eq. (5) as 

dθ (t) 

dt 
= −βθ (t) + β

∑ 

k ′ k 
′ P (k ′ ) θ (t) k 

′ −1 

〈 k 〉 

+ μ(1 − θ (t))(1 − β) (7) 

After obtaining the solution of Eq. (7) , we can substitute it into 
Eq. (1) to obtain S ( t ). Then, I ( t ) and R ( t ) can be obtained as follows 

dR (t) 

dt 
= μI (t) , I (t) = 1 − S(t) − R (t) (8) 

In fact, Eq. (7) does not depend on Eq. (8) , so the system is gov- 
erned by the single ordinary differential equation (7) . Although the 
resulting equation are simpler than those found by other methods, 
it can be proven to exactly predict the disease dynamics in the 
large-population limit for different network topologies [53,57] . 

5.2. The theory for two-layered networks 

When one assumes that the population is made up of two in- 
teracting networks, then P j ( k 1 , k 2 ) denote the probability that a 
node of network j has k 1 degree in network 1 and k 2 in network 2. 
For the sake of simplicity, one can name the two networks A and 
B as 1 and 2. Let β j, l be the rate of transmission across an edge 
from network l to network j , and let us define μ to be the recovery 
rate of a node in any network. 

θ j, l can be defined to be the probability that an edge to a test 
node u in network j ( j = 1 , 2 ) is coming from network l ( l = 1 , 2 ), 
and has not transmitted the infection. 

Now, θ1, 2 can be solved as in the case of a single network. 
Since a neighbor v in network 2 of node u in network 1 may be 
susceptible, infected, or recovered, θ1, 2 can be expressed as 

θ1 , 2 = �S 
1 , 2 + �I 

1 , 2 + �R 
1 , 2 (9) 

where �S 
1 , 2 , �

I 
1 , 2 , �

R 
1 , 2 is the probability that the neighbor v is in 

the susceptible, infected, recovery state, and has not transmitted 
the disease to node u through their connection. 

Similarly, to find �S 
1 , 2 , the neighbor v in network 1 can only get 

the disease from its other neighbors except the node u in network 
2. Thus, the node v with degree k 1 in network 1 and degree k 2 in 

network 2 is susceptible with probability θ
k 1 −1 
2 , 1 θ

k 2 
2 , 2 at time t . For 

uncorrelated networks, the probability that one edge from node 

u connects with a node v with degree ( k 1 , k 2 ) is 
k 1 P 2 (k 1 ,k 2 ) 

∑ 
k 1 ,k 2 

k 1 P 2 (k 1 ,k 2 ) 
. 

Thus, one has 

�S 
1 , 2 = 

∑ 

k 1 ,k 2 
k 1 P 2 (k 1 , k 2 ) θ

k 1 −1 
2 , 1 θ k 2 

2 , 2 
∑ 

k 1 ,k 2 
k 1 P 2 (k 1 , k 2 ) 

(10) 

It is easily to know that the growth of �R 
1 , 2 includes two con- 

secutive events: first, an infected neighbor has not transmitted the 
infection to node u via with probability 1 − θ1 , 2 ; second, the in- 
fected neighbor has been recovered with probability μ. Combining 
these two events, the �I 

1 , 2 to �
R 
1 , 2 flux is μ(1 − θ1 , 2 )�

I 
1 , 2 . Thus, 

one gets 

d�R 
1 , 2 

dt 
= μ(1 − θ1 , 2 )�

I 
1 , 2 (11) 

Once the infected neighbor v in network 1 transmits the disease 
to node u in network 2 successfully (with probability β1, 2 ), the 
�I 

1 , 2 to 1 − θ1 , 2 flux will be β1 , 2 �
I 
1 , 2 , which means 

dθ1 , 2 
dt 

= −β1 , 2 �
I 
1 , 2 (12) 

Combining Eqs. (11) and (12) , and considering (as initial condi- 
tions) θ1 , 2 (0) = 1 and �R 

1 , 2 (0) = 0 , one obtains 

�R 
1 , 2 = 

μ(1 − θ1 , 2 )(1 − β1 , 2 ) 

β1 , 2 
(13) 

So, one gets 

˙ θ1 , 2 = −β1 , 2 (θ1 , 2 − �S 
1 , 2 − �R 

1 , 2 ) 

= −β1 , 2 θ1 , 2 +β1 , 2 

∑ 

k 1 ,k 2 
k 1 P 2 (k 1 , k 2 ) θ

k 1 −1 
2 , 1 θ k 2 

2 , 2 
∑ 

k 1 ,k 2 
k 1 P 2 (k 1 , k 2 ) 

+ μ(1 − θ1 , 2 )(1 − β1 , 2 ) (14) 

Similarly, one can write down θ1, 1 , θ2, 1 and θ2, 2 as follows 

˙ θ1 , 1 = −β1 , 1 θ1 , 1 +β1 , 1 

∑ 

k 1 ,k 2 
k 1 P 1 (k 1 , k 2 ) θ

k 1 −1 
1 , 1 θ k 2 

1 , 2 
∑ 

k 1 ,k 2 
k 1 P 1 (k 1 , k 2 ) 

+ μ(1 − θ1 , 1 )(1 − β1 , 1 ) (15) 



140 M. Zheng et al. / Chaos, Solitons and Fractals 107 (2018) 135–142 

˙ θ2 , 1 = −β2 , 1 θ2 , 1 +β2 , 1 

∑ 

k 1 ,k 2 
k 2 P 1 (k 1 , k 2 ) θ

k 1 
1 , 1 θ

k 2 −1 
1 , 2 

∑ 

k 1 ,k 2 
k 2 P 1 (k 1 , k 2 ) 

+ μ(1 − θ2 , 1 )(1 − β2 , 1 ) (16) 

˙ θ2 , 2 = −β2 , 2 θ2 , 2 +β2 , 2 

∑ 

k 1 ,k 2 
k 2 P 2 (k 1 , k 2 ) θ

k 1 
2 , 1 θ

k 2 −1 
2 , 2 

∑ 

k 1 ,k 2 
k 2 P 2 (k 1 , k 2 ) 

+ μ(1 − θ2 , 2 )(1 − β2 , 2 ) (17) 

With Eqs. (14) –(17) on hand, the densities associated with each 
distinct state can be obtained by 

˙ R 1 = μI 1 (t) , 

S 1 (t) = 

∞ 
∑ 

k 1 ,k 2 

P 1 (k 1 , k 2 ) θ
k 1 
1 , 1 θ

k 2 
1 , 2 , (18) 

I 1 (t) = 1 − S 1 (t) − R 1 (t) 

˙ R 2 = μI 2 ( t ) , 

S 2 ( t ) = 

∞ 
∑ 

k 1 ,k 2 

P 2 ( k 1 , k 2 ) θ
k 2 
2 , 2 θ

k 1 
2 , 1 , 

I 2 ( t ) = 1 − S 2 ( t ) − R 2 ( t ) 

(19) 

Eqs. (18) and (19) are the main theoretical results from which 
the theoretical results in Figs. 3–5 are calculated. Now, a critical 
question comes out: can our theory find out the epidemic thresh- 
old? In fact, we find that the threshold for the whole network to 
show epidemic outbreak can be theoretically figured out by the Ja- 
cobian matrix J of Eqs. (14) –(17) . Particularly, the epidemic thresh- 
olds βA 

c and β
B 
c can be obtained by the linear stability analysis of 

the trivial fixed point solution (θ1 , 1 , θ1 , 2 , θ2 , 1 , θ2 , 2 ) = (1 , 1 , 1 , 1) of 
Eqs. (14) –(17) . Without loss of generality, one can set the recovery 
rate μ = 1 . 0 . The Jacobian matrix J of Eqs. (14) –(17) at (1, 1, 1, 1) 
can be expressed as 

J = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

β1 , 1 

∑ 
k 1 (k 1 −1) P 1 (k 1 ,k 2 ) 
∑ 

k 1 P 1 (k 1 ,k 2 ) 
− 1 β1 , 1 

∑ 
k 1 k 2 P 1 (k 1 ,k 2 ) 

∑ 
k 1 P 1 (k 1 ,k 2 ) 

0 0 

0 −1 β1 , 2 

∑ 
k 1 (k 1 −1) P 2 (k 1 ,k 2 ) 
∑ 

k 1 P 2 (k 1 ,k 2 ) 
β1 , 2 

∑ 
k 1 k 2 P 2 (k 1 ,k 2 ) 

∑ 
k 1 P 2 (k 1 ,k 2 ) 

β2 , 1 

∑ 
k 1 k 2 P 1 (k 1 ,k 2 ) 

∑ 
k 2 P 1 (k 1 ,k 2 ) 

β2 , 1 

∑ 
k 2 (k 2 −1) P 1 (k 1 ,k 2 ) 
∑ 

k 2 P 1 (k 1 ,k 2 ) 
−1 0 

0 0 β2 , 2 

∑ 
k 1 k 2 P 2 (k 1 ,k 2 ) 

∑ 
k 2 P 2 (k 1 ,k 2 ) 

β2 , 2 

∑ 
k 2 (k 2 −1) P 2 (k 1 ,k 2 ) 
∑ 

k 2 P 2 (k 1 ,k 2 ) 
− 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

(20) 

For uncorrelated networks, the matrix J can be simplified as 
⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

β1 , 1 
〈 k 2 1 〉−〈 k 1 〉 

〈 k 1 〉 
− 1 β1 , 1 

〈 k 1 〉〈 k 12 〉 
〈 k 1 〉 

0 0 

0 −1 β1 , 2 
〈 k 2 12 〉 
〈 k 12 〉 

β1 , 2 
〈 k 2 〉〈 k 12 〉 

〈 k 12 〉 

β2 , 1 
〈 k 1 〉〈 k 21 〉 

〈 k 21 〉 
β2 , 1 

〈 k 2 21 〉 
〈 k 21 〉 

−1 0 

0 0 β2 , 2 
〈 k 2 〉〈 k 12 〉 

〈 k 2 〉 
β2 , 2 

〈 k 2 2 〉−〈 k 2 〉 
〈 k 2 〉 

− 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

βA 
c and β

B 
c can be obtained by seeking for the condition where the 

largest eigenvalue 	 of J changing from 0 to positive. Instead of 
obtaining the expression of 	 of J , we here numerically find the 
transition point of 	 from 0 to positive. The white lines in Fig. 6 
show the results on SF-RR networks, i.e. the thresholds βA 

c and β
B 
c , 

where (a) and (b) represent the case of 〈 k ab 〉 = 1 . 0 , and (c) and 
(d) the case of 〈 k ab 〉 = 2 . 0 ; and (a) and (c) represent the case of 
〈 βab 〉 = 0 . 1 , and (b) and (d) the case of 〈 βab 〉 = 0 . 5 . For confirma- 
tion of such a prediction, one can use the same set of parameters, 
and calculate numerically ρR of the whole SF-RR networks, which 
is shown in Fig. 6 (a)–(d). The phase diagram of ρR in each panel 
of Fig. 6 (a)–(d) can be divided into two distinct regions (whose 
boundaries are depicted in white lines): the healthy and endemic 
phases, respectively. The theoretical predictions are in good agree- 
ment with the numerical results. 

Fig. 6. Phase diagram of the final epidemic size. Dependence of ρR on βa and βb 
on SF-RR networks with 〈 k ab 〉 = 1 . 0 in (a)-(b) and 〈 k ab 〉 = 2 . 0 in (c)-(d). Left and 

right panels correspond to βab = 0 . 1 and βab = 0 . 5 respectively. The Color-coded 

values ρR are obtained from numerical simulations and the theoretical predictions 

(white line) are the solutions of the largest eigenvalue 	 = 0 of Jacobian matrix 

J in matrix (20) . All numerical results are averaged over 1,0 0 0 independent real- 

izations. Other parameters are P A (k ) ∼ k −γ , γ = 2 . 1 , 〈 k a 〉 = 6 , 〈 k b 〉 = 6 , μ = 1 and 

N a = N b = 10 0 0 0 . 

When networks A and B can be treated as isolated graphs (i.e. 
when their coupling is particularly weak), the explicitly expression 
of the epidemic thresholds is obtained by setting 	 = 0 , i.e. βA 

c = 
〈 k 1 〉 

〈 k 2 
1 〉−〈 k 1 〉 

and βB 
c = 

〈 k 2 〉 

〈 k 2 
2 〉−〈 k 2 〉 

. When the coupling between the layers 

is increased, βA 
c and β

B 
c decrease gradually. This result is consistent 

with the evidences reported in Ref. [25,58] . 
Fig. 7 shows the phase diagram of epidemic for different 〈 k ab 〉 

and βab , where (from top to bottom) the curves with different 

colors represent the epidemic threshold lines of βA 
c and βB 

c for 
the cases of βab = 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 , 1 . 0 , respectively. Panels (a) 
and (b) correspond to 〈 k ab 〉 = 1 . 0 and 2.0, respectively. In detail, 
each of the curves represents the boundary between the healthy 

Fig. 7. Phase diagrams of the healthy and the endemic phase for (a) 〈 k ab 〉 = 

1 . 0 , and (b) 〈 k ab 〉 = 2 . 0 . The curves indicate the boundaries of healthy and 

the endemic phases, where the solution are obtained by solving 	 = 0 in ma- 

trix (20) . Different color curves from top to down correspond to the case of 

βab = 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 , 1 . 0 . Other parameters are P A (k ) ∼ k −γ , γ = 2 . 1 , 〈 k a 〉 = 6 , 

〈 k b 〉 = 6 , μ = 1 and N a = N b = 10 0 0 0 . 
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Fig. 8. The patterns of two peaks for different layer structures. (a), (b) and (c) rep- 

resent the time evolutions of the infected density ρ I in RR-SF networks, SF-SF net- 

works, and RR-RR networks, respectively. (d), (e) and (f) show the time evolutions 

of ρA 
I and ρB 

I corresponding to (a), (b) and (c). The parameters in the left, mid- 

dle, and right panels are 〈 k ab 〉 = 0 . 01 and βab = 0 . 2 ; 〈 k ab 〉 = 0 . 001 and βab = 0 . 1 ; 

and 〈 k ab 〉 = 0 . 001 and βab = 0 . 1 , respectively. Other parameters are P A (k ) ∼ k −γ , 

γ = 2 . 1 , 〈 k a 〉 = 6 , 〈 k b 〉 = 6 , βa = βb = 0 . 05 , μ = 0 . 1 and N a = N b = 10 , 0 0 0 . 

and endemic phases, and the solutions are obtained by solving the 
largest eigenvalue 	 = 0 of the Jacobian matrix J . Other parame- 
ters are set as P A (k ) ∼ k −γ , γ = 2 . 1 , 〈 k a 〉 = 6 , 〈 k b 〉 = 6 , μ = 1 and 
N a = N b = 10 , 0 0 0 . Once the coupling strength is strong enough, 
the value of 	 is mainly determined from the contribution of the 
interconnection network AB , which is similar to a pure bipartite 
network. Looking at Fig. 7 , an interesting conclusion is that an en- 
demic state can occur even if there are no interactions within each 
individual network. These results imply that, in order to control an 
epidemic spreading, one needs to pay more attention to the effects 
of the coupling strength between different regions. 

6. Discussion 

Let us remark that the weak coupling condition predicted by us 
for the occurrence of the novel epidemic pattern is actually con- 
sistent with the cases of the data of Fig. 1 . As it is well known, 
indeed, Hong Kong in Fig. 1 (a) consists of islands, and the move- 
ment of individuals between different islands is not as convenient 
as that within each single island, and thus the coupling between 
neighboring islands can be considered to be weak. At the same 
time, the population distribution in Hong Kong central island is 
significantly different from that characterizing the surrounding is- 
lands, confirming the presence of the second ingredient predicted 
by our theory: i.e. a difference in the heterogeneity of the layers’ 
structures. 

In Boston, a river separates the city into two parts, which (to all 
extent) can be considered as equivalent to two islands. The same 
reasoning applies to the neighboring cities of Bristol and Newcas- 
tle and the neighboring cities of Bristol and Sheffield. As Bristol 
and Newcastle, Newcastle and Sheffield are separated regions in 
the United Kingdom, and they can therefore be considered as a 
pair of weakly coupled networks. 

Our predictions were obtained on coupled SF-RR networks, and 
it is legitimate to seek for generality of the two peaks pattern phe- 
nomenon, by means of investigating coupled networks with other 
topological structures. For this purpose, we have also studied the 
case of SF-SF and RR-RR networks, respectively. Very interestingly, 
one finds that the pattern of two peaks can be still observed by 
adjusting the coupling strength between the coupled layers (see 
Fig. 8 ). Although the two coupled SF networks (or the two coupled 
RR networks) can be considered as the case with same hetero- 
geneity, they are produced independently and thus their network 

Fig. 9. Three peaks patterns in three-layered networks. Panels (a), (b) and (c) re- 

port the patterns with one peak, two peaks and three peaks of ρ I , for a three- 

layered SF-SF-RR network. (d), (e) and (f) show the time evolutions of ρA 
I , ρ

B 
I 

and ρC 
I corresponding to (a), (b) and (c). The parameters in the left, middle, and 

right panels are 〈 k ab 〉 = 〈 k ac 〉 = 〈 k bc 〉 = 1 ; 〈 k ab 〉 = 1 , 〈 k ac 〉 = 〈 k bc 〉 = 0 . 1 ; and 〈 k ab 〉 = 

〈 k bc 〉 = 0 . 01 , 〈 k ac 〉 = 0 . 1 , respectively. Other parameters are P A (k ) ∼ k −γ , γ = 2 . 1 , 

〈 k a 〉 = 〈 k b 〉 = 〈 k c 〉 = 6 , βa = βb = βc = 0 . 05 , βab = βac = βbc = 0 . 005 , μ = 0 . 1 and 

N a = N b = N c = 10 , 0 0 0 . 

topologies are different, indicating that there exists still the effect 
of heterogeneity between the two coupled networks. On the other 
hand, extension to three-layered model was also considered, and it 
was found that there is a small probability to produce a pattern of 
three peaks (see Fig. 9 ). Therefore, while in principle one can ex- 
pect a multi-peaks pattern to occur in a multilayered network, the 
majority of unusual cases (i.e. cases in which the epidemic event is 
not happening with a single maximum of infected density) will be 
characterized by just two peaks, in full consistency with the data 
of Fig. 1 . 

In summary, epidemic spreading has been well studied in the 
past decades but mainly focused on outbreaks corresponding to 
patterns with a single peak of infected density. We here reported 
(from real data) the evidence that also a pattern of two peaks in 
a single epidemic period is possible. We pointed out that such a 
pattern is a genuine product of a multi-layered interaction struc- 
ture, and we have introduced a proper model able to fully capture 
the mechanisms for its occurrence. Our model, together with re- 
producing the classical pattern of a single peak, can generate the 
pattern with two peaks when coupling between the layers is weak, 
while the difference in heterogeneity of the layers’ structures is 
also helpful. 
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